JPS59105436A - Medical endoscope - Google Patents

Medical endoscope

Info

Publication number
JPS59105436A
JPS59105436A JP57216329A JP21632982A JPS59105436A JP S59105436 A JPS59105436 A JP S59105436A JP 57216329 A JP57216329 A JP 57216329A JP 21632982 A JP21632982 A JP 21632982A JP S59105436 A JPS59105436 A JP S59105436A
Authority
JP
Japan
Prior art keywords
light
observation
corneal
microscope according
illumination system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57216329A
Other languages
Japanese (ja)
Other versions
JPS6236692B2 (en
Inventor
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57216329A priority Critical patent/JPS59105436A/en
Publication of JPS59105436A publication Critical patent/JPS59105436A/en
Publication of JPS6236692B2 publication Critical patent/JPS6236692B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は医科手術用の顕微鏡に関し、特に自動的に角膜
の曲率測定を行う測定装置を備えた顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a medical and surgical microscope, and more particularly to a microscope equipped with a measuring device that automatically measures corneal curvature.

眼科の手術は顕微鏡を覗きながら行うことが多いが、角
膜手術で患部の縫合を行う際には、角Hりの曲率半径を
測定しながらその測定値に合わせて縫合の程度を手かげ
んしている。そしてこの様な用途のための顕微鏡には手
動のケラトメータが組込まれているが、手術を行う一方
でケラトメータの操作をするのは著しく煩雑である。
Eye surgery is often performed while looking through a microscope, but when suturing the affected area in corneal surgery, the radius of curvature of the corner H is measured and the degree of suturing is adjusted according to that measurement. There is. Although a manual keratometer is built into a microscope for such use, it is extremely troublesome to operate the keratometer while performing surgery.

本発明の目的は、角膜の曲率を自動的に測定し得る装置
を備える顕微鏡を提供することにある。但し自動測定を
するための光電検出手段に、患部観察のための観察光が
入射した場合、正確な測定を妨げる。この様な難点を解
決する一方としては、測定時と観察時とを時間分割する
手法が挙げられるが、本発明は観察の連続性を保ちつつ
前記難点を除去することを開目的とする。
An object of the present invention is to provide a microscope equipped with a device that can automatically measure the curvature of the cornea. However, if the observation light for observing the affected area is incident on the photoelectric detection means for automatic measurement, accurate measurement will be hindered. One way to solve these difficulties is to time-divide the time of measurement and observation, but the present invention aims to eliminate the above-mentioned difficulties while maintaining continuity of observation.

以下、図面に従って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図でEは被検眼、Cはその角膜である。■は照明光
源で、例えばハロゲン球を使用する。2は波長カットフ
ィルターで、近赤外光より長波長側の光を遮断し、短波
長側の光を透過させる作用を持ち、これにより光源1を
発した光の内、近赤外光を除去することができる。3は
コリメータレンズで、被検部を一様に照明するのに役立
つ。以上の光源1、波長カットフィルター2、コリメー
タレンズ3が順値されて観察照明系を構成する。
In FIG. 1, E is the eye to be examined and C is its cornea. (2) is an illumination light source, such as a halogen bulb. 2 is a wavelength cut filter that has the effect of blocking light with longer wavelengths than near-infrared light and transmitting light with shorter wavelengths, thereby removing near-infrared light from the light emitted from light source 1. can do. 3 is a collimator lens, which is useful for uniformly illuminating the area to be examined. The light source 1, wavelength cut filter 2, and collimator lens 3 described above constitute an observation illumination system.

次に5は大10径の対物レンズ、6と7はリレーレンズ
で、リレーレンズ6と7の光軸は平行に配される。8と
9は双眼視のための接眼レンズで、リレーレンズ6と7
による像をそれぞれ目視するのに役立つ。以」二の対物
レンズ5、リレーレンズ6と7、接眼レンズ8と9は角
膜観察系を構成する。
Next, 5 is an objective lens with a large diameter of 10, and 6 and 7 are relay lenses, and the optical axes of the relay lenses 6 and 7 are arranged in parallel. 8 and 9 are eyepiece lenses for binocular vision, and relay lenses 6 and 7
It is useful to visually check the images. The second objective lens 5, relay lenses 6 and 7, and eyepiece lenses 8 and 9 constitute a corneal observation system.

更に10はダイクロイックミラーで、近赤外光より長波
長側の光を反射させ、短波長側の光を透過させる作用を
持ち、これにより近赤外光を選択することができる。ダ
イクロイックミラー10は角膜観察系の一方の光路に斜
設される。11は結像レンズ。12は波長透過フィルタ
ーで、近赤外光を透過させる作用を持つ。但し、ダイク
ロイックミラーの波長分離性能が高い場合はフィルター
12を省略することができ、あるいはダイクロイックミ
ラーの替りに半透鏡を使用することが可能である。13
は二次元撮像用の光電変換器で、例えばCCD (Ch
arge Coupled Device )の様な固
体撮像素子を使用する。以上の対物レンズ5、リレーレ
ンズ7、ダイクロイックミラー10、結像レンズ11、
フィルター12、光電変換器13は角膜曲率測定装置の
受光部を構成する。またlはリング状光源で、環愈のキ
セノン閃光放電管を用い、測定装置の照明系を構成する
Furthermore, 10 is a dichroic mirror, which has the function of reflecting light on the longer wavelength side than near-infrared light and transmitting light on the shorter wavelength side, so that near-infrared light can be selected. The dichroic mirror 10 is installed obliquely on one optical path of the corneal observation system. 11 is an imaging lens. Reference numeral 12 denotes a wavelength transmission filter, which has the function of transmitting near-infrared light. However, if the dichroic mirror has high wavelength separation performance, the filter 12 can be omitted, or a semi-transparent mirror can be used instead of the dichroic mirror. 13
is a photoelectric converter for two-dimensional imaging, for example, CCD (Ch
A solid-state image sensor such as a large coupled device is used. The above objective lens 5, relay lens 7, dichroic mirror 10, imaging lens 11,
The filter 12 and the photoelectric converter 13 constitute a light receiving section of the corneal curvature measuring device. Further, l is a ring-shaped light source, which uses a ring-shaped xenon flash discharge tube to constitute the illumination system of the measuring device.

ここでまず角膜曲率測定装置の作用を説明する。First, the operation of the corneal curvature measuring device will be explained.

第1図でリング状光源14は被検眼Eの角膜Cにより反
射像14(虚像)を形成する。この反射像14′は投影
系(5,7,10,11)により光電変換器13上へ投
影像14(第2図)として結像される。投影指標として
のリング状光源14としては、円周玉に複数個の光源が
設けられたものであってもよいし、投影指標として光路
中にリング状スリットを設けてもよい。ここで角膜Cは
一般にトーリック面とみなされるため、リング状光源1
4が真円であっても角膜反射像14は楕円となる。また
これより投影系による投影像14は楕円となる。
In FIG. 1, the ring-shaped light source 14 forms a reflected image 14 (virtual image) by the cornea C of the eye E to be examined. This reflected image 14' is formed as a projected image 14 (FIG. 2) onto the photoelectric converter 13 by the projection system (5, 7, 10, 11). The ring-shaped light source 14 as a projection index may be one in which a plurality of light sources are provided on a circumferential ball, or a ring-shaped slit may be provided in the optical path as a projection index. Here, since the cornea C is generally regarded as a toric surface, the ring-shaped light source 1
Even if 4 is a perfect circle, the corneal reflection image 14 will be an ellipse. Further, from this, the projected image 14 by the projection system becomes an ellipse.

第2図の光電変換器13上に投影された投影像14と、
これを横切る適当な間隔の3本の走査線15.16.1
7により投影像14との交点1515.16,16,1
7.17が求まる。これら交点のうち、5点の座標より
投影像14の楕円形状を求めることより被検眼の角膜曲
率を算出する。
A projected image 14 projected onto the photoelectric converter 13 in FIG. 2,
Three appropriately spaced scan lines 15.16.1 across this
7 intersects with the projected image 14 1515.16, 16, 1
7.17 is found. The corneal curvature of the eye to be examined is calculated by determining the elliptical shape of the projected image 14 from the coordinates of five of these intersection points.

一般に楕円の方程゛式は任意の座標軸X + Vに対し
ax2+by  +2cxy+dx+ey+1=0と書
き表わせる。ここでa−eの5つが未知数である。
Generally, the elliptic equation can be expressed as ax2+by+2cxy+dx+ey+1=0 for any coordinate axis X+V. Here, five of a to e are unknown numbers.

これより、平面上の楕円の形状は5点の座標より決定さ
れ、最小3木の走査線を使えばよいことが理解される。
From this, it is understood that the shape of an ellipse on a plane is determined by the coordinates of five points, and that a minimum of three scanning lines can be used.

第1図へ戻って、光源1を点灯すれば、光源1を発した
光の内、可視波長域の光はフィルター2を透過し、レン
ズ3を介して角膜Cを一様に照明する。角膜Cからの散
乱反射光は対物レンズ5で収斂作用を受け、更に各リレ
ーレンズ6と7で夫々結像される。これらの像はパララ
ックスを持ち、容置は各接眼レンズ8.9を通して観察
される。
Returning to FIG. 1, when the light source 1 is turned on, the light in the visible wavelength range of the light emitted from the light source 1 passes through the filter 2 and uniformly illuminates the cornea C via the lens 3. The scattered reflected light from the cornea C is converged by the objective lens 5, and is further imaged by the relay lenses 6 and 7, respectively. These images have parallax and the objects are observed through each eyepiece 8.9.

適当な時点で、リング状光源14は瞬時点灯し、そこか
ら来る光は角膜Cを照明し、角膜Cで反射された光は対
物レンズ5とリレーレンズ7で収斂作用を受け、その後
グイクロイックミラーlOで反射する際に近赤外より長
波長側の光が反射し、結像レンズ11により光電変換器
13上にリング状の虚光源像14′を結像する。そして
角膜Cで反射した尤の内、近赤外より短波長側の可視光
はダイクロイックミラー10を透過するので光電変換器
13に達することはなく、また仮にダイクロイックミラ
ーで可視光が多少反射したとしてもフィルター12で遮
断されるから、光電変換時の雑音になることはない。な
お、光電変換器13で検出された情報に基づいて演算さ
れた・角膜曲率に関する値(長軸、短軸方向の曲率と軸
の角度)は装置の外部に表示しても良いし、あるいはリ
レーレンズ6による結像面上の周縁に接眼レンズ8へ向
けて表示しても良い。
At an appropriate point in time, the ring-shaped light source 14 is turned on instantaneously, the light coming from it illuminates the cornea C, the light reflected by the cornea C is converged by the objective lens 5 and the relay lens 7, and then is convergently When reflected by the mirror IO, light with wavelengths longer than near infrared is reflected, and a ring-shaped virtual light source image 14' is formed on the photoelectric converter 13 by the imaging lens 11. Of the visible light reflected by the cornea C, visible light with wavelengths shorter than near-infrared passes through the dichroic mirror 10 and therefore does not reach the photoelectric converter 13. Even if some visible light is reflected by the dichroic mirror, Since the light is also blocked by the filter 12, it does not become noise during photoelectric conversion. Note that the values related to the corneal curvature (curvature in the long axis and short axis directions and axis angle) calculated based on the information detected by the photoelectric converter 13 may be displayed on the outside of the device, or may be displayed on the relay. The image may be displayed on the periphery of the image forming plane formed by the lens 6 toward the eyepiece 8 .

以上説明した本発明によれば、患部を顕微鏡観察し得る
と共に自動測定した角膜曲率の測定値を確認できるもの
で、測定を手動で行う煩わしさから解放される効果があ
る。また自動測定は雑音要因から保護されているので、
正確な測定値を得ることができる。
According to the present invention described above, the affected area can be observed under a microscope and the automatically measured value of the corneal curvature can be confirmed, which has the effect of freeing the user from the trouble of performing measurements manually. Automatic measurements are also protected from noise factors, so
Accurate measurements can be obtained.

一方、測定光源にストロボを使用すれば瞬時に測定が実
行され、あるいは光路中に配した光分割器をダイクロイ
ックミラーにすれば観察視野が陰る様なこともなくなる
利点がある。
On the other hand, if a strobe is used as the measurement light source, the measurement can be carried out instantaneously, or if a dichroic mirror is used as the light splitter placed in the optical path, there is an advantage that the observation field of view will not be obscured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す光学断面図。第2図は光
電変換器とそ、の上の投影像を示す。 図中、1は照明光源、2は近赤外カットフィルター、3
はコリメータレンズ、5は対物レンズ、6と7はリレー
レンズ、8と9は接眼レンズ、10はダイクロイックミ
ラー、11は結像レンズ、12は近赤外透過、可視カッ
トフィルター、工3は光電変換器である。 出願人 キャノン株式会社
FIG. 1 is an optical sectional view showing an embodiment of the present invention. FIG. 2 shows the photoelectric converter and its projected image. In the figure, 1 is an illumination light source, 2 is a near-infrared cut filter, and 3 is a near-infrared cut filter.
is a collimator lens, 5 is an objective lens, 6 and 7 are relay lenses, 8 and 9 are eyepiece lenses, 10 is a dichroic mirror, 11 is an imaging lens, 12 is a near-infrared transmission, visible cut filter, and 3 is a photoelectric conversion It is a vessel. Applicant Canon Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)被検部を観察するための観察系と観察用の照明を
行う観察照明系と、角膜曲率半径を測定するためで、光
電検出器及び角膜照明系を具える測定装置を設けると共
に、観察照明系による照明光中から所定の性質の光を除
去するための除去手段と、光電検出器へ入射する光を所
定の性質の光のみに規制する規制手段を設けたことを特
徴とする医科用顕微鏡。
(1) An observation system for observing the subject, an observation illumination system for illuminating for observation, and a measurement device including a photoelectric detector and a corneal illumination system for measuring the radius of corneal curvature; A medical device characterized by being provided with a removing means for removing light of a predetermined property from illumination light from an observation illumination system, and a regulating means for regulating light incident on a photoelectric detector to only light of a predetermined property. microscope.
(2)所定の性質の光とは近赤外光である特許請求の範
囲第1項記載の医科用顕微鏡。
(2) The medical microscope according to claim 1, wherein the light having a predetermined property is near-infrared light.
(3)前記規制手段は近赤外光と可視光を反射と透過で
分離するグイクロイックミラーである特許請求の範囲第
1項記載の医科用顕微鏡。
(3) The medical microscope according to claim 1, wherein the regulating means is a guichroic mirror that separates near-infrared light and visible light by reflection and transmission.
(4)角膜照明系はリン夛゛状の閃光放電管を有する特
許請求の範囲第1項記載の医科用顕微鏡。
(4) The medical microscope according to claim 1, wherein the corneal illumination system includes a phosphorescent flash discharge tube.
(5)前記規制手段は近赤外光を反射し、可視光を透過
するグイクロイックミラーで、観察系の光路に斜設され
る特許請求の範囲第1項記載の医科用顕微鏡。
(5) The medical microscope according to claim 1, wherein the regulating means is a guichroic mirror that reflects near-infrared light and transmits visible light, and is installed obliquely in the optical path of the observation system.
JP57216329A 1982-12-09 1982-12-09 Medical endoscope Granted JPS59105436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216329A JPS59105436A (en) 1982-12-09 1982-12-09 Medical endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216329A JPS59105436A (en) 1982-12-09 1982-12-09 Medical endoscope

Publications (2)

Publication Number Publication Date
JPS59105436A true JPS59105436A (en) 1984-06-18
JPS6236692B2 JPS6236692B2 (en) 1987-08-08

Family

ID=16686822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216329A Granted JPS59105436A (en) 1982-12-09 1982-12-09 Medical endoscope

Country Status (1)

Country Link
JP (1) JPS59105436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161119A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPS62224350A (en) * 1986-03-25 1987-10-02 キヤノン株式会社 Medical binocular microscope
JPH07171102A (en) * 1993-11-12 1995-07-11 Canon Inc Optometry device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432553B2 (en) * 2009-03-18 2014-03-05 オリンパスメディカルシステムズ株式会社 Surgical microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416890A (en) * 1977-05-26 1979-02-07 Terry Clifford Michael Method of reforming cornea and surgical microscope
JPS5666235A (en) * 1979-11-02 1981-06-04 Canon Kk Cornea meter
JPS56151929A (en) * 1980-04-25 1981-11-25 Canon Inc Fundus camera
JPS5775634A (en) * 1980-10-31 1982-05-12 Olympus Optical Co Eye bottom camera
JPS57158826A (en) * 1981-03-27 1982-09-30 Nippon Kogaku Kk <Nikon> Automatic focusing device for stereoscopical microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416890A (en) * 1977-05-26 1979-02-07 Terry Clifford Michael Method of reforming cornea and surgical microscope
JPS5666235A (en) * 1979-11-02 1981-06-04 Canon Kk Cornea meter
JPS56151929A (en) * 1980-04-25 1981-11-25 Canon Inc Fundus camera
JPS5775634A (en) * 1980-10-31 1982-05-12 Olympus Optical Co Eye bottom camera
JPS57158826A (en) * 1981-03-27 1982-09-30 Nippon Kogaku Kk <Nikon> Automatic focusing device for stereoscopical microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161119A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPH0456288B2 (en) * 1984-09-01 1992-09-08 Canon Kk
JPS62224350A (en) * 1986-03-25 1987-10-02 キヤノン株式会社 Medical binocular microscope
JPH0651023B2 (en) * 1986-03-25 1994-07-06 キヤノン株式会社 Ophthalmic equipment
JPH07171102A (en) * 1993-11-12 1995-07-11 Canon Inc Optometry device

Also Published As

Publication number Publication date
JPS6236692B2 (en) 1987-08-08

Similar Documents

Publication Publication Date Title
JP2942321B2 (en) Transillumination imaging equipment
US7524062B2 (en) Ophthalmologic apparatus
US5163437A (en) Ophthalmic measuring device
JP2002531205A (en) System and method for non-contact measurement of axial length of the eye and / or curvature of the cornea and / or anterior chamber depth suitable for calculation of intraocular lenses
JPS6114809B2 (en)
JPH04220233A (en) Stereoscopic fundus camera
US5475451A (en) Ophthalmologic apparatus
JPS59105436A (en) Medical endoscope
JPH07313466A (en) Fundus oculi photographing system
JPS633612B2 (en)
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JP3206936B2 (en) Eye refractometer
JPS6117494B2 (en)
JP2614324B2 (en) Corneal shape measuring device
JP2892007B2 (en) Non-contact tonometer
JP5710827B2 (en) Corneal shape measuring device
JPH0330366B2 (en)
JPH07255678A (en) Optometrical instrument
JP2962588B2 (en) Eye measurement device
JPS63194217A (en) Microscope for surgical operation
JP2001258841A (en) Ophthalmoscopic instrument
JPS6152692B2 (en)
JPS62268522A (en) Ophthalmic apparatus
JP2951991B2 (en) Eye refractometer
JP3046062B2 (en) Eye refractive power measuring device