JPH0330366B2 - - Google Patents
Info
- Publication number
- JPH0330366B2 JPH0330366B2 JP58017828A JP1782883A JPH0330366B2 JP H0330366 B2 JPH0330366 B2 JP H0330366B2 JP 58017828 A JP58017828 A JP 58017828A JP 1782883 A JP1782883 A JP 1782883A JP H0330366 B2 JPH0330366 B2 JP H0330366B2
- Authority
- JP
- Japan
- Prior art keywords
- eye
- examined
- optical axis
- light
- chart
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 18
- 210000004087 cornea Anatomy 0.000 claims description 9
- 210000002294 anterior eye segment Anatomy 0.000 claims 1
- 230000004907 flux Effects 0.000 claims 1
- 210000001508 eye Anatomy 0.000 description 68
- 210000000695 crystalline len Anatomy 0.000 description 35
- 238000001356 surgical procedure Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 201000009310 astigmatism Diseases 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000001444 catalytic combustion detection Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 201000000766 irregular astigmatism Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Description
【発明の詳細な説明】
本発明は眼科装置例えば被検眼の角膜形状を測
定する機能及び/又は被検眼の屈折力を測定する
機能を有する眼科手術用顕微鏡等の眼科装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ophthalmological apparatus, such as an ophthalmic surgical microscope, which has a function of measuring the corneal shape of an eye to be examined and/or a function of measuring the refractive power of the eye to be examined.
眼は精密な光学系を形成しており、これに対す
る何らかの疾患に対してはその機能を回復すべき
適当な処置がとられる。特に眼球に対して何らか
の手術が施される場合は、その機能や形状が再建
されることが重要な課題であり眼屈折力の回復は
手術の成否をわける重要な要素である。近年人口
の老令化等にも伴い前眼部手術とりわけ白内障手
術が多くなつているが術後の角膜形状の変化や眼
内レンズ挿入後の眼屈折力の予想される変化を適
確に把握しておくことは手術に際して欠くことの
出来ない事である。このため眼の角膜形状の変化
や眼屈折力の変化の状況は手術後のみならず手術
中にもたえず測定され正常な復元過程にあるか否
かを知る必要がある。従来、この種の眼科手術を
行うために用いられている手術用顕微鏡は手術に
際しての観察撮影機能しか所有しておらず、手術
中に眼の角膜形状や屈折状態を測定するには全く
別の装置に置換して行わねばならず手術を長時間
中断する必要があるうえ、かなりの手間がかか
り、配置上も本格的な測定装置で行なうことは事
実上無理であつた。 The eye forms a precise optical system, and appropriate measures are taken to restore its function in the event of any disease. Particularly when some kind of surgery is performed on the eyeball, it is important to reconstruct its function and shape, and recovery of the eye's refractive power is an important factor that determines the success or failure of the surgery. In recent years, with the aging of the population, anterior segment surgery, especially cataract surgery, has become more common, but it is important to accurately understand changes in corneal shape after surgery and expected changes in eye refractive power after intraocular lens insertion. This is an essential thing to do during surgery. For this reason, it is necessary to constantly measure changes in the shape of the cornea and the refractive power of the eye, not only after the surgery, but also during the surgery, in order to know whether or not the restoration process is normal. Traditionally, the surgical microscopes used to perform this type of eye surgery only have the observation and photography function during surgery, and a completely different method is required to measure the corneal shape and refractive state of the eye during surgery. The procedure must be replaced with a new measuring device, which requires a long interruption of the surgery, requires considerable effort, and the layout makes it practically impossible to perform the procedure using a full-scale measuring device.
また手術中、被検眼前眼部の周辺域を観察して
いる際、装置全体を移動することなく被検眼前眼
部の中央域を介して眼屈折力測定又は角膜形状測
定できれば検者にとつて便利である。 Also, when observing the peripheral area of the anterior segment of the subject's eye during surgery, it would be helpful for the examiner to be able to measure the eye refractive power or corneal shape through the central area of the anterior segment of the subject's eye without moving the entire device. It's very convenient.
同様に被検眼前眼部の中央域を観察している
際、装置全体を移動することなく被検眼前眼部の
周辺域を介して眼屈折力測定又は角膜形状測定で
きれば便利である。 Similarly, when observing the central region of the anterior segment of the subject's eye, it would be convenient if the eye refractive power or corneal shape could be measured via the peripheral region of the anterior segment of the subject's eye without moving the entire apparatus.
本発明は斯かる点に鑑み、従来例の欠点を除去
した眼科装置を提供することを目的とする。 In view of the above, an object of the present invention is to provide an ophthalmologic apparatus that eliminates the drawbacks of the conventional example.
以下、本発明の実施例を説明する。 Examples of the present invention will be described below.
第1図で被検眼前眼部を観察するためのランプ
1からの光はハーフミラー2、コンデンサーレン
ズ3、レンズ付プリズム4、対物レンズ5を介し
て被検眼Epを照明する。被検眼前眼部で反射し
た光は対物レンズ5、ビームスプリツター13,
14を通つてリレーレンズ群6,7,8に入り、
はね上げミラー9で反射後固定ミラー10、接眼
レンズ11を経て観察眼Eで観察される。 In FIG. 1, light from a lamp 1 for observing the anterior segment of the eye to be examined passes through a half mirror 2, a condenser lens 3, a prism 4 with a lens, and an objective lens 5 to illuminate the eye Ep. The light reflected from the anterior segment of the subject's eye is passed through an objective lens 5, a beam splitter 13,
14 and enters the relay lens groups 6, 7, 8,
After being reflected by the flip-up mirror 9, it is observed by the viewing eye E via the fixed mirror 10 and the eyepiece lens 11.
被検眼前眼部の撮影時には、ストロボ113が
発光し、対物レンズ5を経て前眼部を照明し、前
眼部からの光は対物レンズ5、ビームスプリツタ
ー13,14、リレーレンズ群6,7,8を経て
跳ね上げられたミラー9の下側を通過して、フイ
ルムその他の画像記録手段12に写し込まれる。 When photographing the anterior segment of the subject's eye, the strobe 113 emits light and illuminates the anterior segment through the objective lens 5, and the light from the anterior segment passes through the objective lens 5, beam splitters 13, 14, relay lens group 6, The image passes through mirrors 7 and 8, passes under the mirror 9 that has been flipped up, and is imprinted on a film or other image recording means 12.
ここで眼屈折力測定光学系について説明する。 Here, the optical system for measuring eye refractive power will be explained.
眼屈折力測定用の光源20からの光はコンデン
サレンズ19を通つて投影チヤート18を照射す
る。投影チヤート18は第2図に示すように少な
くとも3つの方向を有するスリツト18a,18
b,18cを有し、各スリツトを通過した光は、
投影レンズ29、第3図に示すリング状の開口2
8aをもつた開口絞り28、リレーレンズ27,
17、穴あきミラー16、リレーレンズ15、ビ
ームスプリツター14,13、対物レンズ5を経
て被検眼Epに至り、眼底上に各スリツト像光を
投影する。 Light from a light source 20 for measuring eye refractive power passes through a condenser lens 19 and illuminates the projection chart 18 . The projection chart 18 has slits 18a, 18 having at least three directions as shown in FIG.
b, 18c, and the light passing through each slit is
Projection lens 29, ring-shaped aperture 2 shown in FIG.
8a aperture diaphragm 28, relay lens 27,
17, the light passes through the perforated mirror 16, the relay lens 15, the beam splitters 14 and 13, and the objective lens 5, and reaches the eye Ep to be examined, and projects each slit image light onto the fundus.
眼底で反射した光は再び対物レンズ5、ビーム
スプリツター13,14を通りリレーレンズ1
5、穴あきミラー16の孔部、リレーレンズ2
1,37、第4図に示すような開口38aをもつ
た開口絞り38、投影レンズ39を経て受光チヤ
ート22に至る。受光チヤート22は穴あきミラ
ー16に関して投影チヤート18と共役なもので
投影チヤート18の3本のスリツト18a,18
b,18cにそれぞれ対応した第5図に示すよう
な3本のスリツト22a,22b,22cをもち
それぞれの投影チヤート像のスリツトの眼底上で
のボケ量は3本のスリツト22a,22b,22
cの各後方に置かれた受光素子23a,23b,
23cで検出される。そして各々のスリツトの最
良ピント面(このとき受光出力は最大となる)は
レンズ系La,Lbを光軸にそつて動かすことによ
り求められ、初期位置からの移動量から被検眼
Epの屈折力が計算により求められる。ここで各
スリツト方向に対応した被検眼の屈折力を求め演
算により球面屈折度S、乱視度C、乱視軸角度A
を算出する。 The light reflected from the fundus passes through the objective lens 5, beam splitters 13 and 14 again, and reaches the relay lens 1.
5. Hole of perforated mirror 16, relay lens 2
1, 37, an aperture stop 38 having an aperture 38a as shown in FIG. 4, and a projection lens 39 before reaching the light receiving chart 22. The light receiving chart 22 is conjugate with the projection chart 18 with respect to the perforated mirror 16, and is connected to the three slits 18a, 18 of the projection chart 18.
There are three slits 22a, 22b, 22c as shown in FIG.
Light receiving elements 23a, 23b, placed at the rear of c.
23c. The best focusing plane of each slit (at this time, the received light output is maximum) is found by moving the lens systems La and Lb along the optical axis, and the surface of the subject's eye is determined from the amount of movement from the initial position.
The refractive power of Ep is calculated. Here, the refractive power of the eye to be examined corresponding to each slit direction is calculated and the spherical refractive power S, astigmatic degree C, and astigmatic axis angle A are calculated.
Calculate.
次に角膜形状測定光学系について説明する。光
源34a,34b,…,34i,34jからの光
は対応するライトガイド33a,33b,…,3
3i,33jを経て、その他端で光源32a,3
2b,…,32i,32jとなり離散的なリング
状の光源を形成し被検眼Epの角膜に投影され角
膜反射像を形成する。角膜で反射した光はあたか
も角膜反射像から出射する如く出て、対物レンズ
5、ビームスプリツター13、投影レンズ35で
2次元の固体撮像素子36の上に結像する。 Next, the corneal shape measuring optical system will be explained. The light from the light sources 34a, 34b,..., 34i, 34j is transmitted through the corresponding light guides 33a, 33b,..., 3
3i, 33j, and light sources 32a, 3 at the other end.
2b, . . . , 32i, 32j to form a discrete ring-shaped light source, which is projected onto the cornea of the subject's eye Ep to form a corneal reflection image. The light reflected by the cornea emerges as if from a corneal reflected image, and is imaged onto a two-dimensional solid-state image sensor 36 by the objective lens 5, beam splitter 13, and projection lens 35.
ここで光源32a,32b,…,32jを対物
レンズ5の周辺に第6図に示すように同心状に配
置すると、撮像素子36の上には被検眼Epの角
膜の形状に相当した歪をもつて投影される。この
投影像から角膜のカーブが計算により求められ
る。すなわちリング状の投影チヤートが被検眼に
投影され、被検眼に乱視が無ければ角膜反射像も
完全な円形となるが、乱視があると、楕円形更に
不正乱視があれば歪みが付加され、この角膜反射
像の形状を固体撮像素子で求め、この検出結果よ
り角膜曲率R、乱視度D、乱視軸角度Aを算出す
る。固体撮像素子は、2次元CCD等の他、3個
の1次元CCDを放射状又は並列状に配列し、角
膜反射像との交点座標又は所定点から交点までの
高さ若しくは径の大きさを検出するものであつて
も良い。なお角膜反射像を特定する例としては、
求められた少なくとも5点の交点座標より一般2
次曲線の式ax2+b×Y+cY2+dx+eY+1=0
を解いて係数a〜eを算出する。 If the light sources 32a, 32b,..., 32j are arranged concentrically around the objective lens 5 as shown in FIG. is projected. The curve of the cornea is calculated from this projected image. In other words, a ring-shaped projection chart is projected onto the eye to be examined, and if the eye to be examined does not have astigmatism, the corneal reflection image will also be a perfect circle, but if there is astigmatism, it will become an ellipse, and if there is irregular astigmatism, distortion will be added to this image. The shape of the corneal reflection image is determined using a solid-state image sensor, and the corneal curvature R, degree of astigmatism D, and astigmatism axis angle A are calculated from the detection results. In addition to a two-dimensional CCD, the solid-state image sensor has three one-dimensional CCDs arranged radially or in parallel, and detects the coordinates of the intersection with the corneal reflection image, or the height or diameter from a predetermined point to the intersection. It may be something you do. As an example of identifying the corneal reflection image,
General 2 from the obtained intersection coordinates of at least 5 points
The following curve formula ax 2 +b×Y+cY 2 +dx+eY+1=0
Solve to calculate coefficients a to e.
以上によつて求められた被検眼の屈折力及び角
膜形状はイメージ表示素子24の上に例えば第7
図の如く表示されるレンズ25、ミラー26、観
察又は撮影光学系を経て観察又は撮影される。 The refractive power and corneal shape of the eye to be examined determined in the above manner are displayed on the image display element 24, for example, on the seventh screen.
The image is observed or photographed through a lens 25, a mirror 26, and an observation or photographing optical system as shown in the figure.
以上、屈折力測定機能及び角膜形状測定機能を
合わせもつ手術用顕微鏡についての一例を上げた
がこの中では次の様な置き換えも可能である。即
ちビームスプリツター13,14に関しては所定
の分光特性(横軸は波長λ、縦軸は透過率T)を
持たせて波長分離し、前眼部の観察又は撮影には
短い波長を使用する又、測定時には長い波長を使
用する等してもよいし、ビームスプリツター1
3,14を逃ね上げミラーとして測定時以外は光
路外に出すなどしてもかまわない。その他観察撮
影と測定のための光を分離する手段としては光源
の点滅周波数を変えデイテクタもそれに応じた選
別回路を設けて分離することで行うことも可能で
ある。また光源32a,32b,…,32jのか
わりにリング状の線光源を使用したり、発光素子
そのものを並べることも可能である。 The above is an example of a surgical microscope that has both a refractive power measurement function and a corneal shape measurement function, but the following replacements are also possible. That is, the beam splitters 13 and 14 are separated into wavelengths by having predetermined spectral characteristics (the horizontal axis is wavelength λ, the vertical axis is transmittance T), and short wavelengths are used for observing or photographing the anterior segment of the eye. , a longer wavelength may be used during measurement, or the beam splitter 1 may be used.
3 and 14 may be used as escape mirrors and moved out of the optical path except during measurement. Other means for separating the light for observation and photographing and for measurement may be to change the blinking frequency of the light source and to separate the detector by providing a corresponding selection circuit. It is also possible to use a ring-shaped line light source instead of the light sources 32a, 32b, . . . , 32j, or to arrange the light emitting elements themselves.
一方記録手段として撮像管等を用いてビデオ記
録に結びつけることも出来るすなわち、例えば第
1図でミラー10をハーフミラーに置き換え、こ
れを通過する光束を撮像管に導き記録手段として
使用する。 On the other hand, it is also possible to connect to video recording by using an image pickup tube or the like as a recording means. That is, for example, in FIG. 1, the mirror 10 is replaced with a half mirror, and the light beam passing through this is guided to the image pickup tube and used as a recording means.
ところで、第1図では被検眼の中央部を観察し
ている状態で描かれているが(被検眼軸O1と顕
微鏡光軸O2が一致)、
いま、第8図に示すように被検眼の周辺部を観
察する場合、すなわち、被検眼軸O1と顕微鏡光
軸O2が平行に偏位している場合に、観察系を固
定したまま眼屈折力測定を行なうことを考える。 By the way, in Figure 1, the central part of the eye to be examined is shown being observed (the axis of the eye to be examined O 1 and the optical axis of the microscope O 2 coincide), but now the eye to be examined is being observed as shown in Figure 8. When observing the periphery of the eye, that is, when the eye axis O 1 to be examined and the optical axis O 2 of the microscope are deviated in parallel, consider measuring the eye refractive power while keeping the observation system fixed.
このとき、概念図として第8図に示されるよう
に投影チヤート18を受光チヤート22と同期し
て光軸と垂直方向に移動させると、被検眼角膜の
中央域Cを通して眼屈折力測定が可能となる。 At this time, as shown in FIG. 8 as a conceptual diagram, if the projection chart 18 is moved in the direction perpendicular to the optical axis in synchronization with the light receiving chart 22, it is possible to measure the eye refractive power through the central region C of the cornea of the eye to be examined. Become.
また投影チヤート18の角膜反射像は被検眼前
眼部に形成されるため、被検眼前眼部にピントが
合つている顕微鏡にて観察することも可能であ
る。 Furthermore, since the corneal reflection image of the projection chart 18 is formed on the anterior segment of the subject's eye, it is also possible to observe it with a microscope that focuses on the anterior segment of the subject's eye.
なお、眼肉に投影チヤートからの光束を有効に
導くためには開口絞り38と同期して光軸と垂直
に移動させる必要がある。 Note that in order to effectively guide the light beam from the projection chart to the eye flesh, it is necessary to move it perpendicular to the optical axis in synchronization with the aperture stop 38.
なお、上述した説明で投影チヤート18、受光
チヤート38の両方を同期して移動させる替わり
に、光学的に共役な位置100に投影チヤート1
8と同様の指標を設け、これのみを光軸と垂直に
移動させても良い。この場合、投影チヤート1
8、受光チヤート38は不要となる。 In the above explanation, instead of moving both the projection chart 18 and the light receiving chart 38 synchronously, the projection chart 1 is moved to an optically conjugate position 100.
An index similar to 8 may be provided and only this index may be moved perpendicular to the optical axis. In this case, projection chart 1
8. The light receiving chart 38 becomes unnecessary.
なお、共役位置100に3本スリツトでなく他
の指標、例えば円形開口を有するようなチヤート
を設けても良い。 Note that other indicators may be provided at the conjugate position 100 instead of the three slits, for example, a chart having a circular opening.
同様に開口絞り28,38と光学的に共役な位
置に同様の開口絞りを設け、これを光軸と垂直に
移動して眼屈折力測定を行なうことができる。 Similarly, a similar aperture stop can be provided at a position optically conjugate with the aperture stops 28 and 38, and the eye refractive power can be measured by moving this aperture perpendicular to the optical axis.
次に、観察系を固定したまま角膜形状測定を行
なうことを考える。 Next, let us consider measuring the corneal shape while keeping the observation system fixed.
この場合、光源32a,32b,…を一体的に
光軸と垂直に移動させ、その角膜反射像が被検眼
軸O1について対称となるように設定する。これ
によつて眼屈折力測定の場合に示した第8図と同
様に、顕微鏡光軸O2を固定して、指標像のみを
被検眼軸に対称に設定でき、被検眼中心域での角
膜形状測定が可能となる。 In this case, the light sources 32a, 32b, . . . are moved integrally perpendicular to the optical axis, and the corneal reflection images are set to be symmetrical about the eye axis O1 to be examined. As a result, as in the case of eye refractive power measurement shown in FIG . Shape measurement becomes possible.
ところで、指標像としては投影チヤート18の
実像が被検眼眼底に形成されているが、顕微鏡観
察系は被検眼前眼部にピントが合つており、眼底
を観察することができない。 Incidentally, although a real image of the projection chart 18 is formed on the fundus of the subject's eye as an index image, the microscope observation system is focused on the anterior segment of the subject's eye and cannot observe the fundus.
そこで、第9図に示されるように、第1図に示
した撮影レンズ6,7を観察、撮影光路から退避
させ、新たな可動撮影レンズ104を光路内に入
れて被検眼眼底にピントが合うようにすれば、投
影チヤート18を光軸と垂直に移動させ、その眼
底像を顕微鏡観察して被検眼中心域での眼屈折力
測定が可能となる。 Therefore, as shown in FIG. 9, the photographing lenses 6 and 7 shown in FIG. 1 are removed from the observation and photographing optical path, and a new movable photographing lens 104 is placed in the optical path to focus on the fundus of the subject's eye. By doing so, it becomes possible to move the projection chart 18 perpendicularly to the optical axis and observe the fundus image with a microscope to measure the eye refractive power in the central region of the eye to be examined.
なお、眼底観察用の照明系として第10図に示
されるように、リングスリツト101、リレーレ
ンズ102を設け、レンズ付プリズム4の替わり
にミラー103を設ける。そして、リングスリツ
ト101はリレーレンズ102、対物レンズ5に
よつて被検眼Epの角膜と光学的にほぼ共役な関
係とされる。 As shown in FIG. 10, a ring slit 101 and a relay lens 102 are provided as an illumination system for fundus observation, and a mirror 103 is provided in place of the lens-equipped prism 4. The ring slit 101 is brought into an almost optically conjugate relationship with the cornea of the eye Ep by the relay lens 102 and the objective lens 5.
次に、第11図に示すものは、アライメント用
チヤート30を用いた実施例であつて、アライメ
ント用チヤート30は第12図に示されるよう
に、中心にリング開口30aを有し、光路内の顕
微鏡のピント位置に出し入れ可能となつている。 Next, what is shown in FIG. 11 is an embodiment using an alignment chart 30, and as shown in FIG. 12, the alignment chart 30 has a ring opening 30a in the center and a It can be moved in and out to the focus position of the microscope.
アライメント用チヤート30を顕微鏡で観察す
ると、第13図に示されるようにその像30a′と
共に被検眼の虹彩像110′が観察され、更に角
膜形状測定時には光源32a等の角膜反射像32
a′等が、また、眼屈折力測定時には開口絞り28
の角膜反射像28等が観察される。 When the alignment chart 30 is observed with a microscope, an iris image 110' of the eye to be examined is observed together with its image 30a' as shown in FIG.
a′, etc., and the aperture diaphragm 28 when measuring the eye refractive power.
A corneal reflection image 28 and the like are observed.
これらとアライメント用チヤート30の像3
0′を同心とすることにより、被検眼中央域を認
識することができる。 These and image 3 of alignment chart 30
By making 0' concentric, the central region of the eye to be examined can be recognized.
そして、被検眼周辺域での測定に際しては、開
口絞り28等を光軸と垂直に移動し、その角膜反
射像の位置を第14図に示されるように顕微鏡観
察しながら変位させる。また、光源32a等につ
いても光軸と垂直に移動することにより画角特性
をもたせた測定を行ない得る。 When measuring the peripheral area of the eye to be examined, the aperture diaphragm 28 and the like are moved perpendicular to the optical axis, and the position of the corneal reflection image is displaced while being observed under a microscope as shown in FIG. Furthermore, by moving the light source 32a and the like perpendicularly to the optical axis, measurements with angle of view characteristics can be performed.
このとき、アライメント用チヤートにx軸、y
軸の目盛り及び角度目盛りを付加すれば定量的な
分布をとるのに便利である。 At this time, the x-axis, y-axis
Adding axis scales and angle scales is convenient for obtaining quantitative distributions.
なお、以上、フアインダーを用いての観察につ
いて述べたが、これを撮像管、CCD等の撮像手
段で撮像し、モニターしたり、ビデオにとること
ができることは言う迄もない。 Although observation using a finder has been described above, it goes without saying that this can also be imaged with an imaging tube, CCD, or other imaging means, monitored, or captured on video.
以上、本発明によれば眼底に投影するチヤート
等を、又は角膜に投影する指標等を用いて指標像
を光軸と垂直に移動させ、又は被検眼前眼部と光
学的に略共役な絞りを光軸と垂直に移動させ、本
体を固定したまま被検眼の異なる領域での眼屈折
力、角膜形状の測定を行なうことができる。 As described above, according to the present invention, an index image is moved perpendicularly to the optical axis using a chart projected onto the fundus or an index projected onto the cornea, or an aperture that is optically approximately conjugate with the anterior segment of the subject's eye. By moving perpendicular to the optical axis, it is possible to measure the eye refractive power and corneal shape in different areas of the eye to be examined while keeping the main body fixed.
なお、本発明において、上述の実施例で示され
たものに限らず、例えば指標を固定したまま投影
レンズ等、投影光学系を光軸と垂直に移動させて
指標像を光軸と垂直に移動させても良い。 Note that the present invention is not limited to what is shown in the above-mentioned embodiments. For example, the projection optical system such as a projection lens may be moved perpendicular to the optical axis while the index is fixed, and the index image may be moved perpendicular to the optical axis. You can let me.
また、実施例において、検出は眼屈折力又は角
膜形状としたが、これに限定されるものでなく、
これに類する被検眼情報の検出、例えば水晶体の
散乱の強さ等をすべて含むものである。 In addition, in the examples, detection was performed using eye refractive power or corneal shape, but it is not limited to this.
This includes all similar detection of eye information to be examined, such as the intensity of scattering of the crystalline lens.
第1図は本発明の実施例の図、第2図は眼屈折
測定系の投影チヤートの図、第3図、第4図は
各々眼屈折測定系の投光側、受光側の開口絞りの
図、第5図は眼屈折測定系の受光チヤートの図、
第6図は角膜形状測定系の光源の配置図、第7図
は屈折力及び角膜形状の測定データを表示するイ
メージ表示素子の説明図、第8図は被検眼軸と顕
微鏡光軸とが不一致の状態で測定を行なうことの
説明図、第9図は観察系の変形例で眼底にピント
を合わした光学系の図、第10図はリングスリツ
トの説明図、第11図はアライメント用チヤート
を用いた実施例の図、第12図はアライメント用
チヤートの説明図、第13図、第14図は各々被
検眼中央域、周辺域での測定を行なう場合の説明
図。
図中、Epは被検眼、Eは観察眼、La,Lbはレ
ンズ系、1は前眼部観察用のランプ、4はレンズ
付プリズム、5は対物レンズ、9は跳ね上げミラ
ー、11は接眼レンズ、12は画像記録手段、1
8は眼屈折力測定用の投影チヤート、18a,1
8b,18cはスリツト、20は眼屈折力測定用
の光源、22は受光チヤート、23a,23b,
23cは受光素子、24はイメージ表示素子、2
8,38は開口絞り、30はアライメント用チヤ
ート、32a,32b,…,32jは角膜形状測
定用の光源、36は固体撮像素子である。
Fig. 1 is a diagram of an embodiment of the present invention, Fig. 2 is a projection chart of the eye refraction measurement system, and Figs. 3 and 4 are the aperture diaphragms on the light emitting side and light receiving side of the eye refraction measurement system, respectively. Figure 5 is a diagram of the light reception chart of the eye refraction measuring system.
Figure 6 is a layout diagram of the light source of the corneal topography measurement system, Figure 7 is an explanatory diagram of the image display element that displays measurement data of refractive power and corneal shape, and Figure 8 is a mismatch between the eye axis of the subject and the optical axis of the microscope. Figure 9 is a modified example of the observation system, showing an optical system focused on the fundus, Figure 10 is an illustration of the ring slit, and Figure 11 is an illustration of the alignment chart. FIG. 12 is an explanatory diagram of an alignment chart, and FIGS. 13 and 14 are explanatory diagrams of the case where measurement is performed in the central region and peripheral region of the eye to be examined, respectively. In the figure, Ep is the eye to be examined, E is the observation eye, La and Lb are lens systems, 1 is a lamp for observing the anterior segment of the eye, 4 is a prism with a lens, 5 is an objective lens, 9 is a flip-up mirror, and 11 is an eyepiece lens, 12 is image recording means, 1
8 is a projection chart for measuring eye refractive power, 18a, 1
8b, 18c are slits, 20 is a light source for measuring eye refractive power, 22 is a light receiving chart, 23a, 23b,
23c is a light receiving element, 24 is an image display element, 2
8 and 38 are aperture stops, 30 is an alignment chart, 32a, 32b, . . . , 32j are light sources for corneal shape measurement, and 36 is a solid-state image sensor.
Claims (1)
動可能であつて被検眼眼底若しくは被検眼角膜に
指標を投影する指標投影系及び眼底反射若しくは
角膜反射した指標光束を受光する受光系を備えて
被検眼の所定情報を測定する測定系を有し、且つ 該測定系及び前記観察系の光軸垂直方向の移動
に応じて被検眼前眼部における指標光束の通過域
を移動させるよう前記指標若しくは指標投影用光
学系、又は前記測定系における被検眼前眼部と光
学的に略共役な絞りが前記測定系の他の部材に対
し光軸垂直方向に変位可能に設けられることを特
徴とする眼科装置。[Scope of Claims] 1. An observation system for observing the anterior segment of the eye to be examined, and an index that is movable along with the observation system in a direction perpendicular to the optical axis with respect to the eye to be examined, and that projects an index onto the fundus of the eye to be examined or the cornea of the eye to be examined. It has a measurement system that measures predetermined information of the eye to be examined, including a projection system and a light receiving system that receives an index light beam reflected from the fundus or the cornea, and according to the movement of the measurement system and the observation system in the direction perpendicular to the optical axis. The indicator or an optical system for projecting the indicator, or an aperture that is optically substantially conjugate with the anterior segment of the eye to be examined in the measurement system, so as to move the pass range of the indicator light flux in the anterior eye segment of the eye to be examined, is another part of the measurement system. An ophthalmological device characterized in that it is displaceable in a direction perpendicular to an optical axis with respect to a member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58017828A JPS59144436A (en) | 1983-02-04 | 1983-02-04 | Ophthalmic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58017828A JPS59144436A (en) | 1983-02-04 | 1983-02-04 | Ophthalmic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59144436A JPS59144436A (en) | 1984-08-18 |
JPH0330366B2 true JPH0330366B2 (en) | 1991-04-30 |
Family
ID=11954570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58017828A Granted JPS59144436A (en) | 1983-02-04 | 1983-02-04 | Ophthalmic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59144436A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651023B2 (en) * | 1986-03-25 | 1994-07-06 | キヤノン株式会社 | Ophthalmic equipment |
US5001657A (en) * | 1986-06-24 | 1991-03-19 | Minolta Camera Kabushiki Kaisha | Radiation thermometer |
JPH069543B2 (en) * | 1986-11-15 | 1994-02-09 | キヤノン株式会社 | Eye refractometer |
JPH069544B2 (en) * | 1987-03-31 | 1994-02-09 | キヤノン株式会社 | Eye measuring device |
JPH01195839A (en) * | 1988-02-01 | 1989-08-07 | Topcon Corp | Ophthalmologic instrument |
JP7423378B2 (en) * | 2020-03-27 | 2024-01-29 | 株式会社トプコン | ophthalmology equipment |
-
1983
- 1983-02-04 JP JP58017828A patent/JPS59144436A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59144436A (en) | 1984-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7524062B2 (en) | Ophthalmologic apparatus | |
JPH0753151B2 (en) | Ophthalmic measuring device | |
US7354153B2 (en) | Fundus camera | |
JPH08103413A (en) | Ophthalmological measuring instrument | |
JPS633612B2 (en) | ||
EP0663179A1 (en) | Spatial refractometer | |
JPH0330366B2 (en) | ||
JPH0646995A (en) | Eye refractometer | |
JP3576656B2 (en) | Alignment detection device for ophthalmic instruments | |
JP3445634B2 (en) | Ophthalmic equipment | |
JPS6117494B2 (en) | ||
JP2017023416A (en) | Ophthalmology imaging apparatus and control method therefor, and program | |
JP2892007B2 (en) | Non-contact tonometer | |
JPS6125370B2 (en) | ||
JPH02302243A (en) | Measuring instrument for refractive index of eyes | |
JPS6260095B2 (en) | ||
JP3154533B2 (en) | Ophthalmic equipment | |
JPS61185242A (en) | Ophthalmic measuring apparatus | |
JPS59137052A (en) | Microscope for ophthalmic operation | |
JPS6114811B2 (en) | ||
JPH0788082A (en) | Device for optometry | |
JPH0554326B2 (en) | ||
JPH0439332B2 (en) | ||
JPS62270131A (en) | Eyeground examination apparatus | |
JPH0554325B2 (en) |