JPH0651023B2 - Ophthalmic equipment - Google Patents
Ophthalmic equipmentInfo
- Publication number
- JPH0651023B2 JPH0651023B2 JP61067681A JP6768186A JPH0651023B2 JP H0651023 B2 JPH0651023 B2 JP H0651023B2 JP 61067681 A JP61067681 A JP 61067681A JP 6768186 A JP6768186 A JP 6768186A JP H0651023 B2 JPH0651023 B2 JP H0651023B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- eye
- corneal
- image pickup
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Microscoopes, Condenser (AREA)
- Eye Examination Apparatus (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば眼科医院等で使用する眼科装置に関す
るものである。TECHNICAL FIELD The present invention relates to an ophthalmologic apparatus used in, for example, an ophthalmic clinic.
[従来の技術] 眼科手術等においては、屡々TVカメラによる映像記録
と同時に、角膜曲率半径を求める必要がある場合があ
る。従来においては、このような場合に映像記録と測定
光学系とを別個の装置としていたが、そのために機構が
複雑化するという欠点があり、両者を複合し、より優れ
た性能を有する装置が求められている。[Prior Art] In ophthalmic surgery and the like, it is often necessary to obtain the corneal curvature radius at the same time as video recording by a TV camera. Conventionally, in such a case, the video recording and the measurement optical system were provided as separate devices, but there is a drawback that the mechanism is complicated because of that, and a device having more excellent performance is required by combining the two. Has been.
[発明の目的] 本発明の目的は、小型でかつ精度の高い測定を可能とし
使用し易い眼科装置を提供することにある。[Object of the Invention] It is an object of the present invention to provide an ophthalmologic apparatus which is small in size, enables highly accurate measurement, and is easy to use.
[発明の概要] 上述の目的を達成するための本発明の要旨は、少なくと
も光軸周囲部に設けた角膜曲率測定用光源と、該角膜曲
率測定用光源による被検眼角膜反射像と被検眼前眼部像
を撮像する撮像手段と、該撮像手段によって撮像された
被検眼前眼部像を表示する表示手段と、角膜形状測定時
に前記撮像手段からの映像信号を取り込む画像メモリ
と、該画像メモリが記憶した情報に基づいて角膜形状測
定を行う演算手段とを有することを特徴とした眼科装置
である。[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a light source for measuring corneal curvature provided at least in the peripheral portion of the optical axis, an eye to be inspected by the light source for measuring corneal curvature, and a corneal reflection image and a front of the eye Image pickup means for picking up an image of the eye part, display means for displaying the anterior eye part image of the eye imaged by the image pickup means, image memory for taking in a video signal from the image pickup means at the time of corneal shape measurement, and the image memory Is an ophthalmologic apparatus characterized in that it has a calculation means for measuring the corneal shape based on the information stored in the table.
[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。Embodiments of the Invention The present invention will be described in detail based on the illustrated embodiments.
第1図はその構成図を示し、比検眼Eに対向する位置に
対物レンズ1が設けられ、この対物レンズ1の後方の2
つの立体視観察光路に沿って対称的に変倍レンズ2a・
2b、接眼レンズ3a・3bが配置されている。また、
対物レンズ1の周囲には、第2図に示すように発光ダイ
オード等から成る4つの点状光源4a・4b・4c・4
dが等角度で配置されている。そして、一方の光路の変
倍レンズ2bと接眼レンズ3bとの間に光分割部材5が
挿入されている。この光分割部材5の対物レンズ1方向
からの光束の反射側には、択一的に交換可能で透過特性
の異なるなフィルタ6、6′、結像レンズ7、絞り8、
撮像部材9が順次に配置されている。また、光分割部材
5の接眼レンズ3b側からの光束の反射側に、結像レン
ズ10、表示手段11が設けられている。FIG. 1 shows the configuration diagram, in which an objective lens 1 is provided at a position facing the optometry eye E, and two objective lenses 1 behind the objective lens 1 are provided.
Variable magnification lens 2a symmetrically along one stereoscopic observation optical path
2b and eyepieces 3a and 3b are arranged. Also,
Around the objective lens 1, as shown in FIG. 2, four point light sources 4a, 4b, 4c, 4 composed of light emitting diodes and the like are provided.
d are arranged at an equal angle. The light splitting member 5 is inserted between the variable power lens 2b and the eyepiece lens 3b on one optical path. On the reflection side of the light beam from the direction of the objective lens 1 of the light splitting member 5, filters 6 and 6 ', which are selectively exchangeable and have different transmission characteristics, an imaging lens 7, a diaphragm 8,
The image pickup members 9 are sequentially arranged. Further, the imaging lens 10 and the display means 11 are provided on the side of the light splitting member 5 that reflects the light flux from the eyepiece 3b side.
検者はその左右眼L、Rにより接眼レンズ3a・3bを
覗いて、被検眼Eを立体観察視することができる。光源
4a〜4dは被検眼Eの角膜に像4a′〜4d′を形成
する。ここで、対物レンズ1を通った光束の一部は、変
倍レンズ2bを通り光分割部材5で反射され、フィルタ
6、結像レンズ7、絞り8を通り撮像部材9に至る。こ
の撮像部材9としては例えば撮像管又は二次元エリアセ
ンサアレイが用いられ、撮像部剤9上に映った像を第3
図に示す。第3図(a) は被検眼Eの前眼部の像であって
記録用であり、(b) は曲率半径測定用であって、角膜反
射像4a′〜4d′の像4a″〜4d″が写っている。The examiner can look through the eyepieces 3a and 3b through the left and right eyes L and R to stereoscopically observe the eye E to be inspected. The light sources 4a to 4d form images 4a 'to 4d' on the cornea of the eye E to be examined. Here, a part of the light flux that has passed through the objective lens 1 passes through the variable power lens 2b, is reflected by the light splitting member 5, passes through the filter 6, the imaging lens 7, and the diaphragm 8 and reaches the imaging member 9. As the image pickup member 9, for example, an image pickup tube or a two-dimensional area sensor array is used, and an image reflected on the image pickup agent 9 is formed into a third image.
Shown in the figure. FIG. 3 (a) is an image of the anterior segment of the subject's eye E for recording, and FIG. 3 (b) is for measuring a radius of curvature, and images 4a ″ to 4d of corneal reflection images 4a ′ to 4d ′. ″ Is shown.
撮像部材9は可視光及び近赤外光に感度を持つものが好
ましく、フィルタ6は可視光透過フィルタであり第3図
(a) に示す前眼像記録に用いられ、フィルタ6′は近赤
外光透過フィルタで第3図(b) に示す測定用に用いら
れ、これらのフィルタ6、6′は光源4a〜4dの点滅
に同期して交互に挿脱する。このように記録・測定を可
視光・近赤外光で分けると光量損失もなく、測定光源像
に前眼部像が重ならないので信号処理が容易である。絞
り8は第3図(b) の測定時に必要とし、(a) の記録時に
は光量をかせぐために外すようにしてもよい。絞り8を
光学系の後側焦点の近傍で光源像4a′〜4d′の主光
線が角度にして数度発散するように設けると、作動距離
の誤差による影響を殆ど受けないようにすることができ
る。束ち、作動距離が変化するとき光源像4a′〜4
d′の間隔が変化し測定誤差が生ずることを防止でき
る。結像レンズ10は表示手段11上に表示された測定
結果を光分割部材5を介して検者眼Rに投影するもので
あるが、ここにアライメント用マークを設け、それによ
り被検眼Eのアライメントを行うようにすることも可能
である。It is preferable that the image pickup member 9 has sensitivity to visible light and near infrared light, and the filter 6 is a visible light transmission filter.
The filter 6'is used for recording the anterior ocular image shown in (a), and is a near-infrared light transmitting filter used for measurement shown in Fig. 3 (b). These filters 6, 6'are light sources 4a to 4d. Insert and remove alternately in synchronization with blinking. When recording and measurement are divided into visible light and near-infrared light in this way, there is no light amount loss, and the image of the anterior segment does not overlap the image of the measurement light source, so that signal processing is easy. The diaphragm 8 is necessary at the time of measurement in FIG. 3 (b), and may be removed at the time of recording in FIG. 3 (a) in order to increase the amount of light. If the diaphragm 8 is provided in the vicinity of the rear focal point of the optical system so that the chief rays of the light source images 4a 'to 4d' diverge at an angle of several degrees, the influence of the error of the working distance can be almost eliminated. it can. Light source images 4a'-4 when bundled and working distance changes
It is possible to prevent the measurement error from occurring due to the change of the distance d '. The imaging lens 10 projects the measurement result displayed on the display means 11 to the examiner's eye R via the light splitting member 5, and an alignment mark is provided here to thereby align the eye E to be examined. It is also possible to do.
第4図は撮像部材9上に映った近赤外光による光源像4
a″〜4d″を示す。角膜の曲率半径が大きくなると、
光源4a〜4dによる4個の像4a″〜4d″の距離は
互いに離れ、曲率半径が小さくなると接近してくる。角
膜乱視があると、像位置の回転が生じて角度θ1、θ2
が現れる。アライメントがずれると像は全体的に移動す
るが、4個の像4a″〜4d″の相対的位置関係は変化
しない。角膜の半径と乱視は4個の像4a″〜4d″の
相対位置で決定される。即ち、像4a″・4b″と4
b″・4c″のそれぞれの距離及び光源4a〜4d方向
からの回転角θ1、θ2を基に計算することができる。FIG. 4 shows a light source image 4 by the near infrared light reflected on the image pickup member 9.
a "to 4d" are shown. As the radius of curvature of the cornea increases,
The four images 4a ″ to 4d ″ by the light sources 4a to 4d are separated from each other, and come closer as the radius of curvature becomes smaller. When there is corneal astigmatism, rotation of the image position occurs and the angles θ 1 and θ 2
Appears. If the alignment shifts, the image moves as a whole, but the relative positional relationship of the four images 4a "to 4d" does not change. The radius of the cornea and astigmatism are determined by the relative positions of the four images 4a "-4d". That is, the images 4a "and 4b" and 4
It can be calculated based on the respective distances b ″ and 4c ″ and the rotation angles θ 1 and θ 2 from the directions of the light sources 4a to 4d.
例えば像4a″等の位置を求めるには、第5図に示すよ
うな方法がある。第5図(a) は像4a″が多数の走査線
L上に形成されている状態を示し、これらの各走査線L
からの信号を適当なレベルで二値化した信号を(b) に示
す。これらの二値化情報を一旦記憶しておき、これらの
データから像4a″の撮像部材9上での中心座標位置を
計算して求めることができる。For example, there is a method as shown in Fig. 5 for obtaining the position of the image 4a ". Fig. 5 (a) shows a state in which the image 4a" is formed on a large number of scanning lines L. Each scan line L
The signal obtained by binarizing the signal from is binarized at an appropriate level is shown in (b). The binarized information can be stored once, and the central coordinate position of the image 4a ″ on the imaging member 9 can be calculated and obtained from these data.
第6図は本発明の他の実施例を示し、対物レンズ1の検
者眼L、R側に測定光源4e〜4hが左右眼光路と干渉
しない斜め方向に設けられており、対物レンズ1を通し
て角膜を照射するようになっている。FIG. 6 shows another embodiment of the present invention, in which the measurement light sources 4e to 4h are provided on the examiner's eyes L and R sides of the objective lens 1 in an oblique direction so as not to interfere with the optical paths of the left and right eyes. It is designed to irradiate the cornea.
測定光源は実施例のように点状光源4を複数個設けて、
その像の相対的位置から角膜形状を求めてもよいし、リ
ング状光源を使用してその像の形状から求めてもよい。
実施例のように点状光源を使用する場合には、曲率の最
大・最小の半径とその方向との3つの未知数となるの
で、少なくとも3個の光源が必要である。The measurement light source is provided with a plurality of point light sources 4 as in the embodiment,
The corneal shape may be obtained from the relative position of the image, or may be obtained from the shape of the image using a ring-shaped light source.
When a point light source is used as in the embodiment, at least three light sources are required because there are three unknowns of the maximum and minimum radii of curvature and their directions.
次に、撮像部材9から出力される信号の処理回路につい
て第7図により説明する。この第7図において、20は
撮像手段としてのTVカメラ、21は観察用モニタであ
り、観察用モニタ21は第3図(a) の映像及び(b) の像
を表示する。22はプロセッサ、23は画像メモリであ
り、画像メモリ23は(b) の撮像信号の各画素に対応し
たアドレスに二値化データを記憶しておくものである。
画像メモリ23の各アドレスに所定の二値化データを格
納するのは下記の構成回路により行われる。即ち、基準
クロック発生回路24、走査同期系分周回路25が、そ
れぞれ画素転送クロック、データ転送クロック及び水平
同期信号、垂直同期信号を発生する。ここで、画素転送
クロックの周波数は、TVカメラ20の水平走査分解能
の時間ピッチとほぼ等価な周波数に設定されている。二
値化回路26により、TVカメラ20の出力信号と任意
の基準レベルとを比較判別をして二値化信号を出力す
る。この二値化信号はシフトレジスタ27に入力され、
画素転送クロックの周期ごとにビットシフトが行われ
て、ビット並列の二値化データに変換される。Next, a processing circuit for a signal output from the image pickup member 9 will be described with reference to FIG. In FIG. 7, 20 is a TV camera as an image pickup means, 21 is an observation monitor, and the observation monitor 21 displays the image of FIG. 3 (a) and the image of FIG. 3 (b). Reference numeral 22 is a processor, and 23 is an image memory. The image memory 23 stores binarized data at an address corresponding to each pixel of the image pickup signal of (b).
Storing predetermined binary data at each address of the image memory 23 is performed by the following configuration circuit. That is, the reference clock generating circuit 24 and the scanning synchronizing system frequency dividing circuit 25 generate a pixel transfer clock, a data transfer clock, a horizontal synchronizing signal, and a vertical synchronizing signal, respectively. Here, the frequency of the pixel transfer clock is set to a frequency substantially equivalent to the time pitch of the horizontal scanning resolution of the TV camera 20. The binarization circuit 26 compares and discriminates the output signal of the TV camera 20 with an arbitrary reference level and outputs a binarized signal. This binarized signal is input to the shift register 27,
Bit shift is performed for each cycle of the pixel transfer clock to be converted into bit-parallel binary data.
一方、プロセッサ22はデータ転送クロックを受ける度
に、1個ずつ更新したアドレスを画像メモリ23に出力
するように構成されており、これにより二値化データは
データバッファ28を介して画像メモリ23に入力され
格納を開始する。また、プロセッサ22はデータ転送ク
ロックの計数を行って所定のアドレス更新を終えると、
1画面分のデータ転送終了を判別し、画像メモリ23を
記憶保持モードとする。On the other hand, the processor 22 is configured to output the updated addresses one by one to the image memory 23 each time the data transfer clock is received, whereby the binarized data is sent to the image memory 23 via the data buffer 28. Input and start storing. Further, the processor 22 counts the data transfer clock and finishes the predetermined address update,
The end of data transfer for one screen is determined, and the image memory 23 is set to the storage holding mode.
次に、プロセッサ22は画像メモリ23に保持された二
値化データの読み出しを行って、第5図(b) に示すよう
な方法によりデータから像4a″、4b″、4c″、4
d″の各点の中心位置を演算し、更に各点の距離の計算
と基準座標とのずれ量の計算を行い、これらの結果から
角膜の曲率半径・角膜乱視度・角膜乱視軸角度の演算を
行い、演算の結果は表示器29により表示をする。Next, the processor 22 reads out the binarized data held in the image memory 23, and the images 4a ", 4b", 4c ", 4c", 4c ", 4c", 4c ", 4c" are read from the data by the method shown in FIG. 5B.
The center position of each point of d ″ is calculated, the distance between each point is calculated, and the amount of deviation from the reference coordinates is calculated. From these results, the radius of curvature of the cornea, the degree of corneal astigmatism, and the angle of corneal astigmatism are calculated. The calculation result is displayed on the display unit 29.
なお上述の実施例では、撮像信号としてTVカメラ20
の出力ビデオ信号を用いた場合について述べたが、一般
にカラー処理されたビデオ信号の帯域幅は3MHz程度に
制限されており、角膜反射像の撮像分解能には梢々不足
を生ずる場合がある。この場合は、二値化処理用の撮像
信号としてTVカメラ20におけるカラー化処理の前の
輝度信号を用いることにより、撮像部材の分解能の上限
まで活用した信号処理を行うことができる。In the above-described embodiment, the TV camera 20 is used as the image pickup signal.
However, the bandwidth of the color-processed video signal is generally limited to about 3 MHz, which may cause a shortage in the imaging resolution of the corneal reflection image. In this case, by using the luminance signal before the colorization processing in the TV camera 20 as the image pickup signal for the binarization processing, it is possible to perform the signal processing that utilizes the upper limit of the resolution of the image pickup member.
[発明の効果] 以上説明したように本発明に係る眼科装置は、被検眼の
角膜反射像と前眼部像を撮影記録すると共に、角膜形状
の測定を行うことができ、観察に使う映像信号を測定時
に画像メモリに取り込んだ後に、この記憶情報に基づい
て角膜形状測定を行うようにしたので、画像モニタを見
て適正な時に画像を取り込むことができ、後でこの適正
画像の情報を用いて正確な測定ができる。[Effects of the Invention] As described above, the ophthalmologic apparatus according to the present invention is capable of photographing and recording a corneal reflection image and an anterior segment image of the eye to be inspected, measuring the corneal shape, and a video signal used for observation. Since the corneal shape measurement is performed based on this stored information after capturing in the image memory at the time of measurement, the image can be captured at an appropriate time by looking at the image monitor, and the information of this appropriate image is used later. Accurate measurement.
図面は本発明に係る眼科装置の実施例を示し、第1図は
その構成図、第2図は対物レンズと測定光源の配置図、
第3図(a) 、(b) は撮像部材上の前眼部像と測定光源像
の説明図、第4図は測定光源像の説明図、第5図(a) 、
(b) は走査線上の光源像と二値化信号の説明図、第6図
は他の実施例による対物レンズと測定光源の配置図、第
7図は電気信号処理系のブロック回路構成図である。 符号1は対物レンズ、2a、2bは変倍レンズ、3a、
3bは接眼レンズ、4a、4bは光源、5は光分割部
材、6、6′はフィルタ、7、10は結像レンズ、9は
撮像部材、11は表示手段、20はTVカメラ、21は
観察用モニタ、22はプロセッサ、23は画像メモリ、
29は表示器である。The drawings show an embodiment of an ophthalmologic apparatus according to the present invention, FIG. 1 is a configuration diagram thereof, FIG. 2 is a layout diagram of an objective lens and a measurement light source,
3 (a) and 3 (b) are explanatory views of an anterior ocular segment image and a measurement light source image on the imaging member, FIG. 4 is an explanatory view of the measurement light source image, and FIG. 5 (a),
(b) is an explanatory view of a light source image on a scanning line and a binarized signal, FIG. 6 is a layout diagram of an objective lens and a measurement light source according to another embodiment, and FIG. 7 is a block circuit configuration diagram of an electric signal processing system. is there. Reference numeral 1 is an objective lens, 2a and 2b are variable power lenses, 3a,
3b is an eyepiece lens, 4a and 4b are light sources, 5 is a light splitting member, 6 and 6'are filters, 7 and 10 are imaging lenses, 9 is an image pickup member, 11 is display means, 20 is a TV camera, and 21 is observation. Monitor, 22 is a processor, 23 is an image memory,
29 is a display.
Claims (3)
定用光源と、該角膜曲率測定用光源による被検眼角膜反
射像と被検眼前眼部像を撮像する撮像手段と、該撮像手
段によって撮像された被検眼前眼部像を表示する表示手
段と、角膜形状測定時に前記撮像手段からの映像信号を
取り込む画像メモリと、該画像メモリが記憶した情報に
基づいて角膜形状測定を行う演算手段とを有することを
特徴とした眼科装置。1. A light source for measuring corneal curvature provided at least around an optical axis, an image pickup means for picking up a corneal reflection image of an eye to be inspected and an anterior eye image of the eye by the light source for measuring corneal curvature, and the image pickup means. Display means for displaying the imaged anterior ocular segment image of the eye to be inspected, image memory for taking in a video signal from the imaging means during corneal shape measurement, and computing means for performing corneal shape measurement based on information stored in the image memory An ophthalmic device having:
て前眼部像を形成する光束が到達しないようにする手段
を設けた特許請求の範囲第1項記載の眼科装置。2. The ophthalmologic apparatus according to claim 1, further comprising means for preventing a light flux forming an anterior segment image from reaching the imaging means during the corneal shape measurement.
を有し、該光学系の後側焦点近傍に絞りを設けた特許請
求の範囲第1項記載の眼科装置。3. The ophthalmologic apparatus according to claim 1, wherein the image pickup means has an optical system for projecting an image of an eye to be inspected, and a diaphragm is provided near a rear focal point of the optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61067681A JPH0651023B2 (en) | 1986-03-25 | 1986-03-25 | Ophthalmic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61067681A JPH0651023B2 (en) | 1986-03-25 | 1986-03-25 | Ophthalmic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62224350A JPS62224350A (en) | 1987-10-02 |
JPH0651023B2 true JPH0651023B2 (en) | 1994-07-06 |
Family
ID=13351979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61067681A Expired - Lifetime JPH0651023B2 (en) | 1986-03-25 | 1986-03-25 | Ophthalmic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0651023B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013519401A (en) * | 2010-02-15 | 2013-05-30 | ウェイブライト ゲーエムベーハー | Method for determining the deviation between coordinate systems of different technical systems |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5666235A (en) * | 1979-11-02 | 1981-06-04 | Canon Kk | Cornea meter |
JPS57125302A (en) * | 1981-01-28 | 1982-08-04 | Nippon Kogaku Kk <Nikon> | Automatic measuring device of radius of curvature |
JPS5858025A (en) * | 1981-10-01 | 1983-04-06 | キヤノン株式会社 | Apparatus for measuring shape of cornea |
JPS5982829A (en) * | 1982-11-05 | 1984-05-14 | モスコフスキイ・ナウチノ−イススレドワテルスキイ・インスチチユ−ト・グラズニク・ボレズネイ・イ−メニ・ゲルムゴルツア | Method and apparatus for determining surface configuration of cornea |
JPS59105436A (en) * | 1982-12-09 | 1984-06-18 | キヤノン株式会社 | Medical endoscope |
JPS59144436A (en) * | 1983-02-04 | 1984-08-18 | キヤノン株式会社 | Ophthalmic apparatus |
JPS59214427A (en) * | 1983-05-23 | 1984-12-04 | キヤノン株式会社 | Cornea shape measuring apparatus |
JPS59230536A (en) * | 1983-06-14 | 1984-12-25 | キヤノン株式会社 | Ophthalmic apparatus |
EP0167327A2 (en) * | 1984-06-26 | 1986-01-08 | Kera Corporation | Keratograph autoscanner system |
-
1986
- 1986-03-25 JP JP61067681A patent/JPH0651023B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5666235A (en) * | 1979-11-02 | 1981-06-04 | Canon Kk | Cornea meter |
JPS57125302A (en) * | 1981-01-28 | 1982-08-04 | Nippon Kogaku Kk <Nikon> | Automatic measuring device of radius of curvature |
JPS5858025A (en) * | 1981-10-01 | 1983-04-06 | キヤノン株式会社 | Apparatus for measuring shape of cornea |
JPS5982829A (en) * | 1982-11-05 | 1984-05-14 | モスコフスキイ・ナウチノ−イススレドワテルスキイ・インスチチユ−ト・グラズニク・ボレズネイ・イ−メニ・ゲルムゴルツア | Method and apparatus for determining surface configuration of cornea |
JPS59105436A (en) * | 1982-12-09 | 1984-06-18 | キヤノン株式会社 | Medical endoscope |
JPS59144436A (en) * | 1983-02-04 | 1984-08-18 | キヤノン株式会社 | Ophthalmic apparatus |
JPS59214427A (en) * | 1983-05-23 | 1984-12-04 | キヤノン株式会社 | Cornea shape measuring apparatus |
JPS59230536A (en) * | 1983-06-14 | 1984-12-25 | キヤノン株式会社 | Ophthalmic apparatus |
EP0167327A2 (en) * | 1984-06-26 | 1986-01-08 | Kera Corporation | Keratograph autoscanner system |
JPS6182747A (en) * | 1984-06-26 | 1986-04-26 | ケラ コ−ポレ−シヨン | Keratograph automatic scanner system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013519401A (en) * | 2010-02-15 | 2013-05-30 | ウェイブライト ゲーエムベーハー | Method for determining the deviation between coordinate systems of different technical systems |
Also Published As
Publication number | Publication date |
---|---|
JPS62224350A (en) | 1987-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6276799B1 (en) | Stereo optic disc analyzer | |
JP3709335B2 (en) | Ophthalmic equipment | |
US6580448B1 (en) | Process and device for the parallel capture of visual information | |
US4523821A (en) | Device for examining anterior sections of the eye | |
JPH0366356A (en) | Topography-measuring method and apparatus thereof | |
JP3445635B2 (en) | Ophthalmic equipment | |
JP2561828B2 (en) | Fundus examination device | |
US20030063258A1 (en) | Apparatus for examining an anterior-segment of an eye | |
EP3984016A1 (en) | Systems and methods for superimposing virtual image on real-time image | |
JP2942312B2 (en) | Eye refractive power measuring device | |
JPH0646995A (en) | Eye refractometer | |
JPH0477568B2 (en) | ||
JP4551283B2 (en) | Ophthalmic equipment | |
JP3576656B2 (en) | Alignment detection device for ophthalmic instruments | |
JPH0651023B2 (en) | Ophthalmic equipment | |
JP2003111728A (en) | Anterior ocular segment measuring instrument | |
CN111954485B (en) | Image processing method, computer-readable storage medium, and ophthalmic system | |
JP2003111731A (en) | Anterior ocular segment photographic equipment | |
JP4545871B2 (en) | Ophthalmic equipment | |
CN220236851U (en) | Optical colposcope with built-in 3D imaging device | |
CN111759271B (en) | Synoptophore | |
JPH0531075A (en) | Eye refractometer | |
SU551504A1 (en) | Stereoscopic method for measuring the coordinates of image points | |
JP2937373B2 (en) | Ophthalmic equipment | |
JPH05161607A (en) | Stereoscopic measuring retinal camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |