JPS62224350A - Medical binocular microscope - Google Patents

Medical binocular microscope

Info

Publication number
JPS62224350A
JPS62224350A JP61067681A JP6768186A JPS62224350A JP S62224350 A JPS62224350 A JP S62224350A JP 61067681 A JP61067681 A JP 61067681A JP 6768186 A JP6768186 A JP 6768186A JP S62224350 A JPS62224350 A JP S62224350A
Authority
JP
Japan
Prior art keywords
image
light
light source
measurement
imaging member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067681A
Other languages
Japanese (ja)
Other versions
JPH0651023B2 (en
Inventor
小早川 嘉
茂男 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61067681A priority Critical patent/JPH0651023B2/en
Publication of JPS62224350A publication Critical patent/JPS62224350A/en
Publication of JPH0651023B2 publication Critical patent/JPH0651023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば眼科で手術等に使用する医用双眼顕微
鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a medical binocular microscope used, for example, in ophthalmology for surgery.

[従来の技術] 眼科手術等においては、屡々TVカメラによる映像記録
と同時に、角膜曲率半径を求める必要がある場合がある
。従来においては、このような場合に映像記録と測定光
学系とを別個の装置としていたが、そのためにm構が複
雑化するという欠点があった。
[Prior Art] In ophthalmic surgery and the like, it is often necessary to obtain the radius of corneal curvature at the same time as recording images using a TV camera. Conventionally, in such cases, the image recording and measurement optical systems were provided as separate devices, but this had the disadvantage of complicating the m-structure.

[発明の目的] 本発明の目的は、手術的顕微鏡システム内に映像記録機
構と測定光学系を組込んだ小型で使用し易い医用双眼顕
微鏡を提供することにある。
[Object of the Invention] An object of the present invention is to provide a small and easy-to-use medical binocular microscope that incorporates an image recording mechanism and a measurement optical system within a surgical microscope system.

[発明の概要] 上述の目的を達成するための本発明の要旨は。[Summary of the invention] The gist of the present invention is to achieve the above objects.

少なくとも対物レンズの周辺に設けた角膜曲率測定用光
源と、対物レンズの後の観察光路内に設け光束の一部を
撮像部材に導く光分割部材と、被検眼から前記撮像部材
までの光学系の後側焦点近傍に設けた絞りとを有し、前
記撮像部材からの信号を時分割して被検眼の映像と前記
測定用の光源像位置データとを得て、映像の記録と共に
角膜曲率半径を求めることを特徴とした医用双眼顕微鏡
である。
A light source for corneal curvature measurement provided at least around the objective lens; a light splitting member provided in the observation optical path after the objective lens to guide a portion of the light flux to the imaging member; and an optical system from the eye to be examined to the imaging member. The diaphragm is provided near the rear focal point, and the signal from the imaging member is time-divided to obtain an image of the eye to be examined and the light source image position data for measurement, and the radius of corneal curvature is determined while recording the image. This is a medical binocular microscope with the following characteristics.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図はその構成図を示し、被検眼Eに対向する位置に
対物レンズ1が設けられ、この対物レンズlの後方の2
つの立体視観察光路に沿って対称的に変倍レンズ2a・
2b、接眼レンズ3a・3bが配置されている。また、
対物レンズ1の周囲には、第2図に示すように発光ダイ
オード等から成る4つの点状光源4a・4b・4C・4
dが等角度で配置されている。そして、一方の光路の変
倍レンズ2bと接眼レンズ3bとの間に光分割部材5が
挿入されている。この光分割部材5の対物レンズ1方向
からの光束の反射側には、択一的に交換可能で透過特性
の異なるなフィルタ6.6゛、結像レンズ7、絞り8.
撮像部材9が順次に配置されている。また、光分割部材
5の接眼レンズ3b側からの光束の反射側に、結像レン
ズlO1表示手段11が設けられている。
FIG. 1 shows its configuration, in which an objective lens 1 is provided at a position facing the eye E to be examined, and 2
The variable magnification lens 2a is symmetrically arranged along the two stereoscopic observation optical paths.
2b, and eyepiece lenses 3a and 3b are arranged. Also,
Around the objective lens 1, as shown in FIG.
d are arranged at equal angles. A light splitting member 5 is inserted between the variable magnification lens 2b and the eyepiece lens 3b on one optical path. On the side of the light splitting member 5 that reflects the light beam from the direction of the objective lens 1, there is an optionally replaceable filter 6.6' with different transmission characteristics, an imaging lens 7, an aperture 8.
The imaging members 9 are sequentially arranged. Further, an imaging lens lO1 display means 11 is provided on the side of the light splitting member 5 that reflects the light beam from the eyepiece lens 3b side.

検者はその左右眼り、Hにより接眼レンズ3a・3bを
覗いて、被検眼Eを立体観察視することができる。光源
4a〜4dは被検眼Eの角膜に像4a’〜4d’を形成
する。ここで、対物レンズlを通った光束の一部は、変
倍レンズ2bを通り光分割部材5で反射され、フィルタ
6、結像レンズ7、絞り8を通り撮像部材9に至る。こ
の撮像部材9としては例えば撮像管又は二次元エリアセ
ンサアレイが用いられ、撮像部材9上に映った像を第3
図に示す。第3図(a)は被検眼Eの前眼部の像であっ
て記録用であり、(b)は曲率半径測定用であって、角
膜反射像4a’〜4d’の像4a″〜4d”が写ってい
る。
The examiner can look into the eyepieces 3a and 3b with his right and left eyes, H, and view the subject's eye E in three dimensions. The light sources 4a to 4d form images 4a' to 4d' on the cornea of the eye E to be examined. Here, a part of the light flux that has passed through the objective lens l passes through the variable magnification lens 2b, is reflected by the light splitting member 5, passes through the filter 6, the imaging lens 7, and the aperture 8, and reaches the imaging member 9. For example, an image pickup tube or a two-dimensional area sensor array is used as the image pickup member 9, and the image reflected on the image pickup member 9 is
As shown in the figure. FIG. 3(a) is an image of the anterior segment of the subject's eye E, which is for recording, and FIG. 3(b) is an image of the corneal reflection image 4a' to 4d', which is for measuring the radius of curvature. ” is shown in the photo.

撮像部材9は可視光及び近赤外光に感度を持つものが好
ましく、フィルタ6は可視光透過フィルタであり第3図
(a)に示す前用像記録に用いられ、フィルタ6°は近
赤外光透過フィルタで第3図(b)に示す測定用に用い
られ、これらのフィルタ6.6°は光源4a〜4dの点
滅に同期して交互に挿脱する。このように記録・測定を
可視光・近赤外光で分けると光量損失もなく、測定光源
像に前眼部像が重ならないので信号処理が容易である。
The imaging member 9 is preferably sensitive to visible light and near-infrared light, the filter 6 is a visible light-transmitting filter and is used for the front image recording shown in FIG. 3(a), and the filter 6° is a near-infrared light The external light transmitting filters are used for the measurement shown in FIG. 3(b), and these filters 6.6 degrees are inserted and removed alternately in synchronization with the blinking of the light sources 4a to 4d. By dividing recording and measurement into visible light and near-infrared light in this way, there is no loss of light quantity, and the anterior segment image does not overlap with the measurement light source image, making signal processing easier.

絞り8は第3図(b)の測定時に必要とし、(a)の記
録時には光量をかせぐために外すようにしてもよい、絞
り8を光学系の後備焦点の近傍で光源像4a”〜4d’
 の主光線が角度にして数度発散するように設けると、
作動距離の誤差による影響を殆ど受けないようにするこ
とができる。
The diaphragm 8 is required for the measurement shown in FIG. 3(b), and may be removed to increase the amount of light when recording the image shown in FIG. 3(a).
If the chief ray of is set so that it diverges by several degrees,
It is possible to make it almost unaffected by errors in the working distance.

即ち、作動距離が変化するとき光源像4a”〜4d’ 
の間隔が変化し測定誤差が生ずることを防止できる。結
像レンズ10は表示手段11上に表示された測定結果を
光分割部材5を介して検者用Rに投影するものであるが
、ここに7ライメント用マークを設け、それにより被検
眼Eのアライメントを行うようにすることも可能である
That is, when the working distance changes, the light source images 4a'' to 4d'
It is possible to prevent measurement errors from occurring due to changes in the intervals between the two. The imaging lens 10 projects the measurement results displayed on the display means 11 onto the examiner's R through the light splitting member 5, and a mark for 7 alignments is provided here, so that the eye to be examined E can be clearly seen. It is also possible to perform alignment.

第4図は撮像部材9上に映った近赤外光による光源像4
a”〜4d”を示す。角膜の曲率半径が大きくなると、
光源4a〜4dによる4個の像4a″〜4d”の距離は
互いに離れ、曲率半径が小さくなると接近してくる。角
膜乱視があると、像位置の回転が生じて角度θ1、θ2
が現れる。アライメントがずれると像は全体的に移動す
るが、4個の像4a”〜4d”の相対的位置関係は変化
しない、角膜の半径と乱視は4個の像4a″〜4d″の
相対位置で決定される。即ち、像4a″’−4b”と4
b″*4c”のそれぞれの距離及び光源4a〜4d方向
からの回転角θ1、θ2を基に計算することができる。
FIG. 4 shows a light source image 4 of near-infrared light reflected on the imaging member 9.
a” to 4d” are shown. As the radius of corneal curvature increases,
The four images 4a'' to 4d'' formed by the light sources 4a to 4d are spaced apart from each other, and become closer as the radius of curvature becomes smaller. When there is corneal astigmatism, rotation of the image position occurs, resulting in angles θ1 and θ2.
appears. When the alignment shifts, the images shift overall, but the relative positional relationship of the four images 4a'' to 4d'' does not change.The radius of the cornea and astigmatism are determined by the relative positions of the four images 4a'' to 4d''. It is determined. That is, images 4a''-4b'' and 4
It can be calculated based on the respective distances of b''*4c'' and the rotation angles θ1 and θ2 from the directions of the light sources 4a to 4d.

例えば像4a″等の位置を求めるには、第5図に示すよ
うな方法がある。第5図(a)は像4a”が多数の走査
線り上に形成されている状態を示し、これらの各走査線
りからの信号を適当なレベルで二値化した信号を(b)
に示す。これらの二値化情報を一旦記憶しておき、これ
らのデータから像4a”の撮像部材9上での中心座標位
舒を計算して求めることができる。
For example, to find the position of the image 4a'', etc., there is a method as shown in FIG. 5. FIG. The signal obtained by binarizing the signals from each scanning line at an appropriate level is shown in (b).
Shown below. These binarized information are temporarily stored, and the center coordinate position of the image 4a'' on the imaging member 9 can be calculated and determined from this data.

第6図は本発明の他の実施例を示し、対物レンズlの検
者銀り、R側に測定光源4e〜4hが左右眼光路と干渉
しない斜め方向に設けられており、対物レンズ1を通し
て角膜を照射するようになっている。
FIG. 6 shows another embodiment of the present invention, in which measurement light sources 4e to 4h are provided on the examiner's silver side and R side of the objective lens 1 in an oblique direction that does not interfere with the left and right eye optical paths. It is designed to irradiate the cornea.

測定光源は実施例のように点状光源4を複数個設けて、
その像の相対的位置から角膜形状を求めてもよいし、リ
ング状光源を使用してその像の形状から求めてもよい。
As the measurement light source, a plurality of point light sources 4 are provided as in the embodiment,
The corneal shape may be determined from the relative position of the image, or may be determined from the shape of the image using a ring-shaped light source.

実施例のように点状光源を使用する場合には、曲率の最
大・最小の半径とその方向との3つの未知数となるので
、少なくとも3個の光源が必要である。
When point light sources are used as in the embodiment, there are three unknowns: the maximum and minimum radii of curvature and their directions, so at least three light sources are required.

次に、撮像部材9から出力される信号の処理回路につい
て第7図により説明する。この第7図において、20は
撮像手段としてのTVカメラ、21は観察用モニタであ
り、観察用モニタ21は第3図(a)の映像及び(b)
の像を表示する。22はプロセッサ、23は画像メモリ
であり、画像メモリ23は(b)の撮像信号の各画素に
対応したアドレスに二値化データを記憶しておくもので
ある。画像メモリ23の各アドレスに所定の二値化デー
タを格納するのは下記の構成回路により行われる。即ち
、基準クロック発生回路24.走査同期系分周回路25
が、それぞれ画素転送りロンク、データ転送りロック及
び水平同期信号、垂直同期信号を発生する。ここで、画
素転送りロックの周波数は、TV左カメラ0の水平走査
分解能の時間ピッチとほぼ等価な周波数に設定されてい
る。二値化回路26により、TV左カメラ0の出力信号
と任意の基準レベルとを比較判別をして二値化信号を出
力する。この二値化信号はシフトレジスタ27に入力さ
れ、画素転送りロックの周期ごとにビットシフトが行わ
れて、ビット並列の二値化データに変換される。
Next, a processing circuit for signals output from the imaging member 9 will be explained with reference to FIG. In this FIG. 7, 20 is a TV camera as an imaging means, 21 is an observation monitor, and the observation monitor 21 is used to display the images in FIG. 3(a) and (b).
Display the statue of. 22 is a processor, 23 is an image memory, and the image memory 23 stores binarized data at an address corresponding to each pixel of the image pickup signal (b). Storing predetermined binarized data at each address of the image memory 23 is performed by the following configuration circuit. That is, the reference clock generation circuit 24. Scan synchronization system frequency divider circuit 25
generate pixel transfer lock, data transfer lock, horizontal synchronization signal, and vertical synchronization signal, respectively. Here, the pixel transfer lock frequency is set to a frequency that is approximately equivalent to the time pitch of the horizontal scanning resolution of the TV left camera 0. The binarization circuit 26 compares and discriminates the output signal of the TV left camera 0 with an arbitrary reference level and outputs a binarized signal. This binarized signal is input to the shift register 27, bit-shifted every pixel transfer lock cycle, and converted into bit-parallel binarized data.

一方、プロセッサ22はデータ転送りロックを受ける度
に、1個ずつ更新したアドレスを画像メモリ23に出力
するように構成されており、これにより二値化データは
データバッファ28を介して画像メモリ23に入力され
格納を開始する。また、プロセッサ22はデータ転送り
ロックの計数を行って所定のアドレス更新を終えると、
1画面分のデータ転送終了を判別し、画像メモリ23を
記憶保持モードとする。
On the other hand, the processor 22 is configured to output updated addresses one by one to the image memory 23 each time it receives a data transfer lock, so that the binary data is transferred to the image memory 23 via the data buffer 28. is input and storage begins. Further, when the processor 22 counts data transfer locks and finishes updating a predetermined address,
It is determined that the data transfer for one screen has ended, and the image memory 23 is placed in the storage holding mode.

次に、プロセッサ22は画像メモリ23に保持された二
値化データの読み出しを行って、第5図(b)に示すよ
うな方法によりデータから像4a”、4b″、4c”、
4d”(7)各点の中心位置を演算し、更に各点の距離
の計算と基準座標とのずれ量の計算を行い、これらの結
果から角膜の曲率半径中角膜乱視度・角膜乱視軸角度の
演算を行い、演算の結果は表示器29により表示をする
Next, the processor 22 reads out the binarized data held in the image memory 23, and converts the data into images 4a", 4b", 4c", and the like using the method shown in FIG.
4d" (7) Calculate the center position of each point, calculate the distance of each point, and calculate the amount of deviation from the reference coordinates. From these results, calculate the degree of corneal astigmatism in the radius of curvature of the cornea and the corneal astigmatism axis angle. The calculation results are displayed on the display 29.

なお上述の実施例では、撮像信号としてTV左カメラ0
の出力ビデオ信号を用いた場合について述べたが、一般
にカラー処理されたビデオ信号の帯域幅は3MHz程度
に制限されており、角膜反射像の撮像分解能には稍々不
足を生ずる場合がある。この場合は、二値化処理用の撮
像信号としてTV左カメラ0におけるカラー化処理の前
の輝度信号を用いることにより、撮像部材の分解能の上
限まで活用した信号処理を行うことができる。
In the above embodiment, the TV left camera 0 is used as the imaging signal.
However, the bandwidth of the color-processed video signal is generally limited to about 3 MHz, and the imaging resolution of the corneal reflection image may be slightly insufficient. In this case, by using the luminance signal before the colorization process in the TV left camera 0 as the image capture signal for the binarization process, it is possible to perform signal processing that utilizes the upper limit of the resolution of the image capture member.

[発明の効果] 以上説明したように本発明に係る医用双眼顕微鏡は、対
物レンズの被検眼側に測定用のハーフミラ−等を挿入す
ることによって、対物レンズのワーキングデスタンスを
短くしてしまうことなく1手術中等に記録用画像と共に
測定用情報を得ることができ、コンパクトで能率的であ
る。
[Effects of the Invention] As explained above, the medical binocular microscope according to the present invention shortens the working distance of the objective lens by inserting a half mirror for measurement on the side of the eye to be examined of the objective lens. It is compact and efficient, allowing measurement information to be obtained along with recording images during a single surgery.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る医用双眼顕微鏡の実施例を示し、第
1図はその構成図、第2図は対物レンズと測定光源の配
置図、第3図(a) 、 (b)は撮像部材上の前眼部
像と測定光源像の説明図、第4図は測定光源像の説明図
、第5図(a) 、 (b)は走査線上の光源像と二値
化信号の説明図、第6図は他の実施例による対物レンズ
と測定光源の配置図、第7図は電気信号処理系のブロッ
ク回路構成図である。 符号1は対物レンズ、2a、2bは変倍レンズ、3a、
3bは接眼L/7ズ、4a、4bは光源、5は光分割部
材、6.6”はフィルタ、7゜10は結像レンズ、9は
撮像部材、11は表示手段、20はTVカメラ、21は
観察用モニタ。 22はプロセッサ、23は画像メモリ、29は表示器で
ある。 特許出願人   キャノン株式会社 第1図 第4図        第5図 4D’”
The drawings show an embodiment of the medical binocular microscope according to the present invention, with Fig. 1 showing its configuration, Fig. 2 showing the arrangement of the objective lens and measurement light source, and Figs. 3 (a) and (b) showing the arrangement on the imaging member. Fig. 4 is an explanatory diagram of the anterior segment image and measurement light source image, Fig. 4 is an explanatory diagram of the measurement light source image, Figs. 5(a) and (b) are explanatory diagrams of the light source image on the scanning line and the binary signal, FIG. 6 is a layout diagram of an objective lens and a measurement light source according to another embodiment, and FIG. 7 is a block circuit configuration diagram of an electrical signal processing system. Reference numeral 1 is an objective lens, 2a and 2b are variable magnification lenses, 3a,
3b is an eyepiece L/7 lens, 4a and 4b are light sources, 5 is a light splitting member, 6.6'' is a filter, 7°10 is an imaging lens, 9 is an imaging member, 11 is a display means, 20 is a TV camera, 21 is an observation monitor. 22 is a processor, 23 is an image memory, and 29 is a display device. Patent applicant: Canon Corporation Fig. 1 Fig. 4 Fig. 5 4D'"

Claims (1)

【特許請求の範囲】 1、少なくとも対物レンズの周辺に設けた角膜曲率測定
用光源と、対物レンズの後の観察光路内に設け光束の一
部を撮像部材に導く光分割部材と、被検眼から前記撮像
部材までの光学系の後側焦点近傍に設けた絞りとを有し
、前記撮像部材からの信号を時分割して被検眼の映像と
前記測定用の光源像位置データとを得て、映像の記録と
共に角膜曲率半径を求めることを特徴とした医用双眼顕
微鏡。 2、前記撮像部材の前に可視光透過フィルタと近赤外光
透過フィルタと交換して挿入することにより前記時分割
を行うようにした特許請求の範囲第1項に記載の医用双
眼顕微鏡。
[Scope of Claims] 1. A light source for corneal curvature measurement provided at least around the objective lens, a light splitting member provided in the observation optical path after the objective lens to guide a part of the light flux to the imaging member, and a light source provided from the eye to be examined. an aperture provided near the rear focal point of the optical system up to the imaging member, and time-sharing the signal from the imaging member to obtain an image of the eye to be examined and the light source image position data for measurement; A medical binocular microscope characterized by recording images and determining the radius of corneal curvature. 2. The medical binocular microscope according to claim 1, wherein the time division is performed by replacing and inserting a visible light transmission filter and a near-infrared light transmission filter in front of the imaging member.
JP61067681A 1986-03-25 1986-03-25 Ophthalmic equipment Expired - Lifetime JPH0651023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067681A JPH0651023B2 (en) 1986-03-25 1986-03-25 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067681A JPH0651023B2 (en) 1986-03-25 1986-03-25 Ophthalmic equipment

Publications (2)

Publication Number Publication Date
JPS62224350A true JPS62224350A (en) 1987-10-02
JPH0651023B2 JPH0651023B2 (en) 1994-07-06

Family

ID=13351979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067681A Expired - Lifetime JPH0651023B2 (en) 1986-03-25 1986-03-25 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JPH0651023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550666C2 (en) * 2010-02-15 2015-05-10 Уэйвлайт Гмбх Method of determining discrepancies between coordinate systems of different technical systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666235A (en) * 1979-11-02 1981-06-04 Canon Kk Cornea meter
JPS57125302A (en) * 1981-01-28 1982-08-04 Nippon Kogaku Kk <Nikon> Automatic measuring device of radius of curvature
JPS5858025A (en) * 1981-10-01 1983-04-06 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5982829A (en) * 1982-11-05 1984-05-14 モスコフスキイ・ナウチノ−イススレドワテルスキイ・インスチチユ−ト・グラズニク・ボレズネイ・イ−メニ・ゲルムゴルツア Method and apparatus for determining surface configuration of cornea
JPS59105436A (en) * 1982-12-09 1984-06-18 キヤノン株式会社 Medical endoscope
JPS59144436A (en) * 1983-02-04 1984-08-18 キヤノン株式会社 Ophthalmic apparatus
JPS59214427A (en) * 1983-05-23 1984-12-04 キヤノン株式会社 Cornea shape measuring apparatus
JPS59230536A (en) * 1983-06-14 1984-12-25 キヤノン株式会社 Ophthalmic apparatus
EP0167327A2 (en) * 1984-06-26 1986-01-08 Kera Corporation Keratograph autoscanner system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666235A (en) * 1979-11-02 1981-06-04 Canon Kk Cornea meter
JPS57125302A (en) * 1981-01-28 1982-08-04 Nippon Kogaku Kk <Nikon> Automatic measuring device of radius of curvature
JPS5858025A (en) * 1981-10-01 1983-04-06 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5982829A (en) * 1982-11-05 1984-05-14 モスコフスキイ・ナウチノ−イススレドワテルスキイ・インスチチユ−ト・グラズニク・ボレズネイ・イ−メニ・ゲルムゴルツア Method and apparatus for determining surface configuration of cornea
JPS59105436A (en) * 1982-12-09 1984-06-18 キヤノン株式会社 Medical endoscope
JPS59144436A (en) * 1983-02-04 1984-08-18 キヤノン株式会社 Ophthalmic apparatus
JPS59214427A (en) * 1983-05-23 1984-12-04 キヤノン株式会社 Cornea shape measuring apparatus
JPS59230536A (en) * 1983-06-14 1984-12-25 キヤノン株式会社 Ophthalmic apparatus
EP0167327A2 (en) * 1984-06-26 1986-01-08 Kera Corporation Keratograph autoscanner system
JPS6182747A (en) * 1984-06-26 1986-04-26 ケラ コ−ポレ−シヨン Keratograph automatic scanner system

Also Published As

Publication number Publication date
JPH0651023B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
CN101534701B (en) Improvements in or relating to retinal scanning
JP3709335B2 (en) Ophthalmic equipment
JPS6349504B2 (en)
JPH01113605A (en) Apparatus for measuring three-dimensional shape
JP2561828B2 (en) Fundus examination device
US20030063258A1 (en) Apparatus for examining an anterior-segment of an eye
US4761070A (en) Eye refractometer
US4676612A (en) Eye examining apparatus
JP2942312B2 (en) Eye refractive power measuring device
JPS62224350A (en) Medical binocular microscope
JP2003111728A (en) Anterior ocular segment measuring instrument
JP3206936B2 (en) Eye refractometer
JPH06101B2 (en) Alignment device for ophthalmic machine
JP2706251B2 (en) Eye refractive power measuring device
JP2614324B2 (en) Corneal shape measuring device
JP3085679B2 (en) Eye refractometer
JP2580215B2 (en) Objective eye refractometer
JP3581454B2 (en) Corneal endothelial imaging device with corneal thickness measurement function
RU1800265C (en) Method of stereoscopic determination of coordinates of points of aerial photographs
JP2920885B2 (en) Eye refractive power measuring device
JPS628731A (en) Apparatus for measuring eye refractive power
SU551504A1 (en) Stereoscopic method for measuring the coordinates of image points
JPS6051897B2 (en) Alignment device for crystalline lens cross-section imaging device
JP3046062B2 (en) Eye refractive power measuring device
JPS62268522A (en) Ophthalmic apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term