JP3046062B2 - Eye refractive power measuring device - Google Patents

Eye refractive power measuring device

Info

Publication number
JP3046062B2
JP3046062B2 JP2340836A JP34083690A JP3046062B2 JP 3046062 B2 JP3046062 B2 JP 3046062B2 JP 2340836 A JP2340836 A JP 2340836A JP 34083690 A JP34083690 A JP 34083690A JP 3046062 B2 JP3046062 B2 JP 3046062B2
Authority
JP
Japan
Prior art keywords
light
eye
light beam
wavelength
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2340836A
Other languages
Japanese (ja)
Other versions
JPH04208128A (en
Inventor
郁雄 北尾
好徳 小穴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2340836A priority Critical patent/JP3046062B2/en
Publication of JPH04208128A publication Critical patent/JPH04208128A/en
Application granted granted Critical
Publication of JP3046062B2 publication Critical patent/JP3046062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼屈折力測定装置、特にフォトレフラクショ
ン方式の眼屈折力測定装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye-refractive-power measuring apparatus, and more particularly to a photorefractive-type eye-refractive-power measuring apparatus.

[従来の技術] 従来、眼屈折力測定装置として、ストロボ光で被検眼
眼底を照明し、被検眼の瞳孔での光束の状態をカメラで
撮影し、その結果から被検眼の眼屈折力を測定する所謂
フォトレフラクション方式の眼屈折力測定装置がある。
[Prior art] Conventionally, as an eye refractive power measuring device, a fundus of a subject's eye is illuminated with a strobe light, a state of a light beam in a pupil of the subject's eye is photographed by a camera, and the eye refractive power of the subject's eye is measured from the result. There is a so-called photorefractive eye refractive power measuring device.

然し乍ら、この装置に於いては、測定範囲が限られ、
正確な測定ができないという欠点を有していたものであ
る。
However, in this device, the measurement range is limited,
It has a disadvantage that accurate measurement cannot be performed.

その為本出願人は特開平2−191428号に於いて、被検
眼眼底に光源像を投影し、眼底で反射される光源からの
光束をエッヂ状の遮光部材で遮ぎり、遮ぎった光束を受
光素子で受け、その光束の光量分布状態を基に眼屈折力
を測定する眼屈折力測定装置を提案し、高精度に而も瞬
時に眼屈折力を測定できることを可能とした。
For this reason, the present applicant disclosed in Japanese Patent Application Laid-Open No. 2-191428 that a light source image was projected on the fundus of the subject's eye, a light beam reflected from the fundus from the light source was blocked by an edge-shaped light shielding member, and the blocked light beam was received. An eye-refractive-power measuring device that receives an element and measures the eye-refractive power based on the light amount distribution state of the light flux has been proposed, and has made it possible to measure the eye-refractive power instantaneously with high precision.

[発明が解決しようとする課題] 然し乍ら、この前述した装置に於いて、測定した結果
に基づき眼屈折力を算出する場合被検眼の瞳孔径を測定
し、この瞳孔径に基づいて算出を行わなければならず、
光量分布の測定とは別に、被検眼の瞳孔径を測定する為
の構成を必要としたものである。
[Problems to be Solved by the Invention] However, in the above-described apparatus, when calculating the eye refractive power based on the measurement result, the pupil diameter of the eye to be examined must be measured, and the calculation must be performed based on the pupil diameter. Must
In addition to the measurement of the light amount distribution, a configuration for measuring the pupil diameter of the eye to be examined is required.

[課題を解決する為の手段] 本発明は、この従来技術の課題を解決し、被検眼瞳孔
径を測定の度に測定する必要がない装置を提案すること
を目的とするものであり、測定光束を発する光源と、被
検眼瞳と略共役な位置に配設され被検眼瞳孔径より小さ
な透光部を有する投影系絞りとを有し、前記透光部を介
し被検眼眼底に光源像を投影する為の投影系と、被検眼
瞳と略共役位置に配置した受光素子上に前記眼底からの
光束を導びく受光系と、受光系の光路内に配置され受光
光束の一部を遮光する為のエッヂ状の遮光部材と、前記
受光素子上に投影された光束の光量分布状態を基に被検
眼の眼屈折力を演算する演算器とを具備することを特徴
とするものである。
Means for Solving the Problems The present invention has been made to solve the problems of the prior art, and has as its object to propose an apparatus that does not need to measure the pupil diameter of the subject's eye each time it is measured. A light source that emits a light beam, and a projection system diaphragm that is disposed at a position substantially conjugate with the pupil of the eye to be examined and has a translucent portion smaller than the pupil diameter of the eye to be inspected, and forms a light source image on the fundus of the eye to be inspected through the translucent portion. A projection system for projecting, a light receiving system that guides a light beam from the fundus on a light receiving element arranged at a position substantially conjugate with the pupil of the eye to be inspected, and a part of the received light beam that is arranged in the light path of the light receiving system and blocks light And a calculator for calculating the eye refractive power of the eye to be inspected based on the distribution of the amount of light of the light beam projected on the light receiving element.

[作用] 本発明によれば、被検眼眼底に光源像を投影する為の
投影系内の被検眼瞳と共役な位置に、一般の人の瞳孔系
より小さな透光部を有する投影絞りを配置することによ
り、被検眼瞳孔には、被検眼の瞳孔径の違いにも拘らず
被検眼瞳に投影される前記投影絞りの透光部像の大きさ
に対応して常に一定の開口径の光束を入れる事ができる
ものであり、従来の装置の様に特別に被検眼の瞳孔径の
大きさを測定する必要が無い。
According to the present invention, a projection stop having a light-transmitting portion smaller than that of a general human pupil system is arranged at a position conjugate with the pupil of the eye in the projection system for projecting a light source image on the fundus of the eye. By doing so, the pupil of the eye to be inspected always has a light flux having a constant aperture diameter corresponding to the size of the translucent image of the projection stop projected on the pupil of the eye to be inspected, regardless of the pupil diameter of the eye to be inspected. It is not necessary to specifically measure the size of the pupil diameter of the eye to be inspected unlike the conventional apparatus.

[実 施 例] 以下、図面を参照しつつ本発明の一実施例を説明す
る。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

前述した様に先の出願では受光素子を受光した光量分
布を基に被検眼のディオプター値を測定するが、光量分
布の傾きをデジタルf/f0と定義すると、基準ディオプタ
ー値D0に対する被検眼のディオプター値の偏差ΔDは、 の関係があることが分っており、 更に、 L:光源の大きさ u:瞳孔径 である。
As described above, in the earlier application, the diopter value of the eye to be inspected is measured based on the light intensity distribution received by the light receiving element. However, if the slope of the light intensity distribution is defined as digital f / f 0 , the eye to be inspected relative to the reference diopter value D 0 The deviation ΔD of the diopter value of It is known that there is a relationship L: light source size u: pupil diameter

従って、先に提案した眼屈折力測定装置に於いては瞳
孔径uを測定している。ところが、以下に述べる様に、
本実施例では、絞りを設けて測定上必要な瞳孔径uを擬
制し、瞳孔径の測定を省略する。
Therefore, in the eye refractive power measuring device proposed above, the pupil diameter u is measured. However, as described below,
In the present embodiment, an aperture is provided to simulate the pupil diameter u required for measurement, and the measurement of the pupil diameter is omitted.

第1図に於いて、1は測定光源像を被検眼3の眼底7
に投影する為の眼屈折力測定用投影系であり、2は眼底
7により反射された測定光束を受光する為の受光系、5
は被検眼3に指標光束を投影する角膜形状測定用投影系
であり、眼屈折力測定用投影系1及び受光系2は被検眼
3に対向して配置され、角膜形状測定用投影系5は眼屈
折力測定用投影系1と光軸を共用し、該光軸の周囲に配
置される。
In FIG. 1, reference numeral 1 denotes a fundus 7 of an eye 3 to be measured,
Is a light-receiving system for receiving the measurement light beam reflected by the fundus 7;
Is a projection system for measuring a corneal shape that projects an index light beam onto the eye 3 to be inspected. The projection system 1 for measuring the refractive power of the eye and the light receiving system 2 are arranged to face the eye 3 to be inspected. The optical axis is shared with the projection system 1 for measuring eye refractive power, and the optical axis is arranged around the optical axis.

前記眼屈折力測定用投影系1は、光源4、ハーフミラ
ー10、ミラー11、ビームスプリッタ13を有し、前記光源
4とハーフミラー10との間に集光レンズ14が配設され、
該ハーフミラー10と前記ミラー11との間にリレーレンズ
15、投影系絞り16が配設され、前記ミラー11とビームス
プリッタ13との間に投影系対物レンズ17が配設されてい
る。又、前記投影系絞り16と瞳6とは投影系対物レンズ
17に関して略共役な位置となっている。
The eye refractive power measurement projection system 1 includes a light source 4, a half mirror 10, a mirror 11, and a beam splitter 13, and a condenser lens 14 is disposed between the light source 4 and the half mirror 10.
A relay lens between the half mirror 10 and the mirror 11
15. A projection system stop 16 is provided, and a projection system objective lens 17 is provided between the mirror 11 and the beam splitter 13. The projection system stop 16 and the pupil 6 are a projection system objective lens.
The position is substantially conjugate with respect to 17.

上述した眼屈折力測定用投影系1は、前記光源4から
の光束を集光レンズ14、ハーフミラー10、リレーレンズ
15、投影系絞り16、ミラー11、投影系対物レンズ17、ビ
ームスプリッタ13を経て被検眼3に導びき、瞳6を通し
て眼底7上に光源4の像を形成するものである。而し
て、被検眼3の眼屈折力が基準ディオプター値(基準屈
折力)の場合に、眼底7に光源4の像が合焦される様
に、前記眼屈折力測定用投影系1が構成されている。
The above-described projection system 1 for measuring an eye refractive power converts the light beam from the light source 4 into a condenser lens 14, a half mirror 10, and a relay lens.
The light source 4 is guided to the subject's eye 3 via the projection system aperture 16, mirror 11, projection system objective lens 17, and beam splitter 13, and forms an image of the light source 4 on the fundus 7 through the pupil 6. The eye refractive power measuring projection system 1 is configured so that the image of the light source 4 is focused on the fundus 7 when the eye refractive power of the eye 3 to be examined is a reference diopter value (reference refractive power). Have been.

前記受光系2は、受光系対物レンズ18、リレーレンズ
19,20及び受光素子9から成り、眼底7からの光束は前
記ビームスプリッタ13を透過して受光素子9上に投影さ
れる。
The light receiving system 2 includes a light receiving system objective lens 18, a relay lens
Light beams from the fundus 7 are projected through the beam splitter 13 onto the light receiving element 9.

該受光素子9は、エリアCCD、或は撮像管等であり、
受光素子9の受光面9aは被検眼3の瞳6と略共役位置に
配置される。
The light receiving element 9 is an area CCD, an image pickup tube, or the like,
The light receiving surface 9a of the light receiving element 9 is disposed at a position substantially conjugate with the pupil 6 of the eye 3 to be inspected.

前記受光系2の光路内には、ビームスプリッタ13に関
して、投影系絞り16と共役な位置に受光系絞り21を配置
することも可能である。又ビームスプリッタ13に関して
光源4と略共役な位置に、光束の一部を遮光する為のエ
ッヂ状部材12を配置する。尚、本実施例では、受光系光
軸Oを境界として光束の片側を遮光する為のエッヂ状遮
光部材12を配置する。
In the optical path of the light receiving system 2, a light receiving system stop 21 can be disposed at a position conjugate with the projection system stop 16 with respect to the beam splitter 13. Further, an edge-shaped member 12 for blocking a part of the light beam is disposed at a position substantially conjugate with the light source 4 with respect to the beam splitter 13. In this embodiment, an edge-shaped light blocking member 12 for blocking one side of the light beam with the light receiving system optical axis O as a boundary is disposed.

前記角膜形状測定用投影系5は、前記光軸Oを共用す
る様に配置されたリング状発行源22及び該リング状発光
源22からの光束を平行光束として角膜上に投影する集光
レンズ23、更に前記リング状発光源22の外側に配置した
前顔部照明光源24から成り、前記リング上発光源22から
発せられた指標光束は、集光レンズ23を透過して、平行
で且リング状の指標光束となって角膜へ投影される様に
なっている。
The corneal shape measuring projection system 5 includes a ring-shaped emitting source 22 arranged so as to share the optical axis O, and a condensing lens 23 for projecting a light beam from the ring-shaped light emitting source 22 onto the cornea as a parallel light beam. Further, a front face illumination light source 24 is disposed outside the ring-shaped light emitting source 22, and the index light flux emitted from the ring-shaped light emitting source 22 is transmitted through the condenser lens 23 to be parallel and ring-shaped. Is projected onto the cornea as a reference light beam.

尚、リング状発光源22は、同心円状に複数の発光源を
用意しても良い。
It should be noted that a plurality of light emitting sources may be prepared concentrically for the ring-shaped light emitting source 22.

次に、前記光源4の波長とリング状発光源22の波長と
を異ならせる。例えば、光源4の波長を750nm〜850nm、
リング状発光源22の波長を850nm以上とし、前記2つの
絞りのうち受光系絞り21を配置する場合は、光学的膜で
形成し、中心部を光源4からの光束のみを、又周辺部に
ついては、リング状発光源22からの光束、及び前眼部照
明用光源24からの光のみを透過する様にする。この時、
中心部は前眼部照明光を透過する様にしてもよい。更
に、2つの絞りのうち少なくとも投影系絞り16の中央
部、即ち測定光束透過部の径を個人差を考慮した瞳径よ
りも更に小さくする。
Next, the wavelength of the light source 4 and the wavelength of the ring-shaped light source 22 are made different. For example, if the wavelength of the light source 4 is 750 nm to 850 nm,
When the wavelength of the ring-shaped light emitting source 22 is 850 nm or more, and the light receiving system stop 21 of the two stops is disposed, it is formed of an optical film, and only the light beam from the light source 4 is formed at the center and the periphery is formed. Is designed to transmit only the light beam from the ring-shaped light source 22 and the light from the anterior segment illumination light source 24. At this time,
The central portion may transmit anterior segment illumination light. Further, at least the central portion of the projection system stop 16 of the two stops, that is, the diameter of the measurement light beam transmitting portion is made smaller than the pupil diameter in consideration of individual differences.

又、前記ハーフミラー10に関し、被検眼を固視させる
為の固視標26と、レンズ25を配置する。
Further, with respect to the half mirror 10, a fixation target 26 for fixing the eye to be inspected and a lens 25 are arranged.

前記受光素子9には、演算器27が接続され、該演算器
27は受光素子9からの映像信号を取込み、更には記憶さ
せ該映像信号を基に光量分布を求め、更にディオプター
値、指標光束の変形量等を演算、その結果を表示器28に
出力する様になっている。又、演算器27は受光素子9の
映像をそのまま表示器27に出力することもできることに
なっている。
An arithmetic unit 27 is connected to the light receiving element 9.
Reference numeral 27 denotes an image signal from the light receiving element 9, which is further stored to obtain a light amount distribution based on the image signal, further calculates a diopter value, a deformation amount of the index light beam, and outputs the result to the display 28. It has become. Further, the arithmetic unit 27 can output the image of the light receiving element 9 to the display unit 27 as it is.

この時、複数回分の測定を行ってから演算を行う様に
しても良い。表示器に表示する場合は、エラーであった
り、睫等が掛って信頼性の低いデータがある場合は、複
数回のうちの一番信頼性の高いと思われる値を表示する
様にしても良い。図示していないが、このデータを外部
に出力することも可能であり、この場合は、すべてのデ
ータを出力することもできる。
At this time, the calculation may be performed after performing the measurement for a plurality of times. When displaying on the display, if there is an error or if there is data with low reliability due to eyelashes etc., the value considered to be the most reliable among multiple times may be displayed good. Although not shown, it is also possible to output this data to the outside, and in this case, it is also possible to output all data.

尚、第1図中2点鎖線で囲った部分を共に可動できる
様に構成すれば、測定範囲の拡大及び固視標26を被検眼
の遠点或は雲霧視させることが可能となる。更に、測定
光源4及び固視標26は固定し、投影側に移動レンズを置
き、この移動レンズと、エッヂ状遮光部材を移動させる
ことも可能である。又、エッヂ状遮光部材及び光源を固
定して、固視標のみ移動レンズを動かす様にしても良
い。
Incidentally, if the portion enclosed by the two-dot chain line in FIG. 1 is configured to be movable together, it is possible to enlarge the measurement range and make the fixation target 26 look far or cloudy with the eye to be examined. Furthermore, it is also possible to fix the measurement light source 4 and the fixation target 26, place a moving lens on the projection side, and move the moving lens and the edge-shaped light shielding member. Alternatively, the edge-shaped light shielding member and the light source may be fixed, and only the fixation target may move the movable lens.

以下、作用を説明する。 Hereinafter, the operation will be described.

先ず、アライメント作業について説明する。 First, the alignment operation will be described.

リング状発光源22、前顔部照明光源24を点灯し、光源
4を消灯した状態で被検者に固視標26を注視させる。
The ring-shaped light emitting source 22 and the frontal face illumination light source 24 are turned on, and the subject gazes at the fixation target 26 with the light source 4 turned off.

アライメント作業時には、受光素子9の映像をそのま
ま表示器28に表示し、検者がアライメントの状態を観察
できる様にする。
At the time of the alignment work, the image of the light receiving element 9 is displayed on the display 28 as it is so that the examiner can observe the state of the alignment.

この時、被検眼を遠方視或は雲霧視させる為に、エッ
ヂ状遮光部材12及び光源4を予め決められた基準位置、
例えば零ディオプター位置に置き、測定する。その結果
の位置にエッヂ状遮光部材12、光源4及び固視標26或は
固視標26のみを移動させ、被検眼を遠方視或は雲霧視さ
せた状態で測定を行う。各移動部材を予め決められた基
準位置にて測定する場合は、特定の経線のみの測定でも
良い。
At this time, the edge-shaped light shielding member 12 and the light source 4 are set at a predetermined reference position in order to make the eye to be viewed far or cloudy.
For example, it is placed at zero diopter and measured. The edge-shaped light-shielding member 12, the light source 4, and the fixation target 26 or only the fixation target 26 are moved to the position of the result, and the measurement is performed in a state where the eye to be inspected is far vision or cloudy vision. When each moving member is measured at a predetermined reference position, only a specific meridian may be measured.

尚、基準位置での測定の際、基準位置からの差が大き
く、検知できない場合がある。この様な場合は、予め決
められた一定量或は回数動かして再度測定を行い検知で
きるかどうかを確認する。できない場合は、エラー或は
測定範囲オーバーとし、必要により、表示器28或は外部
(プリンタ等)に出力する。
When measuring at the reference position, the difference from the reference position may be too large to detect. In such a case, it is determined whether or not detection is possible by moving again by moving a predetermined amount or a predetermined number of times. If it is not possible, an error or measurement range is exceeded, and output to the display 28 or an external device (such as a printer) as necessary.

又、光源Lの長さを長くした状態で、基準位置での測
定を行い、その結果により可動部を動かした後、光源L
の長さを短くした状態で測定を行うことも可能である。
例えばLEDを4ケ用意し、基準位置での測定のとき或は
基準位置で検知できなかった場合は、移動後も4ケを点
灯し、検知し測定して移動後の測定の場合は内側の2ケ
を点灯して測定する。これは光源Lの長さと測定範囲が
関係するが、傾きの感度も関係している事による。
In addition, the measurement at the reference position is performed in a state where the length of the light source L is increased, and the movable part is moved according to the measurement result.
It is also possible to perform the measurement in a state where the length is shortened.
For example, four LEDs are prepared, and at the time of measurement at the reference position or when detection was not possible at the reference position, four LEDs are lit even after movement, and detection and measurement are performed. Turn on two and measure. This is because the length of the light source L and the measurement range are related, but the sensitivity of the tilt is also related.

尚、光源Lの長さが変わると光源も変化するので、瞳
位置での光量が変化しない様、光源自体の明るさを自動
的に調節できる様にする。
Since the light source changes when the length of the light source L changes, the brightness of the light source itself can be automatically adjusted so that the light amount at the pupil position does not change.

光源4を消灯した状態では、受光系絞り21がある場合
は、中央部を透過する光線はないので、中央部は暗くな
る。又、リング状発光源22からの光線は受光系絞り21を
透過するので、表示器28には第2図に示す様に、中央部
の暗部29とリング状の明部30とが表示される。而して、
前記暗部29とリング状明部30とが同心となる様に、例え
ば被験者を顎受け、額当てで位置決めし、本体部を動か
す様に位置合せすれば、アライメントが完了する。
In a state where the light source 4 is turned off, if there is the light receiving system stop 21, there is no light beam transmitted through the central portion, and the central portion becomes dark. In addition, since the light from the ring-shaped light source 22 passes through the light-receiving system stop 21, a dark portion 29 at the center and a ring-shaped bright portion 30 are displayed on the display 28 as shown in FIG. . Thus,
The alignment is completed by positioning the subject so that the dark portion 29 and the ring-shaped bright portion 30 are concentric, for example, by positioning the subject with a chin rest, forehead rest, and moving the main body.

又、光源4を点灯し、リング状発光源22を消灯し、該
光源4によってできる角膜上の輝点を利用し、該輝点が
絞りの中心となる様位置合せしてもよい。
Alternatively, the light source 4 may be turned on, the ring-shaped light emitting source 22 may be turned off, and a bright spot on the cornea formed by the light source 4 may be used so that the bright spot becomes the center of the stop.

更に、アライメント基準用視標を受光素子に結像する
様別に設けて投影しても良い。又、光源4を測定時のみ
点灯させる場合は、角膜上に投影するアライメント用輝
点投影系を別に設ける。この時、測定時には該アライメ
ント基準用視標投影光及びアライメント用輝点投影光源
は消灯する。
Further, an alignment reference target may be separately provided so as to form an image on the light receiving element and projected. When the light source 4 is turned on only at the time of measurement, a bright spot projection system for alignment for projecting on the cornea is separately provided. At this time, at the time of measurement, the alignment reference target projection light and the alignment bright spot projection light source are turned off.

アライメントが完了すると測定を開始する。 When the alignment is completed, the measurement starts.

先ず、眼屈折力測定について説明する。 First, the measurement of the eye refractive power will be described.

光源4のみを点灯し、測定用の光束を被検眼眼底7に
投影する。前記した様に、投影系絞り16は、瞳6と共役
な位置にあるので、前記測定光束は虹彩により瞳径の光
束に絞られたと同様の状態で被検眼眼底7へ投影され
る。
Only the light source 4 is turned on, and the light beam for measurement is projected on the fundus 7 of the subject's eye. As described above, since the projection system stop 16 is located at a position conjugate with the pupil 6, the measurement light beam is projected onto the fundus 7 of the subject's eye in the same state as when the measurement light beam is stopped down to a light beam having a pupil diameter by the iris.

該被検眼眼底7で反射された光束は、ビームスプリッ
タ13、対物レンズ18を経て、受光系絞り21に邪魔される
ことなく、遮光部材12迄至り、遮光部材12で光束の1部
が遮光されて、受光素子9へ投影される。
The light beam reflected by the fundus 7 of the subject's eye passes through the beam splitter 13 and the objective lens 18, reaches the light shielding member 12 without being disturbed by the light receiving system diaphragm 21, and a part of the light beam is shielded by the light shielding member 12. And is projected onto the light receiving element 9.

本実施例では、光軸半分を遮光している様にしている
が、例えば測定経線に合わせ、光源の形状・配置をし、
遮光部材の形状もいろいろ考えられる。
In the present embodiment, half of the optical axis is shielded from light, but for example, the shape and arrangement of the light source are adjusted in accordance with the measurement meridian,
Various shapes of the light shielding member are also conceivable.

エッヂ状遮光部材を可動とする場合は、エッヂ状遮光
部材が移動することにより、前眼部観察光束が影響を受
ける為、遮光部材の周辺は可動域に渡り、前眼部観察光
束に影響を与えない様な大きさとする。例えば第4図
(A)(B)(C)の様に光学的膜35で形成し、前眼部
観察光のみ透過させ、測定光は不透過とする。エッヂの
部分(斜線の引いていない部分)は、測定光のみ透過さ
せる。尚、測定時に前眼部観察光を消す場合は、前眼部
観察光を透過させても良い。
When the edge-shaped light-shielding member is movable, since the edge-shaped light-shielding member moves, the anterior ocular segment observation light beam is affected. The size should not be given. For example, as shown in FIGS. 4 (A), 4 (B) and 4 (C), the optical film 35 is formed, and only the anterior segment observation light is transmitted, and the measurement light is not transmitted. The edge part (the part without hatching) transmits only the measurement light. When the anterior eye observation light is turned off at the time of measurement, the anterior eye observation light may be transmitted.

受光素子9が受光した映像信号は、前記演算器27へ入
力され、該演算器27では、光量分布、該光量分布の傾き
Δf/f0(前述)が演算される。
The video signal received by the light receiving element 9 is input to the arithmetic unit 27, and the arithmetic unit 27 calculates the light amount distribution and the slope Δf / f 0 (described above) of the light amount distribution.

更に、光源の大きさLは光源の形状により一義的に求
められる値であると共に瞳孔径uも前記投影系絞り16或
は受光系絞り21によって擬制される。これらL,uは装置
構成上、既知の値として、予め演算器27に定数として入
力される。
Further, the size L of the light source is a value uniquely determined by the shape of the light source, and the pupil diameter u is also simulated by the projection system stop 16 or the light reception system stop 21. These values L and u are input to the arithmetic unit 27 as constants in advance as known values in the device configuration.

尚、屈折力の測定のみの構成の場合に於いては、受光
系絞り21は配置しなくても良い。この場合、投影系絞り
16と受光素子9は略共役位置関係に置いてあるので、受
光素子9で受光した映像信号のうち、投影側絞りに相当
する位置の信号のみ演算すれば良い。
Note that, in the case of a configuration that only measures the refractive power, the light-receiving system diaphragm 21 may not be provided. In this case, the projection system aperture
Since the light-receiving element 9 and the light-receiving element 9 have a substantially conjugate positional relationship, only the signal at the position corresponding to the projection-side stop among the video signals received by the light-receiving element 9 needs to be calculated.

受光系絞り21があっても、投影系絞り16と受光系絞り
21は略共役位置関係に置かれるので、同様に受光素子上
の略共役位置の信号のみ演算すれば良い。この様にすれ
ば、輝点検知から瞳孔位置・径を検出すること無く、演
算することが可能となる。
Even if there is a light receiving system stop 21, the projection system stop 16 and the light receiving system stop
Since 21 is placed in a substantially conjugate positional relationship, it is similarly necessary to calculate only a signal at a substantially conjugate position on the light receiving element. This makes it possible to calculate without detecting the pupil position / diameter from the bright spot detection.

この時、受光素子9は一次元、二次元のいずれであっ
ても良い。又、メモリーに記憶して、輝点除却、睫の影
響の冷却等の画像処理を行った後演算することも可能で
ある。輝点除去は行わず、例えば輝点の大きさは、通常
は人によって大きく変わることがないため、予め一定範
囲を定めておき、その範囲のデータを使用しないで演算
しても良い。輝点検知を行う際も、投影系絞り或は受光
系絞りに相当する受光素子上の位置のみの一定範囲を探
せば良い。この様にすれば、処理時間が早くなる。
At this time, the light receiving element 9 may be one-dimensional or two-dimensional. Further, it is also possible to store the data in a memory and calculate after performing image processing such as bright spot elimination and cooling of the influence of eyelashes. Since the bright spot removal is not performed, for example, the size of the bright spot does not usually vary greatly depending on the person, a predetermined range may be determined in advance, and the calculation may be performed without using the data in the range. When performing bright spot detection, it is sufficient to search for a certain range of only the position on the light receiving element corresponding to the projection system stop or the light reception system stop. By doing so, the processing time is shortened.

而して、前記演算器27によって、光量分布の勾配(Δ
f/f0)が求められ、該勾配から前記(1)式より直にデ
ィオプター値の偏差ΔDが演算され、下記式によりディ
オプター値Dが求められる。
The arithmetic unit 27 calculates the gradient of the light amount distribution (Δ
f / f 0 ) is calculated, the deviation ΔD of the diopter value is directly calculated from the gradient from the above equation (1), and the diopter value D is calculated by the following equation.

D=D0+ΔD …(3) この演算結果は表示器28に表示され、或はプリンタ
(図示せず)等の記録手段によって記録表示される。
D = D 0 + ΔD (3) The calculation result is displayed on the display 28 or recorded and displayed by a recording means such as a printer (not shown).

次に、第3図を参照して角膜の形状測定について説明
する。
Next, measurement of the shape of the cornea will be described with reference to FIG.

角膜の形状測定を行う場合は、光源4を消灯し、リン
グ状光源22を点灯する。リング状光源22からのリング状
の指標光束は集光レンズ23を経て角膜上に投影される。
この角膜上投影された指標光束、角膜によって反射され
角膜内部に虚像を結ぶ。この虚像は受光系2により受光
素子9に投影される。従って、受光素子9からの信号
で、角膜上に投影された指標光束の形状を見ることがで
きる。
When measuring the shape of the cornea, the light source 4 is turned off and the ring-shaped light source 22 is turned on. The ring-shaped index light beam from the ring-shaped light source 22 is projected onto the cornea via the condenser lens 23.
The target light beam projected on the cornea is reflected by the cornea to form a virtual image inside the cornea. This virtual image is projected on the light receiving element 9 by the light receiving system 2. Therefore, the shape of the target light beam projected on the cornea can be seen from the signal from the light receiving element 9.

角膜の形状が完全な球面であると受光素子9での指標
光束の形状は真円となるが、角膜の形状が真円でない場
合は第3図に示される様に楕円31となる。
If the shape of the cornea is a perfect spherical surface, the shape of the index light beam at the light receiving element 9 is a perfect circle, but if the shape of the cornea is not a perfect circle, it becomes an ellipse 31 as shown in FIG.

この楕円形状は、前記演算器27に於いて、前記受光素
子9の指標光束を受光している画素の座標を逐次求める
ことにより計算することができる。
This elliptical shape can be calculated by sequentially calculating the coordinates of the pixel of the light receiving element 9 receiving the index light beam in the arithmetic unit 27.

ここで受光素子9上の基準座標系をXO−XOとし、計算
し得られた楕円の長軸方向をXK軸、短軸方向をYK軸とす
る。
Here the reference coordinate system on the light receiving element 9 and X O -X O, the long axis direction of the calculated obtained was ellipse X K axis, the minor axis direction and Y K axis.

この楕円31の長軸(XK軸)の半径SXKが角膜Cの弱主
径線の曲率半径R1に対応し、短軸(YK軸)のSYKが強主
径線の曲率半径R2に対応し、長軸の角度θK1及び短軸の
角度θK2が各々強主径線の軸角度θ、弱主径線の軸角
度θに相当する。
The radius S XK of the major axis (X K axis) of the ellipse 31 corresponds to the radius of curvature R 1 of the weak main line of the cornea C, and the S YK of the short axis (Y K axis) is the radius of curvature of the strong main line. corresponds to R 2, the angle of the major axis theta K1 and minor angle theta K2 are each axial angle theta 1 of Tsuyonushi meridian, corresponding to the axis angle theta 2 of the weak main meridian.

XK−YK座標系に於ける楕円31の一般式は、 AX 2+BY 2+CXY=1 …(4) として表わされる。The general formula of the ellipse 31 in the X K -Y K coordinate system is A X 2 + B Y 2 + C XY = 1 (4) Is represented as

そして、楕円31の半径SKは、角膜の半径をrとし、基
準となる真円の半径をhとし、光学系の全体の倍率をβ
とすると、 SK=Y×β Y=h×r/2 …(6) の関係がある為、(4)、(5)式からSXK、SYKを求め
る(6)式から弱主径線の曲率半径r1は、 強主径線の曲率半径r2は、同様に として求めることができる。
The radius S K of the ellipse 31 is represented by r as the radius of the cornea, h as the radius of a perfect circle as a reference, and β as the overall magnification of the optical system.
Then, since S K = Y × β Y = h × r / 2 (6), S XK and S YK are obtained from equations (4) and (5), and the weak principal diameter is obtained from equation (6). The radius of curvature r 1 of the line is The radius of curvature r 2 of the strong main diameter wire is similarly Can be obtained as

又、強主径線の軸角度θ=θK2、弱主径線の軸角度
θ=θK1として求められる。
Also, the axis angle of the strong main diameter line is obtained as θ 1 = θ K2 , and the axis angle of the weak main diameter line is θ 2 = θ K1 .

演算終了後は、演算結果を表示器28に表示し、適宜プ
リンタ等で出力する。
After the calculation is completed, the calculation result is displayed on the display 28 and output by a printer or the like as appropriate.

尚、上記測定では、光源4とリング状発光源22とを個
別に点灯させて、眼屈折力と角膜形状を個別に測定した
が、光源4の反射光束とリング状発光源22の反射光束
が、受光系絞り21を配置した場合、該受光系絞り21によ
り完全に分離され、受光素子9に於いても同心円状に分
離されて投影される為、光源4とリング状発光源22とを
同時に点灯させて、中央部の受光部から光量分布、及び
該光量分布の傾斜、更に中央部の受光部の周囲の受光画
素の座標から角膜形状を同時に演算することができる。
In the above measurement, the light source 4 and the ring-shaped light source 22 were individually turned on, and the eye refractive power and the corneal shape were measured individually. However, the reflected light beam of the light source 4 and the reflected light beam of the ring-shaped light source 22 were measured. When the light receiving system stop 21 is disposed, the light source 4 and the ring-shaped light source 22 are simultaneously separated because they are completely separated by the light receiving system stop 21 and concentrically separated and projected on the light receiving element 9. By turning on the light, the corneal shape can be simultaneously calculated from the light amount distribution from the central light receiving portion, the slope of the light amount distribution, and the coordinates of the light receiving pixels around the central light receiving portion.

第5図は別の実施例で角膜形状測定用の固視標系33を
屈折力測定用とは別に設けてある。尚、被検者の屈折力
に合せ、位置調節ができる様にしても良い。更に、本実
施例では受光系2とは別に前眼部観察系34を設けてあ
る。
FIG. 5 shows another embodiment in which a fixation target system 33 for measuring the corneal shape is provided separately from the one for measuring the refractive power. The position may be adjusted according to the refractive power of the subject. Further, in this embodiment, an anterior ocular segment observation system 34 is provided separately from the light receiving system 2.

[発明の効果] 以上述べた如く本発明によれば、眼屈折力測定に必要
な被検眼の瞳孔径を予め擬制し、既知の値として取扱う
ことができるので、瞳孔径測定の為の操作、演算を省略
することができ、測定手順の簡略化、演算部の簡略化、
演算処理時間の短縮化を図り得、更に眼屈折力測定系と
角膜形状測定系の光軸を共用した構成であるので、装置
の構成を著しく簡略化することができるという優れた効
果を発揮する。
[Effects of the Invention] As described above, according to the present invention, the pupil diameter of the eye to be inspected necessary for measuring the eye refractive power can be simulated in advance and treated as a known value. The calculation can be omitted, the measurement procedure can be simplified, the calculation unit can be simplified,
The arithmetic processing time can be reduced, and the optical axis of the eye refractive power measurement system and the corneal shape measurement system are shared. Therefore, an excellent effect that the configuration of the apparatus can be significantly simplified can be exhibited. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基本概略図、第2図は受光素子上の投
影状態を示す説明図、第3図は受光素子上に投影される
リング状指標光束の形状を示す図、第4図(A)(B)
(C)は遮光部材の形状を示す図、第5図は他の実施例
を示す基本概略図である。 1は眼屈折力測定用投影系、2は受光系、3は被検眼、
4は光源、5は角膜形状測定用投影系、9は受光素子、
12は遮光部材、16は投影系絞り、21は受光系絞り、27は
演算器を示す。
FIG. 1 is a basic schematic diagram of the present invention, FIG. 2 is an explanatory view showing a projected state on a light receiving element, FIG. 3 is a view showing a shape of a ring-shaped index light beam projected on the light receiving element, FIG. (A) (B)
(C) is a diagram showing the shape of the light shielding member, and FIG. 5 is a basic schematic diagram showing another embodiment. 1 is a projection system for measuring an eye refractive power, 2 is a light receiving system, 3 is an eye to be examined,
4 is a light source, 5 is a projection system for measuring a corneal shape, 9 is a light receiving element,
Reference numeral 12 denotes a light blocking member, 16 denotes a projection system stop, 21 denotes a light reception system stop, and 27 denotes a calculator.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定光束を発する光源と、被検眼瞳と略共
役な位置に配設され被検眼瞳孔径より小さな透光部を有
する投影系絞りとを有し、前記透光部を介し被検眼眼底
に光源像を投影する為の投影系と、被検眼瞳と略共役位
置に配置した受光素子上に前記眼底からの光束を導びく
受光系と、受光系の光路内に配置され受光光束の一部を
遮光する為のエッヂ状の遮光部材と、前記受光素子上に
投影された光束の光量分布状態を基に被検眼の眼屈折力
を演算する演算器とを具備することを特徴とする眼屈折
力測定装置。
1. A light source for emitting a measurement light beam, and a projection system stop disposed at a position substantially conjugate with the pupil of the eye to be inspected and having a translucent portion smaller than the pupil diameter of the eye to be inspected. A projection system for projecting a light source image on the fundus of the eye to be examined, a light receiving system for guiding a light beam from the fundus on a light receiving element arranged substantially conjugate with the pupil of the eye to be examined, and a light receiving beam arranged in the light path of the light receiving system An edge-shaped light-shielding member for shielding a part of the light-receiving element, and a calculator for calculating an eye refractive power of the eye to be inspected based on a light amount distribution state of a light beam projected on the light receiving element. Eye refractive power measurement device.
【請求項2】受光系の光路内、被検眼瞳と略共役な位置
に、被検眼瞳孔径より小さな測定光束透光部を有する受
光系絞りを配置した請求項第1項記載の眼屈折力測定装
置。
2. An eye refracting power according to claim 1, wherein a light-receiving stop having a light-transmitting portion for measuring a light beam smaller than the pupil diameter of the eye to be examined is arranged at a position substantially conjugate with the pupil of the eye to be examined in an optical path of the light-receiving system. measuring device.
【請求項3】被検眼に向けて照明光を投影する為の前眼
部照明系が設けられ、測定光束の波長と該照明光束の波
長とを異ならせるとともに、受光系絞りの透光部は照明
光束の波長の光を遮断し測定光束の波長の光を透過し、
透光部を除く部分には測定光束の波長の光を遮断し照明
光束の波長の光を少なくとも一部を透過する様に構成し
たことを特徴とする請求項第2項記載の眼屈折力測定装
置。
3. An anterior ocular segment illumination system for projecting illumination light toward an eye to be examined is provided. The wavelength of a measurement light beam and the wavelength of the illumination light beam are made different. Blocking the light of the wavelength of the illumination light beam and transmitting the light of the wavelength of the measurement light beam,
3. The eye refractive power measurement according to claim 2, wherein a portion other than the light transmitting portion is configured to block light having a wavelength of the measurement light beam and transmit at least a portion of light having a wavelength of the illumination light beam. apparatus.
【請求項4】被検眼角膜に向けてリング状視標光束を投
影する視標光束投影系が設けられ、測定光束の波長と該
視標光束の波長とを異ならせるとともに、受光系絞りの
透光部は視標光束の波長の光を遮断し測定光束の波長の
光を透過し、透光部を除く部分には測定光束の波長の光
を遮断し視標光束の波長の光を少なくとも一部透過する
様に構成したことを特徴とする請求項第2項記載の眼屈
折力測定装置。
4. A target light beam projection system for projecting a ring-shaped target light beam toward the cornea of the eye to be inspected is provided, wherein the wavelength of the measurement light beam and the wavelength of the target light beam are made different, and the transmittance of the light-receiving system diaphragm is changed. The light unit blocks light having the wavelength of the target light beam and transmits light having the wavelength of the measurement light beam, and blocks the light having the wavelength of the measurement light beam and excludes at least one light having the wavelength of the target light beam in portions other than the light transmitting portion. 3. The eye-refractive-power measuring device according to claim 2, wherein the eye-refractive-power measuring device is configured to be partially transmitted.
JP2340836A 1990-11-30 1990-11-30 Eye refractive power measuring device Expired - Fee Related JP3046062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340836A JP3046062B2 (en) 1990-11-30 1990-11-30 Eye refractive power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340836A JP3046062B2 (en) 1990-11-30 1990-11-30 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JPH04208128A JPH04208128A (en) 1992-07-29
JP3046062B2 true JP3046062B2 (en) 2000-05-29

Family

ID=18340758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340836A Expired - Fee Related JP3046062B2 (en) 1990-11-30 1990-11-30 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP3046062B2 (en)

Also Published As

Publication number Publication date
JPH04208128A (en) 1992-07-29

Similar Documents

Publication Publication Date Title
US5202708A (en) Apparatus for photographic retroillumination image on eyeground
US4523821A (en) Device for examining anterior sections of the eye
US4944303A (en) Noncontact type tonometer
JPH11137520A (en) Ophthalmologic measuring instrument
JPH04200436A (en) Ophthamologic apparatus
US6382796B1 (en) Corneal shape measuring apparatus
US5475451A (en) Ophthalmologic apparatus
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JPH02189128A (en) Optical apparatus having close observation point detecting means
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPH02264632A (en) Sight line detector
JP3046062B2 (en) Eye refractive power measuring device
JP2911452B2 (en) Ophthalmic equipment
JP3305410B2 (en) Ophthalmic equipment
JP3206936B2 (en) Eye refractometer
JP3195621B2 (en) Eye refractometer
JPS6117494B2 (en)
JP3257823B2 (en) Ophthalmic equipment
JPH1080397A (en) Apparatus for dentistry
JPH02206425A (en) Glance detection apparatus
JPH11346998A (en) Eye refractometer
JPH06315465A (en) Subject eye position detecting apparatus
JPH067299A (en) Ophthalmologic refractometer
JPH0554326B2 (en)
JPS63183039A (en) Ophthalmic apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees