JPS61185242A - Ophthalmic measuring apparatus - Google Patents

Ophthalmic measuring apparatus

Info

Publication number
JPS61185242A
JPS61185242A JP60023727A JP2372785A JPS61185242A JP S61185242 A JPS61185242 A JP S61185242A JP 60023727 A JP60023727 A JP 60023727A JP 2372785 A JP2372785 A JP 2372785A JP S61185242 A JPS61185242 A JP S61185242A
Authority
JP
Japan
Prior art keywords
eye
refractive power
measuring
measurement
corneal shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60023727A
Other languages
Japanese (ja)
Other versions
JPH0123133B2 (en
Inventor
恭司 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60023727A priority Critical patent/JPS61185242A/en
Publication of JPS61185242A publication Critical patent/JPS61185242A/en
Priority to US07/342,708 priority patent/US4929076A/en
Publication of JPH0123133B2 publication Critical patent/JPH0123133B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [#業−Lの利用分野] 本発明は、各測定に適、するように制御可能な固視標を
有する眼屈折力・角膜形状測定用の眼科用測定装置に関
するものである。
Detailed Description of the Invention [Field of Application of Industry-L] The present invention relates to an ophthalmological measuring device for measuring eye refractive power and corneal shape, which has a fixation target that can be controlled to suit each measurement. It is something.

[従来の技術] 一般に眼屈折検査を行う場合には、屈折力の測定の他に
乱視の有無の検査や、乱視軸・乱視度の検査のために角
膜形状の測定も併せて行われている。従来では、このよ
うな検査を行う場合に、角膜形状の測定と屈折力の測定
とをそれぞれ別々に異種の器械で行っていたが、測定に
要する時間とL数が検者及び被検者の双方にとって相当
の負担になるため、近年では回−の器械で両測定が可使
な装置が造られている。
[Prior Art] Generally, when performing an eye refraction test, in addition to measuring refractive power, the corneal shape is also measured in order to test for the presence of astigmatism and to test the astigmatism axis and degree of astigmatism. . Conventionally, when conducting such tests, corneal shape measurement and refractive power measurement were performed separately using different instruments, but the time and number of L required for measurement were Since it is a considerable burden on both sides, in recent years, devices that can perform both measurements have been manufactured using rotary instruments.

ところで、 一般に眼屈折力や角膜形状を測定する際に
は、その装置内部に設けた固視標を被検眼に注視させ被
検眼を固定してから、被検眼の眼底や角膜に所定の視標
を投影してその反射像を検出器で受光し、それらを解析
することによって測定値を得ている。
By the way, generally when measuring eye refractive power or corneal shape, the subject's eye is fixed on a fixation target provided inside the device, and then a predetermined target is placed on the fundus or cornea of the subject's eye. is projected, the reflected image is received by a detector, and measured values are obtained by analyzing them.

眼屈折力測定用固視標には風景等のスライド写真と放射
状パターンの2種類があり、後者の放射状パターンはそ
の中心を注視させるようになっている。眼屈折力と角膜
形状とを同一器械で測定する装置においては、これらの
固視標の何れかが設置されているが、角膜形状を測定す
る場合には、眼屈折力測定の場合よりも被検者の動きに
よって測定結果が大きく影響されるため、より一層被検
眼に視標を注視させ被検眼を確実に固定させる必要があ
る。従って、角膜形状測定時に眼屈折力測定用固視標を
そのまま用いると、精密な測定の障害となる場合がある
There are two types of fixation target for measuring eye refractive power: a slide photograph of a landscape, etc., and a radial pattern.The latter radial pattern is designed to direct the eye to its center. In devices that measure eye refractive power and corneal shape using the same instrument, one of these fixation targets is installed; Since the measurement results are greatly affected by the examiner's movement, it is necessary to make the examinee's eye gaze at the optotype more firmly and to fix the examinee's eye more reliably. Therefore, if the fixation target for eye refractive power measurement is used as it is when measuring the corneal shape, accurate measurement may be hindered.

共通の固視標として風疑等のスライドを使用した場合に
は、被検者はスライドの何処を見てよいか迷うために被
検眼が固定され難く、角膜形状測定用固視標としては不
向きである。また、放射状パターンを共通の固視標とし
て使用した場合には、パターン中心が正視の位置に固定
されているために、中度或いは強度の近視・遠視眼の被
検者の場合にはパターンがぼやけてしまい注視できない
ため被検眼が固?され難く、これも角膜形状測定用固視
標としては不十分である。このように、従来の固視標は
十分に満足のいくものではないため、測定の精度を低下
させる原因ともなっている。
When using a slide such as a corneal slide as a common fixation target, the subject gets confused as to where to look on the slide, making it difficult to fix the subject's eye, making it unsuitable as a fixation target for corneal topography measurement. It is. In addition, when a radial pattern is used as a common fixation target, the center of the pattern is fixed at the position of emmetropia, so in the case of subjects with moderate or severe myopia/hyperopia, the pattern may be distorted. Is the subject's eye fixed because it is blurry and unable to gaze? This is also insufficient as a fixation target for corneal topography measurement. As described above, the conventional fixation targets are not fully satisfactory, which causes a decrease in measurement accuracy.

[発明の目的] 本発明の目的は、眼屈折力及び角膜形状の両測定に適す
るように制御可能な固視標を設けることにより、測定時
間と手数とを大幅に軽減させ、被検眼を十分に固定して
高精度の測定を可能にした眼科用測定装置を提供するこ
とにある。
[Object of the Invention] The object of the present invention is to significantly reduce measurement time and labor by providing a fixation target that can be controlled to be suitable for measuring both eye refractive power and corneal shape. It is an object of the present invention to provide an ophthalmological measuring device which enables highly accurate measurement by being fixed to

[発明の概要] −F述の目的を達成するための本発明の要旨は、被検眼
の眼屈折力測定光学系と、該眼屈折力測定光学系と部分
的に光学系を共有する角膜形状測定光学系とを備え、眼
屈折力測定用の固視手段と。
[Summary of the Invention] - The gist of the present invention for achieving the object mentioned in F is to provide an optical system for measuring the eye refractive power of an eye to be examined, and a corneal shape that partially shares the optical system with the optical system for measuring the eye refractive power. and a fixation means for measuring eye refractive power.

角膜形状測定用の固視手段と、各測定に適するように前
記両固視手段を別個に被検眼に呈示する制御手段とを有
することを特徴とする眼科用測定装置である。
This is an ophthalmological measurement device characterized by having a fixation means for corneal shape measurement, and a control means for separately presenting both of the fixation means to the eye to be examined so as to be suitable for each measurement.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明の一実施例を示す光学系であり、角膜形
状測定時には、リング状ストロボ1から発せられた可視
光が、被検眼Eに対向するコリメータ用リングレンズ2
に設けた円形のスリット3を照明するようになっている
。スリット3は光軸を含む一断面で見たときにリングレ
ンズ2の焦点面上にあり、このスリット3を光学的に無
限遠点にあるようにし、その無限遠点から投影された光
が被検眼Eの角膜Ecを照明するようにされている。被
検眼Eはその表面が凸面鏡のようになっているので、ス
リット3の角膜反射像を作り、この角膜反射像は対物レ
ンズ4を介して近赤外光のみを反射し他の波長の光を透
過するグイクロイックミラー5を透過し、可視光反射会
席外光透過のグイクロイックミラー6で上方に反射され
、ビームスプリッタ7で右方に反射されて多数穴絞り8
を通り、プリズム9によって偏向されCCU (電荷結
合素子)から成る一次元位置検出素子10に再結像され
る。
FIG. 1 shows an optical system showing an embodiment of the present invention, in which visible light emitted from a ring-shaped strobe 1 is directed to a collimator ring lens 2 facing the subject's eye E during corneal shape measurement.
A circular slit 3 provided in the slit 3 is illuminated. The slit 3 is located on the focal plane of the ring lens 2 when viewed in a cross section including the optical axis, and the slit 3 is optically located at an infinity point, so that the light projected from that infinity point is illuminated. The cornea Ec of the optometrist E is illuminated. Since the surface of the eye E to be examined is like a convex mirror, a corneal reflection image of the slit 3 is created, and this corneal reflection image reflects only the near-infrared light through the objective lens 4 and rejects light of other wavelengths. It passes through the visible light reflecting mirror 5, is reflected upward by the visible light reflecting kaiseki outdoor light transmitting visible light mirror 6, is reflected to the right by the beam splitter 7, and is transmitted to the multi-hole diaphragm 8.
The light is deflected by a prism 9 and reimaged onto a one-dimensional position detection element 10 consisting of a CCU (charge coupled device).

多数穴絞り8は第2図(a)に示すように、例えば5個
の開11部8a〜8eを有し、プリズム9も開口部8a
〜8eに対応して点線で区分したような5個のエレメン
ト9a〜9eを有し、これらの各エレメント9a〜9e
は第2図(b)に示すような断面形状となっている。こ
の多数穴絞り8とプリズム9とによって分離された5個
の角膜反射像は、検出素子10の位置で第3図に示すよ
うな関係で結合される。この第3図において、sbは角
膜Ecで反射された像が対物レンズ4で結像し分離され
た角膜反射像を表し、また10a〜10eはそれぞれ検
出素子であり、開口部8a〜8e、プリズムニレメン)
9a〜9eのそれぞれに対応している。これによって、
角膜反射像Sbの中の5点の座標を検知することになり
、この5点の座標を二次曲線の一般式、 AX2 +BXY+CY2 +DX+EY+F=  0
に代入して、連立方程式を解くことにより係数A〜Eを
求め、楕円の一般式。
As shown in FIG. 2(a), the multi-hole diaphragm 8 has, for example, five apertures 8a to 8e, and the prism 9 also has an aperture 8a.
It has five elements 9a to 9e as divided by dotted lines corresponding to elements 9a to 8e, and each of these elements 9a to 9e
has a cross-sectional shape as shown in FIG. 2(b). The five corneal reflection images separated by the multi-hole aperture 8 and the prism 9 are combined at the position of the detection element 10 in the relationship shown in FIG. In FIG. 3, sb represents a corneal reflected image obtained by forming and separating an image reflected by the cornea Ec by the objective lens 4, and 10a to 10e are detection elements, respectively, and apertures 8a to 8e, a prism Niremen)
9a to 9e, respectively. by this,
The coordinates of 5 points in the corneal reflection image Sb are detected, and the coordinates of these 5 points are expressed by the general formula of a quadratic curve, AX2 +BXY+CY2 +DX+EY+F= 0
Find the coefficients A to E by substituting them into the equations and solving the simultaneous equations to obtain the general formula for the ellipse.

(X−XO)2/a2+(y−yO)2/b2=まただ
し、X=Xcosθ−Y sinθy=Xsinθ+Y
 cosθ に変形し、楕円の長径a、短径すから角膜Ecの両生経
線の曲率半径を導出し、角度θから乱視軸を算出するこ
とができる。
(X-XO)2/a2+(y-yO)2/b2=However, X=Xcosθ-Y sinθy=Xsinθ+Y
cos θ, the major axis a and the minor axis of the ellipse derive the radius of curvature of the bibionic meridian of the cornea Ec, and the astigmatic axis can be calculated from the angle θ.

一方、屈折力測定の場合は、第1図に示すように赤外光
を発する発光ダイオード11からの光が、集光レンズ1
2を通って眼底投影チャート13を照明するようになっ
ている。このチャート13には、第4図に示すように相
q−に120度の角度をなす3経線方向の3本のスリ、
ント13a〜13cが設けられている。発光ダイオード
11からノ光は、更にリレーレンズ14を通って眼底照
明絞り15に一日結像されてから、穴あきミラー16を
通って赤外光であるためにダイクロイックミラー6を通
り、遠赤外光のみがダイクロイックミラー5を透過して
、対物レンズ4を介して被検眼Eの瞳孔に結像され眼底
Efを照明するようになっている。
On the other hand, in the case of refractive power measurement, as shown in FIG.
2 to illuminate the fundus projection chart 13. This chart 13 includes three slots in the three meridian directions that make an angle of 120 degrees to the phase q-, as shown in Figure 4.
13a to 13c are provided. The light from the light emitting diode 11 further passes through the relay lens 14 and forms an image on the fundus illumination diaphragm 15, and then passes through the perforated mirror 16, which is infrared light, and then passes through the dichroic mirror 6, where it is infrared light. Only external light passes through the dichroic mirror 5 and is imaged on the pupil of the eye E to be examined via the objective lens 4, thereby illuminating the fundus Ef.

この遠赤外光によるチャート13の像はリレーレンズ1
4を通って一旦結像し、対物レンズ4により止視眼眼底
と共役になるように投影される。
The image of the chart 13 created by this far infrared light is the relay lens 1
4 and is once formed into an image, and projected by the objective lens 4 so as to be conjugate with the fundus of the stationary eye.

眼底Efからの反射像は、再び対物レンズ4を経由して
ダイクロイックミラー5.6を透過して結像し、穴あき
ミラー16で下方に反射される。穴あきミラー16の近
くには絞り板17が配置されており、この絞り板17は
第5図に示すように環状の透過部から成る6個の開口部
17a〜17fを有している。そして、開口部19aと
19d、19bと19e、19cと19fは、それぞれ
対応して1つのチャンネルを形成している。眼底照明絞
り15と絞り板17とは、被検眼Eの瞳孔上では第6図
の15A、17Aで示すように結像し、チャー)13の
像を投影光学系と測定光学系とに分離するようになって
いる。
The reflected image from the fundus Ef passes through the objective lens 4 again, passes through the dichroic mirror 5.6, forms an image, and is reflected downward by the perforated mirror 16. A diaphragm plate 17 is disposed near the perforated mirror 16, and this diaphragm plate 17 has six apertures 17a to 17f each consisting of an annular transmitting portion, as shown in FIG. The openings 19a and 19d, 19b and 19e, and 19c and 19f correspond to each other and form one channel. The fundus illumination diaphragm 15 and the diaphragm plate 17 form images on the pupil of the subject's eye E as shown at 15A and 17A in FIG. It looks like this.

絞り板17により分割された光束は、結像レンズ18を
介してプリズム19によって分離され、反射ミラー20
、シリンドリカルレンズ21を経て検出素子22の短手
方向に集光され、3個の検出素子22a〜22clに結
像されるようになっている。プリズム19は第7図(a
)に示すように6個のエレメント19a−19fを有し
ており、絞り板17の6個の開口部17a〜17fに対
応して像を分離するようになっていて、第7図(b)は
プリズム19の断面形状を示している。
The light beam divided by the diaphragm plate 17 passes through the imaging lens 18 and is separated by the prism 19, and is then separated by the reflecting mirror 20.
The light is focused in the lateral direction of the detection element 22 through the cylindrical lens 21, and is imaged on three detection elements 22a to 22cl. The prism 19 is shown in FIG.
), it has six elements 19a-19f, and is designed to separate images corresponding to the six openings 17a-17f of the aperture plate 17, as shown in FIG. 7(b). shows the cross-sectional shape of the prism 19.

このように分離された像は、第8図に示すように配置さ
れた3個のシリンドリカルレンズ21a〜21cにより
像の長手方向に集光されて検出素子22a〜22C−F
に結像され、開口部17a〜17fに対応した眼底像P
a−Pfなる。
The thus separated images are focused in the longitudinal direction of the images by three cylindrical lenses 21a to 21c arranged as shown in FIG.
A fundus image P corresponding to the openings 17a to 17f
a-Pf.

被検眼Eが非正視眼であれば、眼底Efから出射して瞳
孔上の成る一点を出た光線は、屈折力に応じた角度で出
射されるから、本実施例のような光学系を使用すれば被
検眼Eの屈折力に応じて検出素子221−での2つの眼
底像Pの距離が変化する。
If the eye E to be examined is an ametropic eye, the light ray that exits from the fundus Ef and exits at a point above the pupil will be emitted at an angle that corresponds to the refractive power, so an optical system like the one in this example is used. Then, the distance between the two fundus images P at the detection element 221- changes according to the refractive power of the eye E to be examined.

従って、予め2つの眼底像Pの間隔と屈折力の関係を求
めておけば、3径線方向の屈折力が測定でき、その各屈
折力を次・式、 D=Asin(2ω+θ)+B に代入して球面度数、乱視度数、乱視角を計算すること
ができる。変数D、ωは屈折力及び径線方向の角度をそ
れぞれ表し、定数A、B、θはそれぞれ乱視度、平均屈
折力、乱視軸に相当する。
Therefore, if the relationship between the distance between the two fundus images P and the refractive power is determined in advance, the refractive power in the three radial directions can be measured, and each of the refractive powers is substituted into the following formula, D=A sin (2ω + θ) + B. The spherical power, astigmatic power, and astigmatic angle can be calculated using The variables D and ω represent the refractive power and the radial angle, respectively, and the constants A, B, and θ correspond to the degree of astigmatism, the average refractive power, and the astigmatic axis, respectively.

被検眼Eと器械との位置合わせは、図示しない光源から
出射され、対物レンズ4によりグイクロイックミラー5
を下方に反射した前眼部からの赤外光を、テレビリレー
レンズ23によってテレビ撮像管24上に結像し、本体
に付属又は別個に設けられたテレビモニタによって行う
ことができる。
The alignment between the eye E and the instrument is achieved by emitting light from a light source (not shown) and using a guichroic mirror 5 using an objective lens 4.
The infrared light reflected downward from the anterior segment of the eye is imaged onto a television image pickup tube 24 by a television relay lens 23, and the image can be imaged by a television monitor attached to the main body or provided separately.

眼屈折力測定用固視標25は光源26と共にビームスプ
リッタ7の上方に設けられ、光源26によって照明され
た固視標25は、リレーレンズ27、ビームスプリッタ
7を介して被検眼Eにより注視されるようになっている
。固視標25は光源26と共に光軸トをト下に移動させ
、複毅の位置に被検眼Eを固定させて測定を行うことに
より、被検眼Eの器械近視を除去するように制御ネれる
The eye refractive power measurement fixation target 25 is provided above the beam splitter 7 together with a light source 26, and the fixation target 25 illuminated by the light source 26 is gazed by the eye E through the relay lens 27 and the beam splitter 7. It has become so. The fixation target 25 is controlled to remove the mechanical myopia of the eye E by moving the optical axis downward together with the light source 26 and fixing the eye E in a fixed position for measurement. .

固視標25に風景等のスライドが用いられた場合には、
これを角膜形状M4宇用固祁槽として使用するのは不適
当であるから、被検眼Eの[l1111KEfの正視眼
位置に別の固視標が設けられる0例えば本実施例では、
プリズム9の中心にファイバ28の一端が配され、他端
近傍に可視光を発する発光ダイオード29が配されてい
る。そして、角膜形状測定時には照明光源26は消灯さ
れ、発光ダイオード29が点灯され、プリズム9の中心
にファイバ28を介した発光ダイオード29が発光する
ことにより、被検1111Eは鮮明な−4を注視するこ
とができ、被検眼Eは固定されることになる。
When a slide such as a landscape is used as the fixation target 25,
Since it is inappropriate to use this as a fixation tank for corneal shape M4, another fixation target is provided at the emmetropic eye position of [1111KEf] of the eye E to be examined.For example, in this example,
One end of the fiber 28 is arranged at the center of the prism 9, and a light emitting diode 29 that emits visible light is arranged near the other end. Then, during corneal shape measurement, the illumination light source 26 is turned off, the light emitting diode 29 is turned on, and the light emitting diode 29 emits light through the fiber 28 at the center of the prism 9, so that the subject 1111E gazes at a clear -4. Therefore, the eye E to be examined is fixed.

第9図はファイバ28を被検WEの他の正視眼位置に設
置した第2の実施例を示しており、眼屈折力測定用固視
標25の照明光源26側の中心位置にファイバ28の一
端が設置され、他端に発光ダイオード29が配置されて
いる。この実施例においても、先の実施例と同様の手順
を追って角膜形状が測定されるが、この第2の実施例の
場合には固視標25と共にファイバ28も移動できるの
で、角膜形状測定の際により鮮明な輝点を被検眼Eに注
視させることができる。
FIG. 9 shows a second embodiment in which the fiber 28 is installed at another emmetropic eye position of the subject WE, in which the fiber 28 is installed at the center position on the illumination light source 26 side of the fixation target 25 for eye refractive power measurement. One end is installed, and a light emitting diode 29 is placed at the other end. In this embodiment as well, the corneal shape is measured following the same procedure as in the previous embodiment, but in the case of this second embodiment, the fiber 28 can also be moved together with the fixation target 25, so the corneal shape can be measured. The subject's eye E can be made to gaze at a particularly clear bright spot.

屈折力測定用固視標25に放射状パターンが用いられた
場合には、これを角膜形状測定にも共用させることがで
きるが、固視標25は通常では正視位置に設置されてい
るので、正視被検眼しか注視することができない。そこ
で、被検眼Eの屈折力に応じた位置に固視標25を設置
するために、角膜形状測定前に屈折力測定を簡単に行っ
ておくことが好ましい、即ち、発光ダイオード11を1
回発光させ、眼底Efからの反射像を検出素子22で把
え、その屈折力に応じた位置に固視標25を移動させる
と、被検者に固視標25が鮮明に見えるようになり、被
検眼Eを確実に固定することができる。なお、固視標2
5の位置決定に必要な球面度数の値は概略の数字でよい
ため、l径線のみ処理し測定処理時間を短縮してもよい
If a radial pattern is used as the fixation target 25 for refractive power measurement, it can also be used for corneal shape measurement, but since the fixation target 25 is usually installed at the emmetropic position, Only the eye to be examined can be gazed at. Therefore, in order to set the fixation target 25 at a position corresponding to the refractive power of the eye E, it is preferable to simply measure the refractive power before measuring the corneal shape.
By emitting light twice, detecting the reflected image from the fundus Ef with the detection element 22, and moving the fixation target 25 to a position according to its refractive power, the fixation target 25 becomes clearly visible to the subject. , the eye E to be examined can be reliably fixed. In addition, fixation target 2
Since the value of the spherical power necessary for determining the position of 5 may be a rough number, only the l radius may be processed to shorten the measurement processing time.

角膜形状測定のみの場合は、このように先に簡単に屈折
力測定を行うようにするが、屈折力測定・角膜形状測定
を連続して行う場合には、屈折力測定の測定結果をその
まま利用することができる。即ち、屈折力測定によって
得られた球面度数に相当する位置に固視標25を移動さ
せてから角膜形状測定に移行すればよい。
If only corneal topography is to be measured, perform a simple refractive power measurement like this, but if refractive power and corneal topography measurements are to be performed consecutively, the measurement results of the refractive power measurement can be used as is. can do. That is, it is sufficient to move the fixation target 25 to a position corresponding to the spherical power obtained by the refractive power measurement and then proceed to the corneal shape measurement.

第1O図は本装置の制御回路であり、検出素子lOの信
号を入力する角膜形状測定回路30、検出素子22の信
号を入力する眼屈折力測定回路31、眼屈折力測定回路
31の信号を入力し、一体化した固視標25及び光源2
6を制御する固視標制御回路32、光源26及び発光ダ
イオード29を制御する固視標照明制御回路33が、測
定の選択や連続測定時の手順及び固視標25や照明装置
の制御を行う測定選択制御回路34にそれぞれ接続され
ている。
FIG. 1O shows the control circuit of this device, which includes a corneal shape measuring circuit 30 that inputs the signal of the detection element 1O, an eye refractive power measurement circuit 31 that inputs the signal of the detection element 22, and a signal of the eye refractive power measurement circuit 31. Input and integrated fixation target 25 and light source 2
A fixation target control circuit 32 that controls the fixation target 6, and a fixation target illumination control circuit 33 that controls the light source 26 and the light emitting diode 29, perform selection of measurements, procedures during continuous measurement, and control of the fixation target 25 and lighting device. Each is connected to a measurement selection control circuit 34.

なお、固視標照明制御回路33は測定選択制御回路34
の指令により、光源26及び発光ダイオード29の点灯
を適宜に切換えるための回路であるから、固視標25が
放射状パターン等の中心を注視させることができるもの
であるときには、この制御回路33は省略できる。
Note that the fixation target illumination control circuit 33 is a measurement selection control circuit 34.
This circuit is for appropriately switching the lighting of the light source 26 and the light emitting diode 29 according to the command, so this control circuit 33 is omitted when the fixation target 25 is one that allows the focus to be focused on the center of a radial pattern or the like. can.

固視標25に風景等のスライドを使用したためにファイ
バ28を設けた装置においては、測定選択制御回路34
で眼屈折力測定或いは連続測定が選択されると、固視標
照明制御回路33により光源26が点灯され、固視標制
御回路32によって固視標25及び光源26を移動させ
ながら、検出素子22の信号を眼屈折力測定回路31に
入力し、器械近視が除去された正確な屈折力測定結果を
得ることができる。
In a device in which a fiber 28 is provided because a slide such as a landscape is used as the fixation target 25, the measurement selection control circuit 34
When eye refractive power measurement or continuous measurement is selected, the light source 26 is turned on by the fixation target illumination control circuit 33, and while the fixation target control circuit 32 moves the fixation target 25 and the light source 26, the detection element 22 By inputting the signal to the eye refractive power measurement circuit 31, it is possible to obtain accurate refractive power measurement results in which instrumental myopia has been removed.

連続測定の場合は固視標照明制御回路33により光源2
6を消灯し、発光ダイオード29を点灯して被検眼Eが
注視し易いファイバ28の輝点を生じさせて被検眼Eを
固定し測定を行い、検出素子lOからの信号を角膜形状
測定回路30により角膜形状測定結果を得ることができ
る。測定選択制御回路34で角膜形状測定が選択された
ときは、固視標照明制御回路33によって発光ダイオー
ド29を点灯し、以下は前述と同様の手順を追って角膜
形状測定値を得る。
In the case of continuous measurement, the light source 2 is controlled by the fixation target illumination control circuit 33.
6 is turned off and the light emitting diode 29 is turned on to create a bright spot on the fiber 28 that can be easily observed by the eye E to be examined, the eye E to be examined is fixed and the measurement is performed, and the signal from the detection element 10 is sent to the corneal shape measuring circuit 30. The corneal topography measurement results can be obtained using the following method. When corneal shape measurement is selected by the measurement selection control circuit 34, the light emitting diode 29 is turned on by the fixation target illumination control circuit 33, and the corneal shape measurement value is obtained by following the same procedure as described above.

固視標25として放射状パターンを使用した場合に、測
定選択制御回路34で眼屈折力測定或いは連続測定が選
択されると、先と同様にして眼屈折力測定が行われ、連
続測定が選択された場合には、固視標制御回路32によ
り固視4!I25を眼屈折力測定によって得られた位置
に移動させ、固視標25を被検眼Eに注視させて角膜形
状測定を行う。
When a radial pattern is used as the fixation target 25, if eye refractive power measurement or continuous measurement is selected by the measurement selection control circuit 34, eye refractive power measurement is performed in the same manner as before, and continuous measurement is selected. When the fixation target control circuit 32 fixes the fixation target 4! I25 is moved to the position obtained by the eye refractive power measurement, the fixation target 25 is made to gaze at the eye E, and the corneal shape is measured.

測定選択制御回路34によって角膜形状測定のみが選択
されたときには、眼屈折力測定時の手順に従って1径線
方向のみのデータを検出素子22から眼屈折力測定回路
31に入力させ、その結果により固視標制御回路32で
固視標25を移動させ、それを被検眼Eに注視させて通
常の角膜形状測定を行う。
When only corneal shape measurement is selected by the measurement selection control circuit 34, data in only one radial direction is inputted from the detection element 22 to the eye refractive power measurement circuit 31 according to the procedure for eye refractive power measurement, and the result is fixed. The fixation target 25 is moved by the target control circuit 32, and the eye E to be examined is made to gaze at the fixation target 25 to perform normal corneal shape measurement.

[発明の効果] 以上説明したように本発明に係る眼科用測定装置によれ
ば、眼屈折力測定及び角膜形状測定のそれぞれに適した
固視標を設け、測定時にそれらを切換えて呈示し、或い
は同一の固視標を用い角膜形状測定時には眼屈折力測定
によって得られた被検眼に適した位置に固視標を移動さ
せることによって、被検眼に鮮明に見える固視標を呈示
し、測定に際しての位置合わせの時間を短縮すると共に
、正確な測定結果を得ることが可能である。
[Effects of the Invention] As explained above, according to the ophthalmological measuring device according to the present invention, fixation targets suitable for eye refractive power measurement and corneal shape measurement are provided, and these are switched and presented at the time of measurement, Alternatively, when measuring the corneal shape using the same fixation target, by moving the fixation target to a position suitable for the eye to be examined obtained by eye refractive power measurement, the fixation target can be presented to the eye to be examined clearly and the measurement can be performed. It is possible to shorten the alignment time and obtain accurate measurement results.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る眼科用測定装置の実施例を示し、第
1図はその光学的構成図、第2図(a)は多数穴絞りの
正面図、(b)はプリズムの断面図。 第3図は角膜反射像と検出素子との関係の説明図、第4
図は眼底投影チャートの正面図、第5図は眼屈折測定用
絞り板の正面図、第6図は被検眼瞳孔上での絞りの結像
状態の正面図、第7図(a)は眼屈折測定用像分離プリ
ズムの正面図、(b)はその断面図、第8図は眼底像と
受光素子との関係の説明図、第9図は角膜形状測定用固
視標の別の実施例を示す構成図、第1O図は制御回路の
ブロック回路構成図である。 符号1はリング状ストロボ、2はリングレンズ、3はス
リット、4は対物レンズ、5.6はグイクロイックミラ
ー、7はビームスプリフタ、8は多数穴絞り、9.19
はプリズム、10.22は検出素子、11.29は発光
ダイオード、13はチャート、15は照明絞り、16は
穴あきミラー、17は絞り板、21はシリンドリカルレ
ンズ、24はテレビ撮像管、25は固視標、26は光源
、28はファイバ、30は角膜形状測定回路、31は眼
屈折力測定回路、32は固視標制御回路、33は固視標
照明制御回路、34は測定選択制御回路である。
The drawings show an embodiment of the ophthalmological measuring device according to the present invention, in which FIG. 1 is an optical configuration diagram thereof, FIG. 2(a) is a front view of a multi-hole aperture, and FIG. 2(b) is a sectional view of a prism. Figure 3 is an explanatory diagram of the relationship between the corneal reflection image and the detection element.
The figure is a front view of the fundus projection chart, Figure 5 is a front view of the aperture plate for eye refraction measurement, Figure 6 is a front view of the image formation state of the aperture on the pupil of the eye to be examined, and Figure 7 (a) is the eye. A front view of the image separation prism for refraction measurement, (b) is a sectional view thereof, FIG. 8 is an explanatory diagram of the relationship between the fundus image and the light receiving element, and FIG. 9 is another embodiment of the fixation target for corneal shape measurement. FIG. 1O is a block circuit diagram of the control circuit. 1 is a ring-shaped strobe, 2 is a ring lens, 3 is a slit, 4 is an objective lens, 5.6 is a gicroic mirror, 7 is a beam splitter, 8 is a multi-hole aperture, 9.19
is a prism, 10.22 is a detection element, 11.29 is a light emitting diode, 13 is a chart, 15 is an illumination diaphragm, 16 is a perforated mirror, 17 is a diaphragm plate, 21 is a cylindrical lens, 24 is a television image pickup tube, 25 is a A fixation target, 26 a light source, 28 a fiber, 30 a corneal shape measurement circuit, 31 an eye refractive power measurement circuit, 32 a fixation target control circuit, 33 a fixation target illumination control circuit, and 34 a measurement selection control circuit. It is.

Claims (1)

【特許請求の範囲】 1、被検眼の眼屈折力測定光学系と、該眼屈折力測定光
学系と部分的に光学系を共有する角膜形状測定光学系と
を備え、眼屈折力測定用の固視手段と、角膜形状測定用
の固視手段と、各測定に適するように前記両固視手段を
別個に被検眼に呈示する制御手段とを有することを特徴
とする眼科用測定装置。 2、前記眼屈折力測定用の固視手段を風景等のスライド
とし、前記角膜形状測定用の固視手段を正視眼位置に設
置した点光源としたた特許請求の範囲第1項に記載の眼
科用測定装置。 3、前記眼屈折力測定用の固視手段を放射状パターンと
し、前記角膜形状測定用の固視手段を正視眼位置に設置
した点光源とした特許請求の範囲第1項に記載の眼科用
測定装置。 4、前記眼屈折力測定用の固視手段及び角膜形状測定用
の固視手段を共通の放射状パターンとし、前記角膜形状
測定用の固視手段を被検眼の屈折力に相当する位置に移
動させるようにした特許請求の範囲第1項に記載の眼科
用測定装置。 5、前記制御手段は前記眼屈折力測定用の固視手段と前
記角膜形状測定用の固視手段とを各測定毎に切換える制
御回路を有する特許請求の範囲第1項に記載の眼科用測
定装置。 6、前記制御手段は屈折力・角膜形状連続測定時には、
屈折力測定によって得た被検眼の屈折力に相当する位置
に前記眼屈折力測定用の固視手段を移動させて角膜形状
測定を行うように制御回路を有する特許請求の範囲第4
項に記載の眼科用測定装置。 7、前記制御手段は角膜形状単独測定時には被検眼屈折
力を1径線以上測定し、その結果得られた被検眼の屈折
力に相当する位置に前記眼屈折力測定用の固視手段を移
動させて角膜形状測定を行うように制御する制御回路を
有する特許請求の範囲第6項に記載の眼科用測定装置。
[Claims] 1. An optical system for measuring the eye refractive power of an eye to be examined, comprising an optical system for measuring the eye refractive power and a corneal shape measuring optical system partially sharing the optical system with the optical system for measuring the eye refractive power. An ophthalmological measuring device comprising: a fixation means, a fixation means for corneal shape measurement, and a control means for separately presenting both of the fixation means to the eye to be examined so as to be suitable for each measurement. 2. The fixation means for measuring the eye refractive power is a slide of scenery, etc., and the fixation means for measuring the corneal shape is a point light source installed at the position of the emmetropic eye. Ophthalmological measuring device. 3. Ophthalmological measurement according to claim 1, wherein the fixation means for measuring the eye refractive power has a radial pattern, and the fixation means for measuring the corneal shape is a point light source installed at the position of the emmetropic eye. Device. 4. The fixation means for measuring the eye refractive power and the fixation means for measuring the corneal shape have a common radial pattern, and the fixation means for measuring the corneal shape is moved to a position corresponding to the refractive power of the eye to be examined. An ophthalmological measuring device according to claim 1, wherein the ophthalmological measuring device is configured as follows. 5. The ophthalmological measurement according to claim 1, wherein the control means includes a control circuit that switches between the fixation means for measuring the eye refractive power and the fixation means for measuring the corneal shape for each measurement. Device. 6. During continuous measurement of refractive power and corneal shape, the control means:
Claim 4, further comprising a control circuit so as to perform corneal shape measurement by moving the fixation means for eye refractive power measurement to a position corresponding to the refractive power of the eye to be examined obtained by refractive power measurement.
The ophthalmological measuring device described in section. 7. When measuring the corneal shape alone, the control means measures the refractive power of the eye to be examined over one radial line, and moves the fixation means for measuring the eye refractive power to a position corresponding to the refractive power of the eye to be examined obtained as a result. 7. The ophthalmological measuring device according to claim 6, further comprising a control circuit for controlling the corneal shape measurement.
JP60023727A 1983-06-13 1985-02-09 Ophthalmic measuring apparatus Granted JPS61185242A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60023727A JPS61185242A (en) 1985-02-09 1985-02-09 Ophthalmic measuring apparatus
US07/342,708 US4929076A (en) 1983-06-13 1989-04-24 Ophthalmic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023727A JPS61185242A (en) 1985-02-09 1985-02-09 Ophthalmic measuring apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2105936A Division JPH02289227A (en) 1990-04-21 1990-04-21 Measuring device for ophthalmology

Publications (2)

Publication Number Publication Date
JPS61185242A true JPS61185242A (en) 1986-08-18
JPH0123133B2 JPH0123133B2 (en) 1989-05-01

Family

ID=12118345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023727A Granted JPS61185242A (en) 1983-06-13 1985-02-09 Ophthalmic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61185242A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0123133B2 (en) * 1985-02-09 1989-05-01 Canon Kk
JPH01198527A (en) * 1988-02-02 1989-08-10 Topcon Corp Apparatus for measuring refractivity of eye
JP2017077418A (en) * 2015-10-22 2017-04-27 株式会社トーメーコーポレーション Ophthalmologic apparatus
JP2017080136A (en) * 2015-10-29 2017-05-18 株式会社トプコン Ophthalmologic apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565532A (en) * 1979-06-27 1981-01-21 Fuji Photo Film Co Ltd Photographic film unit
JPS57103703A (en) * 1980-12-19 1982-06-28 Sumitomo Metal Ind Ltd Production of slab and its device array
JPS57200128A (en) * 1981-06-03 1982-12-08 Tokyo Optical Objective automatic eye refractive force measuring apparatus
JPS5829446A (en) * 1981-08-18 1983-02-21 キヤノン株式会社 Ophthalmic measuring apparatus
JPS5875529A (en) * 1981-10-30 1983-05-07 株式会社 ニデツク Self-feeling ascertaining apparatus astigmatic axis in objective automatic refraction meter
JPS5977828A (en) * 1982-10-27 1984-05-04 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5980227A (en) * 1982-10-29 1984-05-09 株式会社ニデツク Apparatus for measuring refractive force of eye
JPS6021738A (en) * 1983-07-19 1985-02-04 キヤノン株式会社 Ophthalmic measuring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185242A (en) * 1985-02-09 1986-08-18 キヤノン株式会社 Ophthalmic measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565532A (en) * 1979-06-27 1981-01-21 Fuji Photo Film Co Ltd Photographic film unit
JPS57103703A (en) * 1980-12-19 1982-06-28 Sumitomo Metal Ind Ltd Production of slab and its device array
JPS57200128A (en) * 1981-06-03 1982-12-08 Tokyo Optical Objective automatic eye refractive force measuring apparatus
JPS5829446A (en) * 1981-08-18 1983-02-21 キヤノン株式会社 Ophthalmic measuring apparatus
JPS5875529A (en) * 1981-10-30 1983-05-07 株式会社 ニデツク Self-feeling ascertaining apparatus astigmatic axis in objective automatic refraction meter
JPS5977828A (en) * 1982-10-27 1984-05-04 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5980227A (en) * 1982-10-29 1984-05-09 株式会社ニデツク Apparatus for measuring refractive force of eye
JPS6021738A (en) * 1983-07-19 1985-02-04 キヤノン株式会社 Ophthalmic measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0123133B2 (en) * 1985-02-09 1989-05-01 Canon Kk
JPH01198527A (en) * 1988-02-02 1989-08-10 Topcon Corp Apparatus for measuring refractivity of eye
JP2017077418A (en) * 2015-10-22 2017-04-27 株式会社トーメーコーポレーション Ophthalmologic apparatus
JP2017080136A (en) * 2015-10-29 2017-05-18 株式会社トプコン Ophthalmologic apparatus

Also Published As

Publication number Publication date
JPH0123133B2 (en) 1989-05-01

Similar Documents

Publication Publication Date Title
JP3740546B2 (en) Ophthalmic measuring device
US6588902B2 (en) Ophthalmic apparatus
US7524062B2 (en) Ophthalmologic apparatus
US6192269B1 (en) Ophthalmological measurement apparatus
JPS63267331A (en) Non-contact type tonometer
JPH04200436A (en) Ophthamologic apparatus
JPH08103413A (en) Ophthalmological measuring instrument
JP2002200045A (en) Ophthalmic instrument
US4929076A (en) Ophthalmic measuring apparatus
US4272165A (en) Optical system for illuminating the ground of the eye
US6607272B1 (en) Retinal blood flow measuring apparatus using a laser beam
JPS61185242A (en) Ophthalmic measuring apparatus
JPS61100227A (en) Ophthalmic measuring apparatus
JP6518733B2 (en) Ophthalmic device
JPS6117494B2 (en)
JPH02289227A (en) Measuring device for ophthalmology
JPS6257534A (en) Ophthalmic measuring apparatus
JPH0330366B2 (en)
JP6766242B2 (en) Ophthalmic equipment
JPH0342885Y2 (en)
JP7133995B2 (en) Ophthalmic device and its control method
JPS59230535A (en) Ophthalmic measuring apparatus
JPS6159134B2 (en)
JPH0554326B2 (en)
JPH0439332B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees