JPS6159134B2 - - Google Patents

Info

Publication number
JPS6159134B2
JPS6159134B2 JP54139562A JP13956279A JPS6159134B2 JP S6159134 B2 JPS6159134 B2 JP S6159134B2 JP 54139562 A JP54139562 A JP 54139562A JP 13956279 A JP13956279 A JP 13956279A JP S6159134 B2 JPS6159134 B2 JP S6159134B2
Authority
JP
Japan
Prior art keywords
eye
subject
light
examined
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54139562A
Other languages
Japanese (ja)
Other versions
JPS5554934A (en
Inventor
Isao Matsumura
Yasuyuki Ishikawa
Shigeo Maruyama
Reiji Hirano
Yoshi Kobayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13956279A priority Critical patent/JPS5554934A/en
Publication of JPS5554934A publication Critical patent/JPS5554934A/en
Publication of JPS6159134B2 publication Critical patent/JPS6159134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は眼の屈折力を測定するための装置に関
し、殊に日常生活の情況に近似した情況下の眼屈
折力の測定を可能とし、また検者の集中化観察を
可能にした。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the refractive power of the eye, and in particular, it enables the measurement of the refractive power of the eye under conditions approximating situations in daily life, and also allows for centralized observation by the examiner. made possible.

人眼の機能検査そしてより実用的には眼鏡を調
整するための資料を得るために、眼屈折計は古く
から使用されてきており、また装置の構造も種々
提案されている。
Ophthalmic refractometers have been used for a long time to test human eye function and, more practically, to obtain data for adjusting eyeglasses, and various device structures have been proposed.

この眼屈折力を測定する際視度が極値になるよ
うな径線方向の視度即ち球面視度と、径線方向の
変化に伴う視度の変化即ち乱視度及び視度が極値
になるときの径線の方向即ち乱視軸を測定する必
要がある。
When measuring this eye refractive power, the diopter in the radial direction, that is, the spherical diopter, where the diopter becomes an extreme value, and the change in diopter that accompanies a change in the radial direction, that is, astigmatism and diopter, are at the extreme value. It is necessary to measure the direction of the radial line, that is, the astigmatism axis.

従来、例えば米国特許第3883233号や第3888569
号等で知られた眼屈折計では、光学系の全体もし
くは1部部材を光軸を中心に回転させる構成によ
つて、径線に沿つた測定方向を変化させ、径線方
向の眼屈折力を連続的に測定している。
Previously, for example, US Pat. No. 3,883,233 and US Pat.
In the eye refractometer known as No. 1, the measurement direction along the radial line is changed by rotating the entire optical system or a part of the optical system around the optical axis, and the eye refractive power in the radial direction is changed. are measured continuously.

ところで周知の装置には検査・測定のための機
能部を収納する遮光筐体内に、被検者の視線を固
定する目標像を形成するものがある。その場合、
例え目標像までの見掛上の距離を5mとか無限遠
とかの遠方へ光学的に補正しても、実際には被検
者は目標物を覗き込む状態となるため、いわゆる
機械近視が生じて、自然状態と異なつた検査・測
定結果になることが多いと言われている。
By the way, some well-known devices form a target image on which a subject's line of sight is fixed within a light-shielding housing that houses functional units for inspection and measurement. In that case,
Even if the apparent distance to the target image is optically corrected to a far distance such as 5 m or infinity, the subject will actually be looking into the target, resulting in so-called mechanical myopia. It is said that test and measurement results often differ from the natural state.

また別の装置では、測定をしていない方の目が
周囲視界に気を取られる結果、測定眼の固視を妨
げられるのを防止するため、非測定眼を遮蔽する
ことが行われている。しかしながら、人の目は両
眼が協力し合つて物を見ているため、片眼で見て
いる時の視力状態と両眼が見ている時の視力状態
は差違が生じる恐れが多く、自然な両眼視状態で
検査するのが望ましい。
In other devices, the non-measuring eye is shielded to prevent the non-measuring eye from being distracted by peripheral vision and thus interfering with the fixation of the measuring eye. . However, since the human eye uses both eyes to work together to see things, there is a risk that there will be a difference between the visual acuity when one eye is looking and the visual acuity when both eyes are looking. It is desirable to perform the examination with binocular vision.

一方、被検者が注視する像もしくは物体の照度
や周囲の照度が検査結果に影響を与えることは眼
科の検査で一般に知られている処である。従つて
暗い所に在る物体を注視したり、暗い室内で検査
すると自然な明るさの状態での検査結果と異なる
ことがあるから、できるだけ普通の明るさの室内
で測定するのが望まれる。
On the other hand, it is generally known in ophthalmological examinations that the illuminance of an image or object gazed at by a subject and the illuminance of the surroundings influence the examination results. Therefore, if you stare at an object in a dark place or test in a dark room, the test results may differ from those in natural brightness, so it is desirable to perform measurements in a room with normal brightness as much as possible.

他方、測定の際に装置が邪魔になつて被検者が
正しい体勢で固視標を注視しているかどうか観察
し得ないのが普通である。処がある種の人々や子
供等は不自然な状態で注視したり視野が動き易い
ため、測定直前に被検者をチエツクできるのが好
ましく、また測定結果を被検眼の像と対比し易い
位置に表示すれば検者の判断に役立ち、またあち
らこちらを見なくて済むと云う利点がある。
On the other hand, the device usually gets in the way during measurement, making it impossible to observe whether the subject is gazing at the fixation target in the correct position. Because certain types of people and children tend to gaze in an unnatural manner or have a tendency to move their visual field, it is preferable to check the subject immediately before measurement, and also to find a location where it is easy to compare the measurement results with the image of the subject's eye. If it is displayed on the screen, it will be helpful for the examiner's judgment, and it has the advantage of not having to look here and there.

本発明の目的は以上の諸要望に答えた新規な屈
折力計の提供にある。
An object of the present invention is to provide a novel refractometer that meets the above needs.

以下、図面に従つて実施例を説明する。 Examples will be described below with reference to the drawings.

第1図で、Eは被検眼、Efは眼底すなわち網
膜、Epは瞳抗、Ecは角膜である。また1は固視
目標で、点滅する光源あるいは記号もしくは絵等
で被検者から離して配置する。この場合、被検眼
Eと固視目標1の間にはレンズが配されていない
ので機械近視を回避できるわけで、遠距離屈折力
を計る時は被検眼から例えば5m程度の距離だけ
離して被検眼の高さと等しい高さに支持する。
In FIG. 1, E is the eye to be examined, Ef is the fundus or retina, Ep is the pupil, and Ec is the cornea. Reference numeral 1 is a fixation target, which is placed away from the subject using a blinking light source, symbol, or picture. In this case, since no lens is placed between the eye E and the fixation target 1, mechanical myopia can be avoided, and when measuring long-distance refractive power, the patient should be placed at a distance of, for example, about 5 m from the eye to be examined. Support at a height equal to the optometry height.

2はダイクロイツクミラーで、第13図に透過
率Tの特性の一例を描くように、近赤外より長波
長側の光を反射し、それより短波長側光を透過す
る性能を有するもので、更に固視目標1を凝視す
る被検眼Eの視線に対して斜設する結果、被検者
はミラー2を通して固視目標1を見ることができ
る。またこのミラー2は、測定中に両眼がこの同
一特性のミラーを通して固視目標を見ることがで
きる寸法もしくは構造とするが、これによつて両
眼固視が可能となる。このとき被検者は両眼視に
て固視目標を自然視する。
2 is a dichroic mirror, which has the ability to reflect light with longer wavelengths than near infrared rays and transmit light with shorter wavelengths, as shown in Figure 13, which shows an example of the characteristics of transmittance T. Furthermore, since the fixation target 1 is provided obliquely to the line of sight of the subject's eye E, the subject can see the fixation target 1 through the mirror 2. The mirror 2 is also sized or constructed so that during the measurement both eyes can view the fixation target through this mirror of identical properties, thereby allowing binocular fixation. At this time, the subject naturally views the fixation target with binocular vision.

3は対物レンズで、光軸が垂直になる様に配置
し、またダイクロイツク・ミラー2をこの光軸と
45度を成すように配置するのでダイクロイツク・
ミラー2によつて分割された仮想光軸はレンズ光
軸と一致する。ミラー2と対物レンズ3は対物光
学系を構成する。4は測定パターンの投影と検知
に係る部分であるが、この部分の詳細は後程、第
6図に従つて説明する。
3 is an objective lens, arranged so that its optical axis is perpendicular, and a dichroic mirror 2 aligned with this optical axis.
Because they are arranged at a 45 degree angle, they are dichroic.
The virtual optical axis divided by the mirror 2 coincides with the lens optical axis. The mirror 2 and objective lens 3 constitute an objective optical system. Reference numeral 4 denotes a portion related to projection and detection of the measurement pattern, and details of this portion will be explained later with reference to FIG.

5は第2のダイクロイツク・ミラーで、光軸と
45度を成すように斜設し、第14図に透過率Tの
特性の一例を描くように、赤外光を反射し、それ
より短波長側光を透過する性能を有する。なおミ
ラー5はクイツクリターン・ミラーに替えて測定
時のみ斜設し、位置合わせの時は光路外に退避さ
せることもできるが、配置の再現性を考慮すると
き固定の方が良い。6はビームスプリツター、7
は穴あきレンズで、第2図に描くように光軸に一
致した穴7aを有するが、穴の機能は後述する。
8は照準板で、照準用のマーク8a(第3図)が
描かれている。9はリレーレンズ、10はビジコ
ンのような撮像管もしくは撮像素子アレイ、11
は被検眼を照明する赤光発光ダイオードで、筐体
外部に設ける。
5 is the second dichroic mirror, which is aligned with the optical axis.
It is installed diagonally at an angle of 45 degrees, and has the ability to reflect infrared light and transmit shorter wavelength light, as shown in FIG. 14, an example of the characteristics of transmittance T. Note that the mirror 5 can be installed diagonally only during measurement instead of a quick-return mirror, and can be moved out of the optical path during alignment, but it is better to keep it fixed when considering the reproducibility of the arrangement. 6 is a beam splitter, 7
is a perforated lens, which has a hole 7a aligned with the optical axis as shown in FIG. 2, and the function of the hole will be described later.
Reference numeral 8 denotes an aiming plate, on which an aiming mark 8a (Fig. 3) is drawn. 9 is a relay lens, 10 is an image pickup tube or image sensor array such as a vidicon, 11
is a red light emitting diode that illuminates the eye to be examined, and is installed outside the housing.

以上の部材の共役関係は破線で描いているが、
被検眼前眼部例えば角膜面Ecと照準板8をミラ
ー2の反射面、対物レンズ3並びに穴あきレンズ
7に関して共役とし、照準板8と撮像管10の受
光面をリレーレンズ9に関して共役に配置する。
従つて撮像管10は被検眼前眼部に重ねて照準用
マークを撮像する。
The conjugate relationships of the above members are drawn with broken lines,
The anterior segment of the eye to be examined, for example, the corneal surface Ec and the aiming plate 8 are arranged to be conjugate with respect to the reflecting surface of the mirror 2, the objective lens 3 and the perforated lens 7, and the aiming plate 8 and the light receiving surface of the image pickup tube 10 are arranged to be conjugate with respect to the relay lens 9. do.
Therefore, the imaging tube 10 images the aiming mark superimposed on the anterior segment of the subject's eye.

次に12は近赤外より長い波長の光を発する発
光ダイオード、13はピンホール13aを備えた
遮光板である。このピンホール13aは位置合わ
せ用のマークを形成するもので、ここでは光軸上
に1個設けているが光軸対称に複数個設けても良
い。そして遮光板13の位置は以下の通りに決め
るものとする。被検眼と対物光学系の位置関係が
適正の時で、また角膜を凸面鏡とみなした場合、
ピンホール13aを発し光線がビームスプリツタ
ー6の反射面で反射し、第2のダイクロイツク・
ミラー5を通過し、対物レンズ3で収斂作用を受
けた後、ダイクロイツク・ミラー2の表面で反射
し、角膜Ecに向う。角膜Ecで鏡面反射した光線
はつづいてダイクロイツク・ミラー3の表面で反
射し、対物レンズ1によつて収斂作用を受け、ダ
イクロイツク・ミラー5とビームスプリツター6
そして穴あきレンズの穴7aを通過して照準板上
にピンホールの像を結像する構成にしたもので、
云い替えればピンホール13aをビームスプリツ
ター6、対物レンズ3及びダイクロイツク・ミラ
ー2に関して角膜頂点と角膜面の曲率中心の半分
の位置(凸面鏡の焦点に当る)を共役にし、照準
板8を対物レンズ3の後側焦平面に配すること
で、角膜で反射した光線を略平行光に変換し、対
物レンズ3で照準板8上に結像させるものであ
る。なお、被検眼前眼部Ec像は対物レンズ3と
穴あきレンズ7の合成屈折力で照準板上に形成さ
れる。
Next, 12 is a light emitting diode that emits light with a wavelength longer than near-infrared, and 13 is a light shielding plate provided with a pinhole 13a. This pinhole 13a forms a mark for alignment, and here one pinhole 13a is provided on the optical axis, but a plurality of pinholes 13a may be provided symmetrically with the optical axis. The position of the light shielding plate 13 is determined as follows. When the positional relationship between the eye to be examined and the objective optical system is appropriate, and the cornea is regarded as a convex mirror,
The light beam emitted from the pinhole 13a is reflected by the reflective surface of the beam splitter 6, and is reflected by the second dichroic beam.
After passing through the mirror 5 and being converged by the objective lens 3, it is reflected by the surface of the dichroic mirror 2 and heads toward the cornea Ec. The light beam specularly reflected by the cornea Ec is then reflected by the surface of the dichroic mirror 3, is converged by the objective lens 1, and is then reflected by the dichroic mirror 5 and beam splitter 6.
Then, it passes through the hole 7a of the perforated lens and forms a pinhole image on the sight plate.
In other words, the pinhole 13a is made conjugate with respect to the beam splitter 6, the objective lens 3, and the dichroic mirror 2 at a position halfway between the corneal apex and the center of curvature of the corneal surface (which corresponds to the focal point of the convex mirror), and the aiming plate 8 is made conjugate with respect to the beam splitter 6, the objective lens 3, and the dichroic mirror 2. By disposing it on the rear focal plane of the lens 3, the light rays reflected by the cornea are converted into substantially parallel light, and the objective lens 3 forms an image on the aiming plate 8. Note that the anterior segment Ec image of the subject's eye is formed on the aiming plate with the combined refractive power of the objective lens 3 and the perforated lens 7.

以上の構成で、発光ダイオード11と12を点
灯すると、発光ダイオード11を発した不可視の
赤外・近赤外光は被検眼前部を照明するから、そ
こで散乱反射された光束はダイクロイツク・ミラ
ー2の表面で反射し、対物レンズ3で収斂され、
近赤外成分は第2のダイクロイツク・ミラー5を
透過し、更にビームスプリツター6を透過して穴
あきレンズ7の屈折力で一旦照準板上に結像し、
次にリレーレンズ9によつて撮像管10の受光面
に結像する。他方、発光ダイオード12を発した
赤外・近赤外光束はビームスプリツター5で近赤
外成分のみが透過して被検眼に向うが、ダイクロ
イツク・ミラー2は近赤外光を反射するから前述
の光学作用に従つて撮像管10の受光面にピンホ
ールの像を結ぶ。
With the above configuration, when the light-emitting diodes 11 and 12 are turned on, the invisible infrared and near-infrared light emitted from the light-emitting diode 11 illuminates the front part of the subject's eye, and the light beams scattered and reflected there are sent to the dichroic mirror. It is reflected by the surface of 2 and converged by the objective lens 3,
The near-infrared component passes through the second dichroic mirror 5, further passes through the beam splitter 6, and is once imaged on the aiming plate by the refractive power of the perforated lens 7.
Next, the relay lens 9 forms an image on the light receiving surface of the image pickup tube 10 . On the other hand, the infrared and near-infrared light beams emitted from the light-emitting diode 12 pass through the beam splitter 5, where only the near-infrared components are transmitted and head toward the subject's eye, but the dichroic mirror 2 reflects the near-infrared light. A pinhole image is formed on the light receiving surface of the image pickup tube 10 according to the optical action described above.

第4図はテレビ受像器14を示し、この受像器
は撮像管10を含むテレビカメラと電気的に結合
されている。受像器のブラウン管等の表示画面は
被検眼前部の像と照準用マーク像8a′そして位置
合わせ用マーク像13a′を写し出す。ただし、こ
の場合は被検眼の瞳と照準用マーク8a′は位置ず
れしているので被検眼と対物光学系とのアライメ
ントが崩れており、位置合わせ用マーク像13
a′はボケているので被検眼と対物光学系の間隔が
不適正であることが操作者にわかる。一方、図面
には描いていないが、検査器械は固定台上に摺動
自在に支持された左右移動台とその上に支持され
た前後移動台から成るスライドステージを備え、
測定本体は前後移動台に設けられた伸縮自在の支
柱上に取付けられていて、前後と水平方向の調節
はスライドステージに連結された操作卓を操作し
て行うのが普通である。その際、操作の集中化の
ために操作卓の端末に押しボタン式のレリーズ・
スイツチを設けて親指で押すようにすれば、位置
合わせの操作が終了した直後に測定を開始できて
都合が良い。と云うのは、位置合わせは極めて狂
い易く、同じ状態が保たれるのはごくわずかの間
だからである。
FIG. 4 shows a television receiver 14 which is electrically coupled to a television camera including an image pickup tube 10. As shown in FIG. A display screen such as a cathode ray tube of the image receptor projects an image of the front part of the subject's eye, an aiming mark image 8a', and an alignment mark image 13a'. However, in this case, the pupil of the eye to be examined and the aiming mark 8a' are misaligned, so the alignment between the eye to be examined and the objective optical system is broken, and the alignment mark image 13
Since a' is blurred, the operator can see that the distance between the eye to be examined and the objective optical system is inappropriate. On the other hand, although not shown in the drawing, the inspection instrument is equipped with a slide stage consisting of a left and right movable table slidably supported on a fixed base and a back and forth movable table supported on top of the slide stage.
The measurement main body is mounted on a telescoping support provided on a front-rear movable stage, and adjustments in the front-rear and horizontal directions are usually performed by operating a console connected to a slide stage. At that time, in order to centralize operations, there is a push-button release button on the terminal of the operation console.
If a switch is provided and pressed with the thumb, measurement can be started immediately after the positioning operation is completed, which is convenient. This is because alignment is extremely easy to go awry and remains the same for only a short period of time.

被検眼に対し装置全体を水平・垂直方向に、そ
して前後方向に調整すると第5図に描いた状態に
することができる。第5図では照準用マーク8
a′と被検眼の瞳は同心円状に並び、また位置合わ
せ用マーク13a′は照準用マーク8a′の中心に位
置し、鮮明な像となつている。
By adjusting the entire apparatus horizontally, vertically, and longitudinally relative to the eye to be examined, the state shown in FIG. 5 can be achieved. In Figure 5, aiming mark 8
a' and the pupil of the eye to be examined are arranged concentrically, and the alignment mark 13a' is located at the center of the aiming mark 8a', resulting in a clear image.

ここで付言すると、位置合わせ用マークがあれ
ば照準用マークは不要と思われるかもしれない
が、鏡面反射を利用した方法は感度が敏感過るた
め、粗い調整をしておかないと位置合わせ用マー
ク像を画面内に入れるために苦労することが多
く、その点照準用マークを併設すると便利であ
る。
I would like to add here that if there is a positioning mark, it may seem that the aiming mark is not necessary, but the method using specular reflection is too sensitive, so it is necessary to make rough adjustments before positioning. It is often difficult to get the mark image within the screen, so it is convenient to have a mark for aiming.

なお、測定は片眼づつ行うのが普通であるが、
そのためにスライドステージの左右移動台を移動
して対物系を右または左側に対向させるわけであ
るが、その際、例えば左右移動台の固定台に対す
る位置をマイクロスイツチ等で検出し、その信号
をもとにテレビ受信器上に左眼もしくは右眼であ
ることを示すために「OD」もしくは「OS」と表
示することもできる。と云うのは、装置が被検者
の顔前を覆うことが多いため検者は被検者の目を
簡単に視認し難く、そこで測定確認のために再測
定した時に左右の眼を取り違える恐れがある処、
これを防止し得る利点がある。
Note that measurements are usually performed with one eye at a time.
To do this, the left/right movable base of the slide stage is moved so that the objective system faces the right or left side. At this time, for example, the position of the left/right movable base relative to the fixed base is detected using a micro switch, and the signal is also detected. ``OD'' or ``OS'' may also be displayed on the television receiver to indicate left or right eye. This is because the device often covers the front of the subject's face, making it difficult for the examiner to easily see the subject's eyes, and there is a risk of confusing the left and right eyes when remeasuring to confirm the measurement. Where there is
There is an advantage that this can be prevented.

以下、第6図に従つて眼屈折力の測定部の説明
をするが、以下の実施形態では3本の経線に対応
する3組の測定パターンを投射する方法を採用し
ているので、予め3本の経線を選んだ理由を説明
する。
The eye refractive power measurement unit will be explained below with reference to FIG. Explain why you chose the meridian of the book.

被検眼に乱視がある場合、乱視における経線方
向による視度の変化が正弦波的に変化すると仮定
すれば視度は経線方向の角度の関数として次式で
表わされる。
When the subject's eye has astigmatism, assuming that the change in diopter due to astigmatism in the meridian direction changes sinusoidally, the diopter can be expressed as a function of the angle in the meridian direction by the following equation.

D=Asin(2θ+α)+B (1) 変数D、θは視度及び経線方向の角度を各々表
わす。定数A、B、αは各々乱視度、平均視度、
乱視軸方向に相当する。(1)式の未知数は3つなの
で少なくとも3つの経線方向での測定値があれば
(1)式を適用し、乱視度、平均視度、乱視軸方向の
各値を任意の経線方向に対して求めることができ
る。測定する経線方向を3つに限度せずそれ以上
増すことにより、その内の任意の3組で上記値を
求め他の組合せで求めた値と平均化することによ
り精度を向上できることはいうまでもない。
D=Asin(2θ+α)+B (1) The variables D and θ represent diopter and meridian angle, respectively. The constants A, B, and α are the degree of astigmatism, the average diopter, and
Corresponds to the astigmatism axis direction. Since there are three unknowns in equation (1), if there are measured values in at least three meridian directions,
By applying equation (1), each value of the degree of astigmatism, average diopter, and astigmatism axis direction can be determined for any meridian direction. It goes without saying that by increasing the number of meridian directions to be measured, rather than limiting them to three, the accuracy can be improved by finding the above values in any three of them and averaging them with the values found in other combinations. do not have.

第6図で、20は赤外発光ダイオード。21は
第9図に示すような開口21を有する絞り板で、
3光束を分離するのに役立つ。22はコンデンサ
ーレンズ、23は偏角プリズムで平面形状を第1
5図にそして側方から見た形状を第16図に示す
通りであり、各面に入射した光束を各々外側へ逸
らす作用を持つ。24は三光束スリツト板で、第
10図に示すように互いに120度をなす経線に垂
直なスリツト24a,24b,24cが設けられ
ており、これらスリツトが測定パターンとなる。
また、偏角プリズム23は三光束スリツト板24
に近接して配置するが、配置順序は逆でも良い。
25はリレーレンズ、26は三孔板で、第7図に
描くように3個の開口26a,26b,26cが
各経線に対応して配置される。27は別のリレー
レンズで、部材25,26と共に一体化されて光
軸方向へ移動可能である。
In Fig. 6, 20 is an infrared light emitting diode. 21 is a diaphragm plate having an opening 21 as shown in FIG.
It helps to separate the three beams of light. 22 is a condenser lens, 23 is a deflection prism, and the planar shape is the first
The shape shown in FIG. 5 and when viewed from the side is shown in FIG. 16, and has the effect of deflecting the light flux incident on each surface to the outside. Reference numeral 24 denotes a three-beam slit plate, and as shown in FIG. 10, slits 24a, 24b, and 24c are provided perpendicular to meridian lines that form 120 degrees with each other, and these slits form a measurement pattern.
Moreover, the deflection prism 23 has a three-beam slit plate 24.
Although they are placed close to each other, the order of placement may be reversed.
25 is a relay lens, 26 is a three-hole plate, and three openings 26a, 26b, 26c are arranged corresponding to each meridian as shown in FIG. 27 is another relay lens, which is integrated with members 25 and 26 and is movable in the optical axis direction.

28はリレーレンズ、29は有孔鏡で、第8図
に描く通り3個の開口29a,29b,29cを
各経線に対応して備える。
28 is a relay lens, and 29 is a perforated mirror, which has three openings 29a, 29b, and 29c corresponding to each meridian as shown in FIG.

30はリレーレンズ、32はリレーレンズ、3
3は開口絞り板で、第13図に描くように開口3
3aを備える。34はリレーレンズで、部材3
2,33と一体的に光軸方向へ移動可能で、レン
ズ25と27の合成屈折力をレンズ32と34の
合成屈折力と同一に選んだ結果、両ユニツトを結
合し、不図示の移送手段によつて一回の測定中に
一回だけ一方向へ単調に移送する。
30 is a relay lens, 32 is a relay lens, 3
3 is an aperture diaphragm plate, and the aperture 3 is
3a. 34 is a relay lens, member 3
As a result of selecting the combined refractive power of lenses 25 and 27 to be the same as the combined refractive power of lenses 32 and 34, both units are combined, and a transfer means (not shown) is used. It is monotonically transferred in one direction only once during one measurement.

35は第10図に描いた物と同じ三光束スリツ
ト板。36a,36bそして36cはオプテイカ
ルフアイバー束あるいはアクリル製導光棒等のラ
イトガイドで、各ライトガイドの一端は三光束ス
リツト板の各スリツト開口に接触して配され、他
端はフオト・トランジスターのような受光素子に
接着される。以上の光学配置によつて三光束スリ
ツト24と35は中継する部材に関して点Pと常
に共役が維持される。
35 is the same three-beam slit plate as shown in Figure 10. 36a, 36b, and 36c are light guides such as optical fiber bundles or acrylic light guide rods, one end of each light guide is placed in contact with each slit opening of the three-beam slit plate, and the other end is placed in contact with each slit opening of the three-beam slit plate, and the other end is placed in contact with each slit opening of the three-beam slit plate. It is attached to a light-receiving element like this. With the above optical arrangement, the three-beam slits 24 and 35 are always kept conjugate with the point P with respect to the relay member.

また38はエンコーダのような測長器を有する
位置検出手段で、上述した可動ユニツトの軸上位
置を測定中、常に検出する。なお、ここでは可動
ユニツトとしてリレーレンズを移動しているが、
代りに三光束スリツト板を照明部及び測光部とと
もに軸方向へ移動しても良い。以降に作用を説明
するが、第6図に共役関係を示す光線は、三光束
スリツト板の任意のスリツトを発光した光束につ
いて示している。発光ダイオード20を点灯する
と赤外光は絞り板21を照明し、開口21aを発
した光束はコンデンサーレンズ22で三光束スリ
ツト板24上に集光する。その際、偏角プリズム
23の各面の作用で、各スリツト24a,24
b,24cを通つた光束はより有効に分離され、
リレーレンズ25で収斂作用を受け、各光束は三
孔板26の開口26a,26b,26cで規正さ
れて各光束が干渉するのを防いでいる。次いで3
光束はリレーレンズ27の通過後、一旦結像して
発散し、リレーレンズ28で収斂して有孔鏡の開
口29a,29b,29cを夫々通過し、第2ダ
イクロイツク・ミラー5で反射した後、再度結像
し、更に発散して対物レンズ3で収斂作用を受
け、ダイクロイツク・ミラー2で発散して点Pを
含む光軸に垂直な凹面上に測定パターン像を結
ぶ。今、点Pが眼底Efに一致していると仮定す
ると、眼底で散乱反射した光束は被検眼を射出し
て元来た光路を逆行し、ダイクロイツク・ミラー
2で反射して対物レンズ3によつて一旦結像し、
第2のダイクロイツク・ミラー5の反射に続いて
有孔鏡29の鏡面で反射し、リレーレンズ30に
よつてビームスプリツター31の後方で結像し、
更にリレーレンズ32、開口絞り板33、リレー
レンズ34を経て三光束スリツト板35上に結像
し、各スリツト35a,35b,35cを通つた
光束はライトガイド36a,36b,36cを通
つて受光素子37a,37b,37cに入射す
る。その際、点Pが眼底に一致していれば、三光
束スリツト板24の測定パターン用スリツトの像
は検知用三光束スリツト板のスリツトに正確に一
致して鮮明に結像するから受光量は最大値とな
る。しかしながら、点Pが眼底Efより前又は後
にある時には検知用三光束スリツト上に形成され
る測定パターン像はボケているばかりでなく、経
線方向にずれているから受光量は低下するわけで
ある。像が経線方法にずれる理由は、結像位置が
光軸を外れた軸外光束で形成されるためである。
測定開始とともに可動ユニツト25,26,2
7,32,33,34を初期位置から移動する
と、受光素子37a,37b,37cは徐々に増
加するが、乱視がある場合、3個の受光素子は同
時にピーク値を検知することはなく、順次ピーク
値を取ることになる。
Further, 38 is a position detecting means having a length measuring device such as an encoder, which constantly detects the axial position of the above-mentioned movable unit during measurement. Note that here the relay lens is moved as a movable unit, but
Alternatively, the three-beam slit plate may be moved in the axial direction together with the illumination section and the photometry section. The operation will be explained below, and the light rays showing the conjugate relationship in FIG. 6 are shown for the light beams emitted from arbitrary slits of the three-beam slit plate. When the light emitting diode 20 is turned on, the infrared light illuminates the aperture plate 21, and the luminous flux emitted from the aperture 21a is condensed onto the three-beam slit plate 24 by the condenser lens 22. At that time, due to the action of each surface of the deflection prism 23, each slit 24a, 24
The light beams passing through b and 24c are separated more effectively,
The light beams are converged by the relay lens 25, and each light beam is regulated by the apertures 26a, 26b, and 26c of the three-hole plate 26 to prevent the light beams from interfering with each other. then 3
After passing through the relay lens 27, the light beam forms an image, diverges, converges at the relay lens 28, passes through the apertures 29a, 29b, and 29c of the perforated mirror, and is reflected by the second dichroic mirror 5. , is imaged again, further diverged, subjected to a converging action by the objective lens 3, diverged by the dichroic mirror 2, and forms a measurement pattern image on a concave surface including point P and perpendicular to the optical axis. Now, assuming that the point P coincides with the fundus Ef, the light beam scattered and reflected by the fundus exits the subject's eye, travels back along its original optical path, is reflected by the dichroic mirror 2, and enters the objective lens 3. Once the image is formed,
Following the reflection from the second dichroic mirror 5, it is reflected from the mirror surface of the perforated mirror 29, and is imaged by the relay lens 30 behind the beam splitter 31.
Further, the image is formed on the three-beam slit plate 35 through the relay lens 32, aperture diaphragm plate 33, and relay lens 34, and the light beams that have passed through each slit 35a, 35b, and 35c pass through light guides 36a, 36b, and 36c, and are sent to the light receiving element. 37a, 37b, and 37c. At this time, if the point P coincides with the fundus, the image of the measurement pattern slit of the three-beam slit plate 24 will precisely match the slit of the detection three-beam slit plate and will be clearly formed, so the amount of light received will be Maximum value. However, when the point P is before or after the fundus Ef, the measurement pattern image formed on the detection three-beam slit is not only blurred, but also shifted in the meridian direction, so the amount of light received decreases. The reason why the image is shifted in the meridian direction is that the imaging position is formed by an off-axis light beam that is off the optical axis.
When the measurement starts, the movable units 25, 26, 2
When moving 7, 32, 33, and 34 from the initial position, the number of light receiving elements 37a, 37b, and 37c gradually increases, but if there is astigmatism, the three light receiving elements will not detect the peak value at the same time, but will gradually increase. The peak value will be taken.

第17図は電気回路例で、受光素子37a,3
7b,37cはフオト・トランジスタで示す。各
フオト・トランジスタ37a,37b,37cか
らの出力信号は増幅器45a,45b,45Cで
信号増幅されてピーク検出器46a,46b,4
6cに入力されてピーク値の検知がなされる。一
方、位置検出器38は常時位置検出信号をマイク
ロプロセツサーで構成した演算回路47に入力し
ているが、ピーク値を検知した時点の3組の位置
信号を前述した(1)式に適用することで求める情報
を得ることができる。すなわち、D=Asin(2
θ+α)+B式に於いて、視度(屈折力)Dは可
動ユニツトの位置から定まり、また経線方向θは
予め定まつているから平均視度(SPHERE)
A、乱視度((CYLINDER)Bそして乱視軸
(AXIS)αを算出できる。59は記憶回路で算出
した結果を保持する。
FIG. 17 shows an example of an electric circuit, in which light receiving elements 37a, 3
7b and 37c are photo transistors. The output signals from each photo transistor 37a, 37b, 37c are amplified by amplifiers 45a, 45b, 45C, and output to peak detectors 46a, 46b, 4.
6c, and the peak value is detected. On the other hand, the position detector 38 constantly inputs the position detection signal to the arithmetic circuit 47 composed of a microprocessor, and the three sets of position signals at the time when the peak value is detected are applied to the above-mentioned equation (1). By doing so, you can obtain the information you are looking for. That is, D=Asin(2
In the θ+α)+B formula, the diopter (refractive power) D is determined from the position of the movable unit, and since the meridian direction θ is determined in advance, the average diopter (SPHERE)
A, degree of astigmatism (CYLINDER) B, and astigmatism axis (AXIS) α can be calculated. 59 holds the calculated results in a memory circuit.

一方、第17図の撮像管10による被検眼前眼
部の像及び照準用と位置合わせ用のマーク像に相
当するビデオ信号はテレビカメラ48から出力
(x)される。この信号は第18図に示すように
映像信号Vsig、垂直同期信号Vsync、水平同期信
号Hsyncより成り、混合回路49を経てテレビ受
像器14に入力される。このときビデオ信号xは
同期分離回路50で映像信号と同期信号に分離さ
れ、演算回路47で計算されたデータは、表示制
御回路51と文字発生器52からのデジタル信号
としてオアゲート53により複合されて文字信号
yとなる。この文字信号は混合回路49のもう1
つの入力信号として扱われ、ビデオ信号xと文字
信号yとは表示制御回路51からの切換信号zに
より混合されて新しい混合信号wとなり、テレビ
受像器14に入力され、その表示は第5図の如く
画面の上部に被検眼前部の像として、また下部に
測定結果データとして写し出される。なお、数字
や文字の配列は任意に選択できる。
On the other hand, a video signal corresponding to the image of the anterior segment of the subject's eye and the mark images for aiming and positioning by the image pickup tube 10 in FIG. 17 is output (x) from the television camera 48. As shown in FIG. 18, this signal consists of a video signal Vsig, a vertical synchronizing signal Vsync, and a horizontal synchronizing signal Hsync, and is input to the television receiver 14 through a mixing circuit 49. At this time, the video signal x is separated into a video signal and a synchronization signal by the synchronization separation circuit 50, and the data calculated by the arithmetic circuit 47 is combined by the OR gate 53 as a digital signal from the display control circuit 51 and character generator 52. This becomes a character signal y. This character signal is another one of the mixing circuits 49.
The video signal x and character signal y are mixed by a switching signal z from the display control circuit 51 to form a new mixed signal w, which is input to the television receiver 14, and its display is as shown in FIG. An image of the front part of the eye to be examined is displayed at the top of the screen, and measurement result data is displayed at the bottom. Note that the arrangement of numbers and letters can be arbitrarily selected.

第18図は上述の信号波長の一例を示してお
り、横軸は時間軸で縦軸は電圧を表わし、通常、
映像信号Vsigのレベルは0〜1.0V、同期信号
Vsync、Hsyncのレベルは0.2〜0.3V程度であ
り、文字信号yの映像レベルは0.5〜1.0Vであれ
ば背景が黒地で、白抜きの文字がブラウン管上に
表示される。その他、混合回路49としては市販
の集積回路としてMC1545(モトローラ社製品)
などがあるがデイスクリート素子で構成してもよ
い。
FIG. 18 shows an example of the above-mentioned signal wavelength, where the horizontal axis represents time and the vertical axis represents voltage.
Video signal Vsig level is 0 to 1.0V, synchronization signal
The levels of Vsync and Hsync are about 0.2 to 0.3V, and if the video level of the character signal y is 0.5 to 1.0V, the background is black and white characters are displayed on the cathode ray tube. In addition, MC1545 (Motorola product) is a commercially available integrated circuit as mixed circuit 49.
etc., but it may also be composed of discrete elements.

また第17図の54はプリンターで、顧客カー
ド55をプリンターに挿入し、テレビ受像器14
の測定結果を確認してレリーズボタン54aをレ
リーズすると、カード55の空欄に測定日付と測
定結果が印字される。
Further, 54 in FIG. 17 is a printer, the customer card 55 is inserted into the printer, and the television receiver 14 is
When the user confirms the measurement result and releases the release button 54a, the measurement date and measurement result are printed in a blank space on the card 55.

更に測光条件のチエツク機能について第6図で
説明する。40は結像レンズ、41は開口絞り
板、42は受光素子で、受光素子42は開口絞り
板41に近接して配置する。そして開口絞り板4
1を結像レンズ40、リレーレンズ30、有孔鏡
29、第2ダイクロイツク・ミラー、対物レンズ
1そしてダイクロイツク・ミラー2に関して被検
眼の瞳Epと共役になるように構成し、また絞り
開口径は、その瞳上の像が瞳を通過する3光束を
含む程度にする。これによつて眼底で反射した3
光束のうちビームスプリツター31で分割された
光束は受光素子42に入射することになるが、こ
の測光量は眼底の反射率の個人差を検知して、増
幅器45a,45b,45cの増幅レベルの調整
に利用することができるし、角膜で反射光を生じ
ているかどうかあるいは外乱のチエツク(メータ
57)、そして受光素子43からの信号を増幅器
56で増幅し、あらかじめ定めた信号と比較器5
8で比較して、被検者のまばたきしたことを受像
器14に表示することができる。これは被検者が
まばたきをした時に測定光はまぶたで反射するた
め、光量が飛躍的に増加することを利用したもの
である。そして受像器にまばたき表示することは
操作者が被検者のまばたきを見落した時のためで
ある。
Further, the photometry condition check function will be explained with reference to FIG. 40 is an imaging lens, 41 is an aperture diaphragm plate, and 42 is a light receiving element, and the light receiving element 42 is arranged close to the aperture diaphragm plate 41. and aperture plate 4
1 is configured to be conjugate with the pupil Ep of the eye to be examined with respect to the imaging lens 40, the relay lens 30, the aperture mirror 29, the second dichroic mirror, the objective lens 1, and the dichroic mirror 2, and the aperture is opened. The aperture is set to such an extent that the image on the pupil includes three light beams passing through the pupil. As a result, 3
The light beam split by the beam splitter 31 enters the light receiving element 42, and this photometric amount is determined by detecting individual differences in the reflectance of the fundus and adjusting the amplification level of the amplifiers 45a, 45b, and 45c. It can be used for adjustment, to check whether light is reflected on the cornea or to check for disturbance (meter 57), and the signal from the light receiving element 43 is amplified by the amplifier 56, and then compared to a predetermined signal by the comparator 5.
8, it is possible to display on the image receptor 14 that the subject blinked. This takes advantage of the fact that when the subject blinks, the measurement light is reflected by the eyelids, so the amount of light increases dramatically. The blinking is displayed on the image receptor in case the operator overlooks the subject's blinking.

以上の実施例は種々の変形可能であつて、例え
ば演算回路からのデータを表示する液晶表示等の
表示装置の表示面を第1図の照準板に並べて配置
し、両者を同時に撮影しても良いが、テレビの電
気処理回路を利用すれば数字以外の文字信号を表
示するのが自由に行なえる利点がある。
The above embodiment can be modified in various ways. For example, the display surface of a display device such as a liquid crystal display that displays data from an arithmetic circuit may be arranged side by side with the aiming plate shown in FIG. 1, and both may be photographed at the same time. That's fine, but it has the advantage of being able to freely display character signals other than numbers by using the television's electrical processing circuit.

以上述べた本発明によれば、被検者に両眼視に
て固視目標を自然視させ、更には被検眼に不可視
な波長域で測定するので被検者に不要な緊張を与
えず、室内光とは異なる波長域の測定光を使用し
ているので普通の室内光の下の物体を注視させる
ことができる効果がある。また表示器上で測定直
前直後あるいは測定中の被検眼を観察できると共
に、測定結果も表示されるので使用性の良い利点
がある。すなわち測定結果が観察表面上に表示さ
れるので測定中の被検眼前眼部の状態と測定結果
との比較観察から再測定すべきか否かの判断が容
易となる。更には被検眼瞳と共役に受光部を付加
することにより、まばたきの有無を目視検出でき
るばかりか、まばたきの有無の自動的な検出も可
能となる。
According to the present invention described above, the subject is allowed to see the fixation target naturally with binocular vision, and furthermore, the measurement is performed in a wavelength range that is invisible to the subject's eyes, so that unnecessary tension is not caused to the subject. Since it uses measurement light in a wavelength range different from that of indoor light, it has the effect of making it possible to focus on objects under normal indoor light. In addition, the eye to be examined can be observed on the display immediately before and after the measurement or during the measurement, and the measurement results are also displayed, which has the advantage of ease of use. That is, since the measurement results are displayed on the observation surface, it becomes easy to judge whether or not to take the measurement again based on the comparative observation of the state of the anterior segment of the subject's eye during measurement and the measurement results. Furthermore, by adding a light receiving section conjugate to the pupil of the eye to be examined, not only the presence or absence of blinking can be visually detected, but also the presence or absence of blinking can be automatically detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の縦断面図。第2図と第3図は
各々実施例構成部材の平面図。第4図と第5図は
受像器の正面図。第6図は実施例の縦断面図。第
7図から第12図までは各々実施例構成部材の平
面図。第13図と第14図は各々実施例構成部材
の透過特性図。第15図は実施例構成部材の平面
図で、第16図はその側面図。第17図は実施例
電気回路図。第18図は電気信号波形図。 図中、2はダイクロイツク・ミラー、3は対物
レンズ、5は第2のダイクロイツク・ミラー、1
0は撮像管、14は受像器、24は三光束スリツ
ト板、37a,37b,37cは受光素子、47
は演算回路、49は混合回路、50は同期分離回
路である。
FIG. 1 is a longitudinal sectional view of the embodiment. 2 and 3 are plan views of the constituent members of the embodiment, respectively. 4 and 5 are front views of the image receptor. FIG. 6 is a longitudinal sectional view of the embodiment. FIG. 7 to FIG. 12 are plan views of the constituent members of each embodiment. FIG. 13 and FIG. 14 are transmission characteristic diagrams of the constituent members of the embodiment, respectively. FIG. 15 is a plan view of the structural members of the embodiment, and FIG. 16 is a side view thereof. FIG. 17 is an electrical circuit diagram of the embodiment. FIG. 18 is an electrical signal waveform diagram. In the figure, 2 is a dichroic mirror, 3 is an objective lens, 5 is a second dichroic mirror, 1
0 is an image pickup tube, 14 is an image receiver, 24 is a three-beam slit plate, 37a, 37b, 37c are light receiving elements, 47
49 is a mixing circuit, and 50 is a synchronous separation circuit.

Claims (1)

【特許請求の範囲】 1 被検者に対向する波長選択性の光分割器を介
して被検者に両眼視にて固視目標を自然視させる
固視部と、前記光分割器を介して被検眼眼底へ赤
外光の測定光束を照射し、眼底反射光束を受光し
て被検眼の屈折力情報を測定する測定部と、 該測定部と結合され前記屈折力情報より屈折力
を演算する演算部と、 被検眼前眼部の像を得るための結像光学系と、
該結像光学系による被検眼前眼部及び前記演算部
による演算屈折力を表示する表示手段を備えるこ
とを特徴とする眼屈折力計。 2 被検者に対向する波長選択性の光分割器を介
して被検者に両眼視にて固視目標を自然視させる
固視部と、前記光分割器を介して被検眼眼底へ測
定光束を照射し、眼底反射光束を受光して被検眼
の屈折力情報を測定する測定部と、 該測定部と結合され前記屈折力情報より屈折力
を演算する演算部と、 被検眼前眼部の像を得るための結像光学系と、
該結像光学系による被検眼前眼部及び前記演算部
による演算屈折力を表示する表示手段と、 被検眼瞳と略共役に設けられる受光部を備える
ことを特徴とする眼屈折力計。
[Scope of Claims] 1. A fixation unit that allows a subject to naturally see a fixation target with binocular vision via a wavelength-selective light splitter facing the subject; a measurement unit that measures refractive power information of the eye to be examined by irradiating a measuring beam of infrared light onto the fundus of the eye to be examined and receives the reflected light beam of the fundus; an imaging optical system for obtaining an image of the anterior segment of the subject's eye;
An eye refractometer comprising a display means for displaying the anterior segment of the eye to be examined by the imaging optical system and the calculated refractive power by the calculation unit. 2. A fixation section that allows the subject to naturally view the fixation target with binocular vision via a wavelength-selective light splitter facing the subject, and a fixation unit that allows the subject to view the fixation target naturally through a wavelength-selective light splitter facing the subject, and a measurement to the fundus of the subject's eye via the light splitter. a measurement unit that measures refractive power information of the eye to be examined by emitting a light beam and receiving a light beam reflected from the fundus; a calculation unit that is coupled to the measurement unit and calculates refractive power from the refractive power information; and an anterior segment of the eye to be examined. an imaging optical system for obtaining an image of
An eye refractometer comprising: a display means for displaying the anterior segment of the eye to be examined by the imaging optical system and the calculated refractive power by the calculation unit; and a light receiving part provided substantially conjugate with the pupil of the eye to be examined.
JP13956279A 1979-10-26 1979-10-26 Automatic ocular refraction meter Granted JPS5554934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13956279A JPS5554934A (en) 1979-10-26 1979-10-26 Automatic ocular refraction meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13956279A JPS5554934A (en) 1979-10-26 1979-10-26 Automatic ocular refraction meter

Publications (2)

Publication Number Publication Date
JPS5554934A JPS5554934A (en) 1980-04-22
JPS6159134B2 true JPS6159134B2 (en) 1986-12-15

Family

ID=15248148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13956279A Granted JPS5554934A (en) 1979-10-26 1979-10-26 Automatic ocular refraction meter

Country Status (1)

Country Link
JP (1) JPS5554934A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225035A (en) * 1983-06-03 1984-12-18 キヤノン株式会社 Near point measuring apparatus of eye to be examined
JPH0576494A (en) * 1992-01-29 1993-03-30 Topcon Corp Testing apparatus for visual function
US7370964B2 (en) * 2001-07-27 2008-05-13 Tracey Technologies, Llc Measuring refractive characteristics of human eyes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1955859A1 (en) * 1969-11-06 1971-05-13 Zeiss Carl Fa Method and device for determining the refractive state of an eye
US3871772A (en) * 1973-04-23 1975-03-18 Tropel Eye examining instrument aligning means and method therefor
JPS5034092A (en) * 1973-07-27 1975-04-02
JPS5073492A (en) * 1973-11-05 1975-06-17
US4019813A (en) * 1976-01-19 1977-04-26 Baylor College Of Medicine Optical apparatus for obtaining measurements of portions of the eye
JPS5264194A (en) * 1975-11-25 1977-05-27 Hamamatsu Tv Co Ltd Apparatus for observing eyeball movement
JPS5269617A (en) * 1975-12-08 1977-06-09 Canon Inc Ophthalmofundus camera

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1955859A1 (en) * 1969-11-06 1971-05-13 Zeiss Carl Fa Method and device for determining the refractive state of an eye
US3871772A (en) * 1973-04-23 1975-03-18 Tropel Eye examining instrument aligning means and method therefor
JPS5034092A (en) * 1973-07-27 1975-04-02
JPS5073492A (en) * 1973-11-05 1975-06-17
JPS5264194A (en) * 1975-11-25 1977-05-27 Hamamatsu Tv Co Ltd Apparatus for observing eyeball movement
JPS5269617A (en) * 1975-12-08 1977-06-09 Canon Inc Ophthalmofundus camera
US4019813A (en) * 1976-01-19 1977-04-26 Baylor College Of Medicine Optical apparatus for obtaining measurements of portions of the eye

Also Published As

Publication number Publication date
JPS5554934A (en) 1980-04-22

Similar Documents

Publication Publication Date Title
US11672421B2 (en) Alignment improvements for ophthalmic diagnostic systems
JPS6153052B2 (en)
EP1809162B1 (en) Optical apparatus and method for comprehensive eye diagnosis
JPS6223570B2 (en)
JPH0753151B2 (en) Ophthalmic measuring device
JPH04200436A (en) Ophthamologic apparatus
US7309129B2 (en) Perimeter
JPH11225964A (en) Ophthalmology test device
JP3605131B2 (en) Ophthalmic instruments
JPH08103413A (en) Ophthalmological measuring instrument
JP4011731B2 (en) Ophthalmic equipment
JPH08182651A (en) Ophthalmological device
JP2020036741A (en) Ophthalmologic device and operation method thereof
JPH0440935A (en) Ophthalmic refracting power measuring instrument
US5532772A (en) Ophthalmic apparatus with positioning control
JPS6159134B2 (en)
JP4164199B2 (en) Ophthalmic measuring device
JPS6117494B2 (en)
JPS61100227A (en) Ophthalmic measuring apparatus
JPH06121773A (en) Ophthalmology refractometer
JPH0654807A (en) Ophthalmic device
JPS6153055B2 (en)
JPS6219851B2 (en)
JPS61185242A (en) Ophthalmic measuring apparatus
JP3420609B2 (en) Ophthalmic equipment