JPS633612B2 - - Google Patents

Info

Publication number
JPS633612B2
JPS633612B2 JP57231534A JP23153482A JPS633612B2 JP S633612 B2 JPS633612 B2 JP S633612B2 JP 57231534 A JP57231534 A JP 57231534A JP 23153482 A JP23153482 A JP 23153482A JP S633612 B2 JPS633612 B2 JP S633612B2
Authority
JP
Japan
Prior art keywords
eye
light
objective lens
refractive power
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57231534A
Other languages
Japanese (ja)
Other versions
JPS59125552A (en
Inventor
Isao Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57231534A priority Critical patent/JPS59125552A/en
Publication of JPS59125552A publication Critical patent/JPS59125552A/en
Publication of JPS633612B2 publication Critical patent/JPS633612B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は被検眼の角膜形状を測定する機能並び
に被検眼の屈折力を測定する機能を有する眼科手
術用顕微鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ophthalmic surgery microscope having a function of measuring the corneal shape of an eye to be examined and a function of measuring the refractive power of the eye to be examined.

眼は精密な光学系を形成しており、これに対す
る何らかの疾患に対してはその機能を回復すべき
適当な処置がとられる。特に眼球に対して何らか
の手術が施される場合は、その機能や形状が再建
されることが重要な課題であり眼屈折力の回復は
手術の成否をわける重要な要素である。近年人口
の老令化等にも伴い前眼部手術とりわけ白内障手
術が多くなつているが手術に伴う角膜形状の変化
や眼内レンズ挿入による眼屈折力の変化を適確に
把握することは手術に際して欠くことの出来ない
事である。このため眼の角膜形状の変化や眼屈折
力の変化の状況は手術後のみならず手術中にもた
えず測定され正常な復元過程にあるか否かを知る
必要がある。従来、この種の眼科手術を行うため
に用いられている手術用顕微鏡は手術に際しての
観察撮影機能しか所有しておらず、手術中に眼の
角膜形状や屈折状態を測定するには全く別の装置
に置換して行わねばならず手術を長時間中断する
必要があるうえ、かなりの手間がかかり、配置上
も本格的な測定装置で行なうことは事実上無理で
あつた。
The eye forms a precise optical system, and appropriate measures are taken to restore its function in the event of any disease. Particularly when some kind of surgery is performed on the eyeball, it is important to reconstruct its function and shape, and recovery of the eye's refractive power is an important factor that determines the success or failure of the surgery. In recent years, with the aging of the population, anterior segment surgery, especially cataract surgery, has become more common, but it is difficult to accurately assess changes in corneal shape due to surgery and changes in eye refractive power due to intraocular lens insertion. This is an indispensable thing. For this reason, it is necessary to constantly measure changes in the shape of the cornea and the refractive power of the eye, not only after the surgery, but also during the surgery, in order to know whether or not the restoration process is normal. Traditionally, the surgical microscopes used to perform this type of eye surgery only have the observation and photography function during surgery, and a completely different method is required to measure the corneal shape and refractive state of the eye during surgery. The procedure must be replaced with a new measuring device, which requires a long interruption of the surgery, requires considerable effort, and the layout makes it practically impossible to perform the procedure using a full-scale measuring device.

本発明はこの手術用顕微鏡に角膜形状及び眼屈
折力の測定する機能を付加し、必要に応じて直ち
に検眼を行い手術の状態を確認しながら手術を進
めることが出来るものを提供することを目的とす
るものである。
The purpose of the present invention is to provide a surgical microscope with a function to measure the corneal shape and eye refractive power, so that if necessary, the eye can be immediately examined and the surgical condition can be checked while proceeding with the surgery. That is.

本発明によれば眼屈折力測定系又は被検眼角膜
形状測定系と、被検眼との位置合わせ(アライメ
ント)が顕微鏡観察によつてでき、更には角膜形
状測定系の投影指標の角膜反射像を用いて行なう
ことができ、特別に眼屈折力測定系又は被検眼角
膜形状測定系にアライメント手段を設ける必要が
ない。以下本発明の実施例を説明する。
According to the present invention, alignment of the eye refractive power measurement system or the corneal topography measurement system of the eye to be examined and the eye to be examined can be performed by microscopic observation, and furthermore, the corneal reflection image of the projection index of the corneal topography measurement system can be aligned. There is no need to specifically provide an alignment means in the eye refractive power measurement system or the eye corneal shape measurement system. Examples of the present invention will be described below.

第1図で被検眼前眼部を観察するためのランプ
1からの光はハーフミラー2、コンデンサーレン
ズ3、レンズ付プリズム4、対物レンズ5を介し
て被検眼Epを照明する。被検眼前眼部で反射し
た光は対物レンズ5、ビームスプリツター13,
14を通つてリレーレンズ群6,7,8に入り、
はね上げミラー9で反射後固定ミラー10、接眼
レンズ11を経て観察眼Eで観察される。
In FIG. 1, light from a lamp 1 for observing the anterior segment of the eye to be examined passes through a half mirror 2, a condenser lens 3, a prism 4 with a lens, and an objective lens 5 to illuminate the eye Ep. The light reflected from the anterior segment of the subject's eye is passed through an objective lens 5, a beam splitter 13,
14 and enters the relay lens groups 6, 7, 8,
After being reflected by the flip-up mirror 9, it is observed by the viewing eye E via the fixed mirror 10 and the eyepiece lens 11.

被検眼前眼部の撮影時には、ストロボ113が
発光し、対物レンズ5を経て前眼部を照明し、前
眼部からの光は対物レンズ5、ビームスプリツタ
ー13,14、リレーレンズ群6,7,8を経て
跳ね上げられたミラー9の下側を通過して、フイ
ルムその他の画像記録手段12に写し込まれる。
When photographing the anterior segment of the subject's eye, the strobe 113 emits light and illuminates the anterior segment through the objective lens 5, and the light from the anterior segment passes through the objective lens 5, beam splitters 13, 14, relay lens group 6, The image passes through mirrors 7 and 8, passes under the mirror 9 that has been flipped up, and is imprinted on a film or other image recording means 12.

ここで眼屈折力測定光学系について説明する。 Here, the optical system for measuring eye refractive power will be explained.

眼屈折力測定用の光源20からの光はコンデン
サレンズ19を通つて投影チヤート18を照明す
る。投影チヤート18は第2図に示すように少な
くとも3つの方向を有するスリツト18a,18
b,18cを有し、各スリツトを通過した光は、
投影レンズ29、第3図に示すリング状の開口2
8aをもつた開口絞り28、リレーレンズ27,
17、穴あきミラー16、リレーレンズ15、ビ
ームスプリツター14,13、対物レンズ5を経
て被検眼Epに至り、眼底上に各スリツト像光を
投影する。
Light from a light source 20 for measuring eye refractive power passes through a condenser lens 19 and illuminates the projection chart 18 . The projection chart 18 has slits 18a, 18 having at least three directions as shown in FIG.
b, 18c, and the light passing through each slit is
Projection lens 29, ring-shaped aperture 2 shown in FIG.
8a aperture diaphragm 28, relay lens 27,
17, the light passes through the perforated mirror 16, the relay lens 15, the beam splitters 14 and 13, and the objective lens 5, and reaches the eye Ep to be examined, and projects each slit image light onto the fundus of the eye.

眼底で反射した光は再び対物レンズ5、ビーム
スプリツター13,14を通りリレーレンズ1
5、穴あきミラー16の孔部、リレーレンズ2
1,37、第4図に示すような開口38aをもつ
た開口絞り38、投影レンズ39を経て受光チヤ
ート22に至る。受光チヤート22は穴あきミラ
ー16に関して投影チヤート18と共役なもので
投影チヤート18の3本のスリツト18a,18
b,18cにそれぞれ対応した第5図に示すよう
な3本のスリツト22a,22b,22cをもち
それぞれの投影チヤート像のスリツトの眼底上で
のボケ量は3本のスリツト22a,22b,22
cの各後方に置かれた受光素子23a,23b,
23cで検出される。そして各々のスリツトの最
良ピント面(このとき受光出力は最大となる)は
レンズ系La,Lbを光軸にそつて動かすことによ
り求められ、初期位置からの移動量から被検眼
Epの屈折力が計算により求められる。ここで各
スリツト方向に対応した被検眼の屈折力を求め演
算により球面屈折度S、乱視度C、乱視軸角度A
を算出する。次に角膜形状測定光学系について説
明する。光源34a,34b,…,34i,34
jからの光は対応するライトガイド33a,33
b,…,33i,33jを経て、その他端で光源
32a,32b,…,32i,32jとなり離散
的なリング状の光源を形成し被検眼Epの角膜に
投影され角膜反射像を形成する。角膜で反射した
光はあたかも角膜反射像から出射する如く出て、
対物レンズ5、ビームスプリツター13、投影レ
ンズ35で2次元固体撮像素子36の上に結像す
る。
The light reflected from the fundus passes through the objective lens 5, beam splitters 13 and 14 again, and reaches the relay lens 1.
5. Hole of perforated mirror 16, relay lens 2
1, 37, an aperture stop 38 having an aperture 38a as shown in FIG. 4, and a projection lens 39 before reaching the light receiving chart 22. The light receiving chart 22 is conjugate with the projection chart 18 with respect to the perforated mirror 16, and is connected to the three slits 18a, 18 of the projection chart 18.
There are three slits 22a, 22b, 22c as shown in FIG.
Light receiving elements 23a, 23b, placed at the rear of c.
23c. The best focusing plane for each slit (at this time, the received light output is maximum) is found by moving the lens systems La and Lb along the optical axis, and the amount of movement from the initial position is determined based on the amount of movement from the initial position.
The refractive power of Ep is calculated. Here, the refractive power of the eye to be examined corresponding to each slit direction is calculated and the spherical refractive power S, astigmatic degree C, and astigmatic axis angle A are calculated.
Calculate. Next, the corneal shape measuring optical system will be explained. Light sources 34a, 34b,..., 34i, 34
The light from j is directed to the corresponding light guides 33a, 33
b, . . . , 33i, 33j, and become light sources 32a, 32b, . The light reflected by the cornea emerges as if from the corneal reflected image,
The objective lens 5, beam splitter 13, and projection lens 35 form an image onto a two-dimensional solid-state image sensor 36.

ここで光源32a,32b,…,32jを対物
レンズ5の周辺に第6図に示すように同心状に配
置すると、撮像素子36の上には被検眼Epの角
膜の形状に相当した歪をもつて投影される。この
投影像から角膜のカーブが計算により求められ
る。すなわちリング状の投影チヤートが被検眼に
投影され、被検眼に乱視が無ければ角膜反射像も
完全な円形となるが、乱視があると、楕円形更に
不正乱視があれば歪みが付加され、この角膜反射
像の形状を固体撮像素子で求め、この検出結果よ
り角膜曲率R、乱視度D、乱視軸角度Aを算出す
る。固体撮像素子は、2次元CCD等の他、3箇
の1次元CCDを放射状又は並列状に配列し、角
膜反射像との交点座標又は所定点から交点までの
高さ若しくは径の大きさを検出するものであつて
も良い。なお角膜反射像を特定する例としては、
求められた少なくとも5点の交点座標より一般2
次曲線の式ax2+b×Y+cY2+dx+eY+1=0
を解いて係数a〜eを算出する。
If the light sources 32a, 32b,..., 32j are arranged concentrically around the objective lens 5 as shown in FIG. is projected. The curve of the cornea is calculated from this projected image. In other words, a ring-shaped projection chart is projected onto the eye to be examined, and if the eye to be examined does not have astigmatism, the corneal reflection image will also be a perfect circle, but if there is astigmatism, it will become an ellipse, and if there is irregular astigmatism, distortion will be added to this image. The shape of the corneal reflection image is determined using a solid-state image sensor, and the corneal curvature R, degree of astigmatism D, and astigmatism axis angle A are calculated from the detection results. In addition to a two-dimensional CCD, the solid-state image sensor has three one-dimensional CCDs arranged radially or in parallel, and detects the coordinates of the intersection with the corneal reflection image, or the height or diameter from a predetermined point to the intersection. It may be something you do. As an example of identifying the corneal reflection image,
General 2 from the obtained intersection coordinates of at least 5 points
The following curve formula ax 2 +b×Y+cY 2 +dx+eY+1=0
Solve to calculate coefficients a to e.

以上によつて求められた被検眼の屈折力及び角
膜形状はイメージ表示素子24の上に例えば第7
図の如く表示されレンズ25、ミラー26、観察
又は撮影光学系を経て観察又は撮影される。
The refractive power and corneal shape of the eye to be examined determined in the above manner are displayed on the image display element 24, for example, on the seventh screen.
The image is displayed as shown in the figure and is observed or photographed through a lens 25, a mirror 26, and an observation or photographing optical system.

以上、屈折力測定機能及び角膜形状測定機能を
合わせもつ手術用顕微鏡についての一例を上げた
がこの中では次の様な置き換えも可能である。即
ちビームスプリツター13,14に関しては第8
図に示すよう分光特性(横軸は波長λ、縦軸は透
過率T)を持たせて波長分離し、前眼部の観察又
は撮影には特性13aより短い波長を使用する
又、測定時には特性13bより長い波長を使用す
る等してもよいし、ビームスプリツター13,1
4を跳ね上げミラーとして測定時以外は光路外に
出すなどしてもかまわない。その他観察撮影と測
定のための光を分離する手段としては光源の周波
数をそれぞれ変えて行うことも可能である。また
光源32a,32b,…,32jのかわりにリン
グ状の線光源を使用したり、発光素子そのものを
並べることも可能である。
The above is an example of a surgical microscope that has both a refractive power measurement function and a corneal shape measurement function, but the following replacements are also possible. That is, regarding the beam splitters 13 and 14, the eighth
As shown in the figure, wavelengths are separated using spectral characteristics (the horizontal axis is the wavelength λ and the vertical axis is the transmittance T), and a wavelength shorter than characteristic 13a is used to observe or photograph the anterior segment of the eye. A wavelength longer than 13b may be used, or the beam splitter 13,1
4 may be used as a flip-up mirror and moved out of the optical path except during measurement. In addition, as a means of separating light for observation photography and measurement, it is also possible to separate the light for observation and photography by changing the frequencies of the light sources. It is also possible to use a ring-shaped line light source instead of the light sources 32a, 32b, . . . , 32j, or to arrange the light emitting elements themselves.

一方記録手段としては撮像管等を用いてビデオ
記録に結びつけることも出来ることは言うまでも
ない。すなわち、例えば第1図でミラー10をハ
ーフミラーに置き換え、これを通過する光束を撮
像管に導けば良い。第9図は被検眼の角膜に投影
する光源の配置例で被検眼Epを観察したり撮影
したりする場合は光源は41aの如く対物レンズ
5の近傍もしくは光軸の近傍にあり角膜形状を測
定する場合は41′aの如く対物レンズ5もしく
は光軸から離れた状態に切り換えもしくは移動出
来るようになつている。この様子は第10図に示
されるように複数個の光源41a,42a,43
a,…等が41′a,42′a,43′a,…等の
位置に移動する。これによつて、角膜形状測定時
以外は対物レンズ近傍にあつて、対物レンズと被
検眼とのスペースを確保し、眼科手術をし易くで
きる。
On the other hand, it goes without saying that an image pickup tube or the like can be used as a recording means to connect to video recording. That is, for example, the mirror 10 in FIG. 1 may be replaced with a half mirror, and the light flux passing through this may be guided to the imaging tube. Fig. 9 shows an example of the arrangement of a light source that projects onto the cornea of the eye to be examined. When observing or photographing the eye Ep to be examined, the light source is located near the objective lens 5 or near the optical axis as shown in 41a, and the shape of the cornea is measured. In this case, it can be switched or moved away from the objective lens 5 or the optical axis, as shown in 41'a. As shown in FIG.
a, . . . move to positions 41'a, 42'a, 43'a, . As a result, it is located near the objective lens except when measuring the corneal shape, ensuring a space between the objective lens and the eye to be examined, making it easier to perform ophthalmic surgery.

なおこの複数個の光源41a,42a,43
a,…等を着脱可能とし、角膜形状測定時以外は
顕微鏡光路から脱却すれば上記効果は大となる。
また上記複数個の光源41a,42a,43a,
…等を移動することによりいわばリング状のチヤ
ートの径が変わり、被検眼の種々の高さの箇所の
角膜形状を測定できることとなる。
Note that these multiple light sources 41a, 42a, 43
The above-mentioned effect will be enhanced if the lenses a, .
Further, the plurality of light sources 41a, 42a, 43a,
By moving, etc., the diameter of the so-called ring-shaped chart changes, and the corneal shape at various heights of the eye to be examined can be measured.

第11図は角膜形状測定用の光源の別配置例で
対物レンズ若しくは光軸に対して同心状に複数列
配置したものである。そして各リング状の光源の
各々は第12図に示すように同心状に移動する。
すなわち、51aは51′a、51bは51′b、
…の如く、また52aは52′a、52bは5
2′bの如く動くことができる。
FIG. 11 shows another example of the arrangement of light sources for corneal shape measurement, in which a plurality of rows are arranged concentrically with respect to the objective lens or the optical axis. Each ring-shaped light source moves concentrically as shown in FIG.
That is, 51a is 51'a, 51b is 51'b,
..., 52a is 52'a, 52b is 5
It can move like 2'b.

被検眼に対し、同心のリング状指標を複数箇、
投影すれば被検眼軸に対し種々の高さの位置の角
膜形状を求めることができる。なお、以上の動き
について光軸に垂直方向にすなわち周辺方向に動
かす替わりに、光軸に沿つてすなわち被検眼の方
向に動かすことによつても同様の作用を為ことが
できる。
Multiple concentric ring-shaped indicators are placed on the eye to be examined.
By projecting, it is possible to determine the shape of the cornea at various heights relative to the axis of the eye to be examined. Note that, instead of moving in the direction perpendicular to the optical axis, that is, in the peripheral direction, the same effect can be achieved by moving it along the optical axis, that is, in the direction of the eye to be examined.

第13図は被検眼角膜形状を測定するため角膜
に向けて投影する光源の角膜反射像を角膜形状測
定及び眼屈折力測定のためのアライメント用とし
て用いた実施例である。光源32aの角膜反射光
は対物レンズ5、ビームスプリツター13を通過
し観察眼Eで観測されるが、このとき観察眼Eの
ピント面と共役な位置にアライメント用チヤート
60を設ける。このチヤートは第14図に示すよ
うなリング状の開口60aをもつもので観察眼E
で観察すると第15図のようにチヤート像60′
aと光源32a,32b,…,32jの角膜反射
像32′a,32′b,…,32′j、が同時に観
察されるためこれら反射像群とチヤート像を例え
ば同心状に調整することによつてアライメントを
行なう。
FIG. 13 shows an embodiment in which a corneal reflection image of a light source projected toward the cornea is used for alignment for corneal shape measurement and eye refractive power measurement in order to measure the corneal shape of the eye to be examined. The corneal reflected light from the light source 32a passes through the objective lens 5 and the beam splitter 13 and is observed by the observing eye E. At this time, an alignment chart 60 is provided at a position conjugate with the focal plane of the observing eye E. This chart has a ring-shaped opening 60a as shown in FIG.
When observed with
Since the corneal reflection images 32'a, 32'b, . . . , 32'j of the light sources 32a, 32b, . Then perform alignment.

第16図は照明、観察撮影、屈折力測定、角膜
形状測定の機能を合わせもつた手術用顕微鏡の各
機能部分の光学的配置を示す。Paは照明、Pbは
観察撮影、Pcは屈折力測定、Pdは角膜形状測定
系を示す。ここで14,14′はビームスプリツ
ターで、単なる光束の分割、波長による分割でも
良い。また跳ね上げミラーであつても良い。
FIG. 16 shows the optical arrangement of each functional part of a surgical microscope having the functions of illumination, observation photography, refractive power measurement, and corneal shape measurement. Pa indicates illumination, Pb indicates observation/photography, Pc indicates refractive power measurement, and Pd indicates corneal topography measurement system. Here, reference numerals 14 and 14' denote beam splitters, which may simply split the luminous flux or split based on the wavelength. It may also be a flip-up mirror.

第17図は各機能をどの部分の光束を使用する
ことにより行なうかを示したものでPa〜Pdは上
記分類による。ここでもプリズム41、ビームス
プリツター14をそれぞれミラーや波長分割ミラ
ー等で置き換えてもよい。
FIG. 17 shows which part of the luminous flux is used to perform each function, and Pa to Pd are based on the above classification. Here too, the prism 41 and the beam splitter 14 may be replaced with mirrors, wavelength splitting mirrors, etc., respectively.

第18図A〜Eはその他の分割例で対物レンズ
5に関する光束の取り方を示す。なおその他の組
み合わせであつても良い。
FIGS. 18A to 18E show other examples of division and how to take the luminous flux with respect to the objective lens 5. Note that other combinations may also be used.

第19図、第20図に示すものは角膜形状測定
用の指標を着脱式にした実施例で各リング指標l1
〜l3がランプ79a,79b,…,79i,79
jで照明され、これを1つの着脱ユニツト80と
して対物レンズ枠81に着脱可能に配置したもの
である。
The ones shown in Figs. 19 and 20 are examples in which the indicators for corneal shape measurement are removable, and each ring indicator l 1
~l 3 is the lamp 79a, 79b,..., 79i, 79
j, and is arranged as one detachable unit 80 to be detachably attached to an objective lens frame 81.

以上説明したように、本発明によれば角膜形状
測定機能及び屈折力測定機能を付加することによ
り手術中においても容易に手術の経過、状態を観
測することが出来るため適確に手術の経過、良否
を判定することが可能で、これを手術に反映する
こともできる効果がある。更に本発明によれば手
術時に手術部位である前眼部を周知の如くリレー
レンズ群を変倍して観察するとき、眼屈折力の測
定系においては前記リレーレンズ群を介さないた
め前眼部での指標光束の入射域と出射域の空間的
分離が変倍に拘らず安定化し前眼部での有害光が
眼底反射された指標光束に混入することが無く測
定精度が保証される。又、眼底面上での指標像の
黄斑に対する位置が変倍に応じて変化せず安定し
た測定ができる。更に角膜形状の測定系において
も前記リレーレンズ群を介さないため変倍に拘ら
ず同一被検眼に対し測定結果が安定し測定精度が
保証される。なお対物レンズが共用されるため装
置のコンパクト化が図られ、対物レンズの手前に
ハーフミラーを介在させる場合に比べ被検眼との
間の作動距離を大きくとれる。又、眼屈折力を測
定する手段、角膜形状を測定する手段は被検眼前
眼部を観察する顕微鏡光学系で位置合わせも可能
である。
As explained above, according to the present invention, by adding the corneal shape measurement function and the refractive power measurement function, it is possible to easily observe the progress and condition of the surgery even during the surgery, so that the progress and condition of the surgery can be accurately observed. It is possible to judge whether the device is good or bad, and this can be reflected in the surgery. Furthermore, according to the present invention, when observing the anterior segment of the eye, which is the surgical site, during surgery by changing the magnification of the relay lens group as is well known, the eye refractive power measurement system does not use the relay lens group, so that the anterior segment of the eye, which is the surgical site, is observed. The spatial separation between the incident and exit areas of the index light beam at the ophthalmoscope is stabilized regardless of the magnification change, and the measurement accuracy is guaranteed because harmful light from the anterior segment of the eye is not mixed into the index light beam reflected from the fundus. In addition, the position of the index image relative to the macula on the fundus surface does not change as the magnification changes, allowing stable measurement. Furthermore, since the relay lens group is not used in the corneal shape measurement system, the measurement results are stable for the same eye to be examined regardless of the magnification change, and measurement accuracy is guaranteed. Since the objective lens is shared, the apparatus can be made more compact, and the working distance from the eye to be examined can be increased compared to when a half mirror is interposed in front of the objective lens. Further, the means for measuring the eye refractive power and the means for measuring the corneal shape can be aligned using a microscope optical system for observing the anterior segment of the eye to be examined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の図、第2図は眼屈折
測定系の投影チヤートの図、第3図、第4図は
各々眼屈折測定系の投光側、受光側の開口絞りの
図、第5図は眼屈折測定系の受光チヤートの図、
第6図は角膜形状測定系の光源の配置図、第7図
は屈折力及び角膜形状の測定データを表示するイ
メージ表示素子の説明図、第8図は観察撮影光学
系と測定光学系を波長により分離する場合の分光
透過率特性の図、第9図、第10図は角膜形状測
定系の光源を可動とした実施例の図、第11図、
第12図は角膜形状測定系の光源を複数列配置し
て可動とした実施例の図、第13図は角膜形状を
測定する光源の角膜反射像をアライメントに用い
た実施例の図、第14図は顕微鏡の観察光路内に
設けられるアライメントの基準となるリング状チ
ヤートの図、第15図は角膜反射像とアライメン
ト用のリング状チヤートをアライメント観察した
図、第16図、第17図、第18図A〜第18図
E、第19図、第20図は角膜形状測定用の指標
を着脱式にした実施例の図。図中、Epは被検眼、
Eは観察眼、La,Lbはレンズ系、1は前眼部観
察用のランプ、4はレンズ付プリズム、5は対物
レンズ、9は跳ね上げミラー、11は接眼レン
ズ、12は画像記録手段、18は眼屈折力測定用
の投影チヤート、18a,18b,18cはスリ
ツト、20は眼屈折力測定用の光源、24はイメ
ージ表示素子、28,38は開口絞り、22は受
光チヤート、23a,23b,23cは受光素
子、32a,32b,…,32jは角膜形状測定
用の光源、36は固体撮像素子、60はアライメ
ント用チヤート、80は着脱ユニツトである。
Fig. 1 is a diagram of an embodiment of the present invention, Fig. 2 is a projection chart of the eye refraction measurement system, and Figs. 3 and 4 are the aperture diaphragms on the light emitting side and light receiving side of the eye refraction measurement system, respectively. Figure 5 is a diagram of the light reception chart of the eye refraction measuring system.
Figure 6 is a diagram of the arrangement of the light source of the corneal topography measurement system, Figure 7 is an explanatory diagram of the image display element that displays the measurement data of refractive power and corneal shape, and Figure 8 shows the wavelength of the observation and photographing optical system and measurement optical system. Figures 9 and 10 are diagrams of spectral transmittance characteristics when separated by
Fig. 12 is a diagram of an embodiment in which multiple rows of light sources of the corneal shape measurement system are arranged and movable, Fig. 13 is a diagram of an embodiment in which a corneal reflection image of the light source for measuring the corneal shape is used for alignment, and Fig. 14 The figure is a diagram of a ring-shaped chart provided in the observation optical path of the microscope and serves as a reference for alignment. 18A to 18E, FIG. 19, and FIG. 20 are diagrams of embodiments in which the corneal shape measurement index is removable. In the figure, Ep is the eye to be examined.
E is an observation eye, La and Lb are lens systems, 1 is a lamp for observing the anterior segment of the eye, 4 is a prism with a lens, 5 is an objective lens, 9 is a flip-up mirror, 11 is an eyepiece, 12 is an image recording means, 18 is a projection chart for measuring eye refractive power; 18a, 18b, 18c are slits; 20 is a light source for measuring eye refractive power; 24 is an image display element; 28, 38 are aperture stops; 22 is a light receiving chart; 23a, 23b , 23c are light receiving elements, 32a, 32b, .

Claims (1)

【特許請求の範囲】 1 被検眼前眼部を照明する手段と、照明された
被検眼前眼部を対物レンズ、リレーレンズ群を順
に介して観察する顕微鏡光学系と、前記対物レン
ズ、前記リレーレンズ群の内、前記対物レンズの
みを共用して被検眼眼底に第1の光束規制手段を
介して第1の指標光束を投影し、該指標光束の被
検眼眼底からの反射光を第2の光束規制手段を介
して受光することにより眼屈折力を測定する手段
と、被検眼角膜に第2の指標光束を投影し前記対
物レンズ、前記リレーレンズ群の内、前記対物レ
ンズのみを共用して前記第2の指標光束の角膜反
射光を受光することにより角膜形状を測定する手
段を有することを特徴とする眼科手術用顕微鏡。 2 前記顕微鏡光学系の光軸に対し前記第2の指
標が周辺方向又は光軸方向移動可能である特許請
求の範囲第1項記載の眼科手術用顕微鏡。 3 少なくとも前記顕微鏡光学系への入射光束と
前記眼屈折力を測定する手段に関与する光束は前
記対物光学系において異なる領域を通過する特許
請求の範囲第1項記載の眼科手術用顕微鏡。
[Scope of Claims] 1. A means for illuminating the anterior segment of the subject's eye, a microscope optical system for observing the illuminated anterior segment of the subject's eye through an objective lens and a relay lens group, and the objective lens and the relay. Among the lens groups, only the objective lens is used in common to project a first index light flux onto the fundus of the subject's eye via a first light flux regulating means, and to reflect light of the index light flux from the fundus of the subject's eye into a second a means for measuring eye refractive power by receiving light through a light flux regulating means; and a means for projecting a second index light flux onto the cornea of the eye to be examined and sharing only the objective lens among the objective lens and the relay lens group; An ophthalmic surgery microscope characterized by having means for measuring the corneal shape by receiving the corneal reflected light of the second index light beam. 2. The ophthalmic surgical microscope according to claim 1, wherein the second indicator is movable in a peripheral direction or in an optical axis direction with respect to the optical axis of the microscope optical system. 3. The ophthalmic surgical microscope according to claim 1, wherein at least the light beam incident on the microscope optical system and the light beam involved in the means for measuring the eye refractive power pass through different areas in the objective optical system.
JP57231534A 1982-12-29 1982-12-29 Microscope for ophthalmic operation Granted JPS59125552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231534A JPS59125552A (en) 1982-12-29 1982-12-29 Microscope for ophthalmic operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231534A JPS59125552A (en) 1982-12-29 1982-12-29 Microscope for ophthalmic operation

Publications (2)

Publication Number Publication Date
JPS59125552A JPS59125552A (en) 1984-07-19
JPS633612B2 true JPS633612B2 (en) 1988-01-25

Family

ID=16924993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231534A Granted JPS59125552A (en) 1982-12-29 1982-12-29 Microscope for ophthalmic operation

Country Status (1)

Country Link
JP (1) JPS59125552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286206U (en) * 1988-12-20 1990-07-09

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683705B2 (en) * 1984-12-07 1994-10-26 株式会社トプコン Eye refraction measuring device
JPS61234837A (en) * 1985-04-12 1986-10-20 キヤノン株式会社 Apparatus for measuring eye refraction
JPS6239702U (en) * 1985-08-28 1987-03-10
JPH0191829A (en) * 1987-09-30 1989-04-11 Canon Inc Apparatus for measuring shape of cornea
JP2835375B2 (en) * 1993-11-12 1998-12-14 キヤノン株式会社 Optometry device
JP2801566B2 (en) * 1995-09-04 1998-09-21 キヤノン株式会社 Eye refractometer
DE102010008146B4 (en) * 2010-02-12 2022-03-31 Carl Zeiss Meditec Ag Measuring system and method for determining the intraocular pressure and method and system for adjusting the intraocular pressure
DE102011113953A1 (en) * 2011-09-16 2013-03-21 Carl Zeiss Meditec Ag Method for the automated optimization of the calculation of an intraocular lens to be implanted

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135597A (en) * 1976-04-02 1977-11-12 Zeiss Stiftung Combination device for eye examination
JPS5778837A (en) * 1980-10-31 1982-05-17 Canon Kk Eye inspecting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135597A (en) * 1976-04-02 1977-11-12 Zeiss Stiftung Combination device for eye examination
JPS5778837A (en) * 1980-10-31 1982-05-17 Canon Kk Eye inspecting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286206U (en) * 1988-12-20 1990-07-09

Also Published As

Publication number Publication date
JPS59125552A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
US5757462A (en) Ophthalmic apparatus for photographing a section of an anterior part of an eye
US7354153B2 (en) Fundus camera
US7344248B2 (en) Ophthalmoscope
JPH0753151B2 (en) Ophthalmic measuring device
JP5654225B2 (en) Corneal shape measuring device
JPS633612B2 (en)
JPH08103413A (en) Ophthalmological measuring instrument
JPH0646995A (en) Eye refractometer
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPH0330366B2 (en)
JPS6125370B2 (en)
JPS6117494B2 (en)
JP2892007B2 (en) Non-contact tonometer
JP5710827B2 (en) Corneal shape measuring device
JPH05237062A (en) Infrared observation ophthalmologic apparatus
JPS6260095B2 (en)
JPS59137052A (en) Microscope for ophthalmic operation
JPS6236692B2 (en)
JPS6114811B2 (en)
JPS62189044A (en) Ophthalmic examination apparatus
JP3154533B2 (en) Ophthalmic equipment
JPS6159134B2 (en)
JPH0554326B2 (en)
JPS62270131A (en) Eyeground examination apparatus
JPS6143053B2 (en)