JPS59125552A - Microscope for ophthalmic operation - Google Patents

Microscope for ophthalmic operation

Info

Publication number
JPS59125552A
JPS59125552A JP57231534A JP23153482A JPS59125552A JP S59125552 A JPS59125552 A JP S59125552A JP 57231534 A JP57231534 A JP 57231534A JP 23153482 A JP23153482 A JP 23153482A JP S59125552 A JPS59125552 A JP S59125552A
Authority
JP
Japan
Prior art keywords
eye
examined
corneal
microscope according
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57231534A
Other languages
Japanese (ja)
Other versions
JPS633612B2 (en
Inventor
勲 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57231534A priority Critical patent/JPS59125552A/en
Publication of JPS59125552A publication Critical patent/JPS59125552A/en
Publication of JPS633612B2 publication Critical patent/JPS633612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は被検眼の角膜形状を測定する機能並びに被検眼
の屈折力を測定する機能を有する眼科手術用顕微鏡に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ophthalmic surgery microscope having a function of measuring the corneal shape of an eye to be examined and a function of measuring the refractive power of the eye to be examined.

眼は精密な光学系を形成しており、これに対する何らか
の疾患に対してはその機能を回復すべき適当な処置がと
られる。特に眼球に対して何らかの手術が怖される場合
は、その機能や形状が再建されることが重要な課題であ
り眼屈折力の回復は手術の成否をわける重要な要犬であ
る。近年人口の老令化等にも伴い前眼部手術とりわけ白
内障手術が多くなっているが手術に伴う角膜形状の変化
や眼内レンズ挿入による眼屈折力の変化を適確に把握す
ることは手術に際して欠くことの出来ない事である。こ
のため眼の角膜形状の変化や眼屈折力の変化の状況は手
術後のみならず手術中にもたえず測定され正常な復元過
程にあるか否かを知る必要がある。従来、この種の眼科
手術を行うために用いられている手術用顕微鏡は手術に
隙しての観察撮彰機能しか所有しておらず、手術中に眼
の角膜形状や屈折状態を測定するには全く別の装置に置
換して行わねばならず手術を長時間中断する必要がある
うえ、かなりの手間がかかり、配置上も本格的な測定装
置で行なうことは事実上無理であった。
The eye forms a precise optical system, and appropriate measures are taken to restore its function in the event of any disease. Particularly when some kind of surgery on the eyeball is feared, it is important to reconstruct the function and shape of the eyeball, and recovery of the eye's refractive power is an important key factor that determines the success or failure of the surgery. In recent years, with the aging of the population, anterior segment surgery, especially cataract surgery, has become more common, but it is difficult to accurately assess changes in corneal shape due to surgery and changes in eye refractive power due to intraocular lens insertion. This is an indispensable thing. For this reason, it is necessary to constantly measure changes in the shape of the cornea and the refractive power of the eye, not only after the surgery, but also during the surgery, in order to know whether or not the restoration process is normal. Traditionally, the surgical microscopes used to perform this type of eye surgery only had the observation and photographing function during the surgery, and were unable to measure the corneal shape and refractive state of the eye during the surgery. This requires a completely different device to perform the procedure, which requires a long interruption of the surgery, requires considerable effort, and is virtually impossible to perform using a full-fledged measuring device due to the layout.

本発明はこの手術用顕微鏡に角膜形状及び眼屈折力を測
定する機能を付加し、必要に応じて直ちに検眼を行い手
術の状態を確認しながら手術を進めることが出来るもの
を提供することを目的とするものである。
The purpose of the present invention is to provide a surgical microscope with a function of measuring the corneal shape and eye refractive power, so that if necessary, the eye can be immediately examined and the surgical condition can be checked while the surgery can be proceeded with. That is.

本発明によれば眼屈折力測定系又は被検眼角膜形状測定
系と、被検眼との位置合わせ(アライメント)が顕微鏡
観察によってでき、更には角膜形状測定系の投影指標の
角膜反射像を用いて行なうことができ、特別に眼屈折力
測定系又は被検眼角膜形状測定系にアライメント手段を
設ける必要がない。以下本発明の詳細な説明する。
According to the present invention, alignment between the eye refractive power measurement system or the corneal shape measurement system of the eye to be examined and the eye to be examined can be performed by microscopic observation, and furthermore, by using the corneal reflection image of the projection index of the corneal shape measurement system. It is not necessary to specifically provide an alignment means in the eye refractive power measurement system or the eye corneal shape measurement system. The present invention will be explained in detail below.

第1図で被検眼前眼部を観察するだめのランプlからの
光はハーフミラ−2,コンデンサーレンズ3.レンズ付
プリズム4.対物レンズ5を介して被検眼Epを照明す
る。被検眼前眼部で反射した光は対物レンズ5.ビーム
スプリッタ−13,14を通ってリレーレンズ群6,7
.8に入り、はね上げミラー9で反射後固定ミラー10
.接眼レンズ11を経て観察眼Eで観察される。
In FIG. 1, the light from the lamp 1 used to observe the anterior segment of the subject's eye is a half mirror 2, a condenser lens 3. Prism with lens 4. The eye Ep to be examined is illuminated through the objective lens 5. The light reflected from the anterior segment of the subject's eye is passed through the objective lens 5. Relay lens groups 6 and 7 pass through beam splitters 13 and 14
.. 8, and after being reflected by the flip-up mirror 9, the fixed mirror 10
.. It is observed by the observation eye E through the eyepiece lens 11.

被検眼前眼部の撮影時には、ストロボIIS!が発光し
、対物レンズ5を経て前眼部を照明し、前眼部からの光
は対物レンズ5.ビームスプリッタ−13,14、リレ
ーレンズ群6,7.8を経て跳ね上げられたミラー9の
下側を通過して、フィルムその他の画像記録手段12に
写し込まれる。
When photographing the anterior segment of the subject's eye, use a strobe IIS! emits light and illuminates the anterior segment of the eye through the objective lens 5, and the light from the anterior segment passes through the objective lens 5. The light passes through the beam splitters 13 and 14 and the relay lens groups 6 and 7.8, passes below the flipped-up mirror 9, and is imprinted on a film or other image recording means 12.

ここで眼屈折力測定光学系について説明する。Here, the optical system for measuring eye refractive power will be explained.

眼屈折力測定用の光源20からの光はコンデンサレンズ
19をinJって投影チャー)18を照明する。投影チ
ャー)18は第2図に示すように少なくとも3つの方向
を有するスリツ)18a、18b。
Light from a light source 20 for measuring eye refractive power enters a condenser lens 19 and illuminates a projection chart 18. The projection chart 18 is a slit 18a, 18b having at least three directions as shown in FIG.

18cを有し、各スリットを通過した光は、投影レンズ
29、第3図に示すリング状の開口28aをもった開口
絞り28.リレーレンズ2’l、17.穴あきミラー1
6.リレーレンズ15.ビームスプリッタ−14,13
、対物レンズ5を経て被検眼E、に至り、眼底上に各ス
リット偉光を投影する。
18c, and the light passing through each slit is passed through a projection lens 29 and an aperture stop 28.1 having a ring-shaped aperture 28a shown in FIG. Relay lens 2'l, 17. perforated mirror 1
6. Relay lens 15. Beam splitter 14, 13
, passes through the objective lens 5 to the eye E to be examined, and projects each slit light onto the fundus.

眼底で反射した光は再び対物レンズ5.ビームスプリッ
タ−13,14を通りリレーレンズ15゜穴あきミラー
16の孔部、リレーレンズ21.37、第4図に示すよ
うな開口38aをもった開口絞り38、投影レンズ39
を経て受光チャート22に至る。受光チャート22は穴
あきミラー16に関して投影チャー)18と共役なもの
で投影チャート18の3本のスリット18a、18b、
18cにそれぞれ対応した第5図に示すような3本のス
リット22a、22b、22cをもちそれぞれの投影チ
ャート像のスリットの眼底上でのボケ量は3本のスリツ
) 22m、22b、22cの各後方に置かれた受光素
子23a、23b、23cで検出される。そして各々の
スリットの最良ピント面(このとき受光出力は最大とな
る)はレンズ系La、Lbを光軸にそって動かすことK
より求められ、初期位置からの移動量から被検眼Epの
屈折力が計算により求められる。
The light reflected from the fundus is returned to the objective lens 5. The relay lens 15 passes through the beam splitters 13 and 14, the hole of the perforated mirror 16, the relay lens 21.37, the aperture stop 38 having an aperture 38a as shown in FIG. 4, and the projection lens 39.
The light reception chart 22 is then reached. The light reception chart 22 is conjugate with the projection chart 18 with respect to the perforated mirror 16, and the three slits 18a, 18b of the projection chart 18,
There are three slits 22a, 22b, 22c as shown in FIG. It is detected by light receiving elements 23a, 23b, and 23c placed at the rear. The best focusing plane of each slit (at this time, the received light output is maximum) is obtained by moving the lens systems La and Lb along the optical axis.
The refractive power of the eye Ep to be examined is calculated from the amount of movement from the initial position.

ここで各スリン(方向に対応した被検眼の屈折力を求め
演算により球面屈折度S、乱視度C9乱視軸角度Aを算
出する。次に角膜形状測定光学系について説明する。光
源34m、34b、・−・、344,341からの光は
対応するライトガイド33a、33b。
Here, the refractive power of the eye to be examined corresponding to each Surin (direction) is calculated and the spherical refractive power S, astigmatism C9 and astigmatic axis angle A are calculated.Next, the corneal shape measuring optical system will be explained.Light sources 34m, 34b, ..., 344, 341 are transmitted to the corresponding light guides 33a, 33b.

・・・、3at、a3tを経て、その他端で光源32a
..., 3at, a3t, and the light source 32a at the other end.
.

32b、・・・、324,32jとなり離散的なリング
状の光源を形成し被検眼Epの角膜に投影され角膜反射
像を形成する。角膜で反射した光はあたかも角膜反射像
から出射する如く出て、対物レンズ5、ビームスプリッ
タ−13,投影レンズ35で2次元面体撮像素子36の
上に結像する。
32b, . . . , 324, 32j, forming a discrete ring-shaped light source, which is projected onto the cornea of the subject's eye Ep to form a corneal reflection image. The light reflected by the cornea emerges as if from a corneal reflected image, and is imaged onto a two-dimensional surface-shaped imaging device 36 by the objective lens 5, beam splitter 13, and projection lens 35.

ここで光源32a、32b、・・・、32jを対物レン
ズ5の周辺に第6図に示すように同心状に配置すると、
撮像素子36の−には被検眼Epの角膜の形状に相当し
た歪をもって投影される。この投影像から角膜のカーブ
が計算により求められる。すなわちリング状の投影チャ
ートが被検眼に投影され、被検眼に乱視が無ければ角膜
反射像も完全な円形となるが、乱視があると、楕円形更
に不正乱視があれは歪みが付加され、この角膜反射像の
形状を固体撮像素子で求め、この検出結果より角膜曲率
R9乱視度I)、乱視軸角度Aを算出する。固体撮像素
子は、2次元CCD等の他、3 @qの1次元CCDを
放射状又は並列状に配列し、角膜反射像との交点座標又
は所定点から交点までの高さ若しくは径の大きさ乞検出
するものであっても良い。なお角膜反射像を特定する例
としては、求められた少なくとも5点の交点座標より一
般2次曲紗の式ax2+b XY+cY”+dx+eY
+l=oを解いて係数a〜eを算出する。
Here, if the light sources 32a, 32b, . . . , 32j are arranged concentrically around the objective lens 5 as shown in FIG.
The image is projected onto the - of the image sensor 36 with a distortion corresponding to the shape of the cornea of the eye Ep. The curve of the cornea is calculated from this projected image. In other words, a ring-shaped projection chart is projected onto the subject's eye, and if the subject's eye does not have astigmatism, the corneal reflection image will also be a perfect circle, but if there is astigmatism, it will become an ellipse, and if there is irregular astigmatism, distortion will be added. The shape of the corneal reflection image is determined using a solid-state image sensor, and the corneal curvature R9 astigmatism degree I) and astigmatism axis angle A are calculated from the detection results. In addition to two-dimensional CCDs, solid-state imaging devices have 3 @q one-dimensional CCDs arranged radially or in parallel, and the coordinates of the intersection with the corneal reflection image or the height or diameter from a predetermined point to the intersection are determined. It may be something that is detected. As an example of specifying the corneal reflection image, the general quadratic curve equation ax2+b
+l=o is solved to calculate coefficients a to e.

以上によって求められた被検眼の屈折力及び角膜形状は
イメージ表示原子24の一ヒに例えば第7図の如く表示
され1ノンズ25.ミラー26、観察又は撮影光学系を
経て観察又は撮影される。
The refractive power and corneal shape of the eye to be examined determined as described above are displayed on the image display atom 24 as shown in FIG. 7, for example. The image is observed or photographed via a mirror 26 and an observation or photographing optical system.

以上、屈折力1110定機能及び角膜形状1i111定
機能を合わせもつ手術用顕微鏡についての一例を上げた
がこの中では次の様な置き侠えも可能である。即ちビー
ムスプリッタ−13,14に関しては第8図に示すよう
分光特性(横軸は波長表9gI軸は透過率へ)を持たせ
て波長分離し、前眼部の観察又は撮影にけ特性13aよ
り短い波長を使用する又、測定時には特性13bより長
い波長を使用する等してもよいし、ビームスプリッタ−
13,14を跳ね上げミラーとして測定時以外は光路外
に出すなどしてもかまわない。その他観察撮影と測定の
ための光を分離する手段としては光源の周波数をそれぞ
れ変えて行うことも可能である。また光源32a、32
b、・・・、32jのかわりにリング状の線光源を使用
したり、発光素子そのものを並べることも可能である。
An example of a surgical microscope having both a refractive power constant function of 1110 and a corneal shape constant function of 1111 has been given above, but within this, the following arrangements are also possible. In other words, the beam splitters 13 and 14 have spectral characteristics as shown in FIG. 8 (the horizontal axis is the wavelength table 9g, the I axis is the transmittance) and separate the wavelengths, and the characteristic 13a is used for observing or photographing the anterior segment of the eye. It is also possible to use a shorter wavelength or a longer wavelength than characteristic 13b during measurement, or use a beam splitter.
13 and 14 may be used as flip-up mirrors and moved out of the optical path except during measurement. In addition, as a means of separating light for observation photography and measurement, it is also possible to separate the light for observation and photography by changing the frequencies of the light sources. Also, the light sources 32a, 32
It is also possible to use a ring-shaped line light source instead of b, . . . , 32j, or to arrange the light emitting elements themselves.

一方記録手段としては撮像管等を用いてビデオ記録に結
びつけることも出来ることは言うまでもない。すなオ)
ち、例えば第1図でミラーIOをハーフミラ−に置き換
え、これを通過する光束を撮像管に導けは良い。第9図
は被検眼の角膜に投影する光源の配置例で被検眼Epを
観察したり撮影したりする場合は光源は41aの如く対
物レンズ5の近傍もしくは光軸の近傍にあり角膜形状を
測定する場合は41′aの如く対物レンズ5もしくは光
軸から離れた状態に切り換えもしくは移動出来るように
なっている。この様子は第10図に示されるように複数
個の光源41 a、 、 42 a 、 43 & 、
、−等が41’a、 42’a 、 43’a 、・・
・等の位置に移動する。これによって、角膜形状側定時
以外は対物レンズ近傍にあって、対物レンズと被検眼と
のスペースを確保し、眼科手術をし易くできる。
On the other hand, it goes without saying that an image pickup tube or the like can be used as a recording means to connect to video recording. Sunao)
For example, it would be better to replace the mirror IO in FIG. 1 with a half mirror and guide the light beam passing through it to the image pickup tube. FIG. 9 shows an example of the arrangement of a light source that projects onto the cornea of the eye to be examined. When observing or photographing the eye Ep to be examined, the light source is located near the objective lens 5 or near the optical axis as shown in 41a, and the shape of the cornea is measured. In this case, it can be switched or moved away from the objective lens 5 or the optical axis as shown in 41'a. As shown in FIG. 10, this situation is explained by a plurality of light sources 41 a, , 42 a, 43 & .
, - etc. are 41'a, 42'a, 43'a,...
・Move to such a position. As a result, the parts other than those on the corneal shape side are located near the objective lens, ensuring a space between the objective lens and the eye to be examined, and facilitating ophthalmic surgery.

なおこの複数個の光源41a、42a、43a、・・・
等を着脱可能とし、角膜形状側定時以外は顕微鏡光路か
ら脱却すれば上記効果は大となる。また上記複数個の光
源41a、42a、43a’、・・・等を移動すること
によりいわばリング状のチャートの径が変わり、被検眼
の種々の高さの箇所の角膜形状を測定できることとなる
Note that the plurality of light sources 41a, 42a, 43a,...
The above-mentioned effect will be enhanced if the microscope is made removable and removed from the microscope optical path except for when the corneal shape side is used. Furthermore, by moving the plurality of light sources 41a, 42a, 43a', . . . , etc., the diameter of the so-called ring-shaped chart changes, making it possible to measure the shape of the cornea at various heights of the eye to be examined.

第11図は角膜形状測定用の光源の別配置例で対物レン
ズ若しくは光軸に対して同心状に複数列配置したもので
ある。そして各リング状の光源の各々は第12図に示す
ように同心状に移動する。
FIG. 11 shows another example of the arrangement of light sources for corneal shape measurement, in which a plurality of rows are arranged concentrically with respect to the objective lens or the optical axis. Each ring-shaped light source moves concentrically as shown in FIG.

すなわち、51aは51’a 、 51bは51’b 
、 ・・・の如く、また52aは52’a、52bは5
2′bの如く動くことができる。
That is, 51a is 51'a, 51b is 51'b
, ..., 52a is 52'a, 52b is 5
It can move like 2'b.

被検眼に対し、同心のリング状指標を複数筒、投影すれ
ば被検眼軸に対し種々の高さの位置の角膜形状を求める
ことができる。なお、以上の動きについて光軸に垂直方
向にすなわち周辺方向に動かす替わりに、光軸に沿って
すなわち被検眼の方向に動かすことによっても同様の作
用を為ことができる。
By projecting a plurality of concentric ring-shaped indicators onto the subject's eye, corneal shapes at various heights relative to the subject's eye axis can be determined. Note that, instead of moving in the direction perpendicular to the optical axis, that is, in the peripheral direction, the same effect can be achieved by moving it along the optical axis, that is, in the direction of the eye to be examined.

第13図は被検眼角膜形状を測定するため角膜に向けて
投影する光源の角膜反射像を角膜形状測定尺Oζ眼屈折
力測定のためのアライメント用として用いた実施例であ
る。光源32aの角膜反射光は対物レンズ5、ビームス
プリッタ−13を通過し観察眼Eで観測されるが、この
とき観察眼Eのピント面と共役な位置(アライメント用
チャート60を設ける。このチャートは第14図に示す
ようなリング状の開口60aをもつもので観察眼Eで観
察すjると第15図のようにチャート像60/aと1 光源32a、32b、・・・、32jの角膜反射像32
’a。
FIG. 13 shows an embodiment in which a corneal reflection image of a light source projected toward the cornea is used for alignment for measuring the corneal shape measurement scale Oζ ocular refractive power in order to measure the corneal shape of the eye to be examined. The corneal reflected light from the light source 32a passes through the objective lens 5 and the beam splitter 13 and is observed by the observing eye E. At this time, a position conjugate with the focal plane of the observing eye E (an alignment chart 60 is provided. This chart is When observing with the observation eye E using a ring-shaped aperture 60a as shown in FIG. 14, a chart image 60/a and a cornea of the light sources 32a, 32b, . . . , 32j are shown in FIG. 15. Reflection image 32
'a.

32’b、・・・、32勺、が同時に観察されるためこ
れら反射像群とチャート像を例えば同心状に調整するこ
とKよってアライメントを行なう。
32'b, . . . , 32' are observed at the same time, alignment is performed by, for example, adjusting these reflected images and the chart image so that they are concentric.

第16図は照明、観察撮影、屈折力測定、角膜形状測定
の機能を合わせもった手術用顕微鏡の各機能部分の光学
的配置を示す。Paは照明、 Pbは観察撮影、 Pc
は屈折力測定、 Pdは角膜形状測定系を示す。ここで
14 、14’はビームスプリッタ−で、単なる光束の
分割、波長による分割でも良い。
FIG. 16 shows the optical arrangement of each functional part of a surgical microscope that has the functions of illumination, observation photography, refractive power measurement, and corneal shape measurement. Pa is illumination, Pb is observation photography, Pc
indicates refractive power measurement, and Pd indicates corneal topography measurement system. Here, 14 and 14' are beam splitters, which may simply split a light beam or split based on wavelength.

また跳ね上げミラーであっても良い。It may also be a flip-up mirror.

第17図は各機能をどの部分の光束を使用することKよ
り行なうかを示したものでPa −pdは上記分類によ
る。ここでもプリズム41.ビームスプリッタ−14を
それぞれミラーや波長分割ミラー等で置き換えてもよい
FIG. 17 shows which part of the light beam K is used for each function, and Pa-pd is based on the above classification. Again, prism 41. The beam splitter 14 may be replaced with a mirror, a wavelength division mirror, or the like.

第18図(A)〜(B)はその他の分割例で対物レンズ
5に関する光束の取り方を示す。なおその他の組み合わ
せであっても良い。
FIGS. 18(A) and 18(B) show how to take the luminous flux with respect to the objective lens 5 in other division examples. Note that other combinations may also be used.

第19図は屈折力測定及び角膜形状測定を対物2 レンズの前方にもって来た例で前記第16図、第17図
、第18図(人)〜(E)との組み合わせも可能である
FIG. 19 shows an example in which refractive power measurement and corneal shape measurement are placed in front of the objective 2 lens, and a combination with the above-mentioned FIGS. 16, 17, and 18 (human) to (E) is also possible.

第20図、第21図に示すものは角膜形状測定用の指標
を着脱式にした実施例で各リング指標t。
What is shown in FIGS. 20 and 21 is an embodiment in which the index for corneal shape measurement is removable, and each ring index t.

〜taがランプ79a、79b、・・、79i、79j
で照明され、これを1つの着脱ユニツ)80として対物
レンズ枠81に着脱可能に配置したものである。
~ta is the lamp 79a, 79b,..., 79i, 79j
This is a removable unit 80 that is removably arranged in an objective lens frame 81.

以上説明したように、本発明によれば角膜形状測定機能
及び屈折力測定機能を付加することにより手術中におい
ても容易に手術の経過、状態を観測することが出来るた
め適確に手術の経過、良否を判定することが可能で、こ
れを手術に反映することもできる効果がある。
As explained above, according to the present invention, by adding the corneal shape measurement function and the refractive power measurement function, it is possible to easily observe the progress and condition of the surgery even during the surgery, so that the progress and condition of the surgery can be accurately observed. It is possible to judge whether the device is good or bad, and this can be reflected in the surgery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実症例の図。 第2図は眼屈折測定系の投影チャートの図。 第3図5.第4図は各々眼屈折測定系の投光側。 受光側の開口絞りの図。 第5図は眼屈折測定系の受光チャートの図。 第6図は角膜形状測定系の光源の配置図。 第7図は屈折力及び角膜ノビ状の測定データを表示する
イメージ表示素子の説明図。 第8図は観察撮影光学系と測定光学系を波長により分離
する場合の分光透過率特性の図。 第9図、第10図は角膜形状測定系の光源を可動とした
実施例の図。 第11図、第12図は角膜形状測定系の光源を複数列配
置して可動とした実施例の図。 第13図は角膜形状を測定する光源の角膜反射像をアラ
イメントに用いた実施例の図。 第14図は@微鏡の観察光路内に設けられるアライメン
トの基準となるリング状チャートの図。 第15図は角膜反射像とアライメント用のリン光路、眼
屈折測定の投光、受光光路の便々の取り方の説明図。 第20図、第21図は角膜形状世[1定用の指標な察眼
、 La 、 Lbはレンズ系。 社則 1は前眼部観察用のランプ、4はレンズ何プリズ
ム、5は対物レンズ、9は跳ね上げミラー、11は接眼
レンズ、12は画像記録手段、18は1反屈折力測定用
の投影チャート。 18a、18b、18cはスリット、20は眼屈折力測
定用の光源、24はイメージ表示素子。 28.38は開口絞り、22は受光チャート。 23a、23b、23cは受光素子、32a、32b、
・・・132jは角膜形状測定用の光源、36は固体撮
像素子、60はアライメント用チャー脱 ト、80はttKユニットである。 出 M 人  キャノン株式会社
FIG. 1 is a diagram of an actual case of the present invention. FIG. 2 is a diagram of a projection chart of the eye refraction measurement system. Figure 3 5. Figure 4 shows the light emitting side of each eye refraction measurement system. Diagram of the aperture stop on the light receiving side. FIG. 5 is a diagram of a light reception chart of the eye refraction measurement system. FIG. 6 is a diagram showing the arrangement of the light source of the corneal topography measurement system. FIG. 7 is an explanatory diagram of an image display element that displays measurement data of refractive power and corneal nozzle. FIG. 8 is a diagram of spectral transmittance characteristics when the observation and photographing optical system and the measurement optical system are separated by wavelength. FIGS. 9 and 10 are diagrams of an embodiment in which the light source of the corneal shape measurement system is movable. FIGS. 11 and 12 are diagrams of an embodiment in which light sources of a corneal topography measurement system are arranged in multiple rows and made movable. FIG. 13 is a diagram of an embodiment in which a corneal reflection image from a light source for measuring corneal shape is used for alignment. FIG. 14 is a diagram of a ring-shaped chart provided in the observation optical path of @microscope and serving as a reference for alignment. FIG. 15 is an explanatory diagram of how to take the corneal reflection image, the phosphor path for alignment, the light emitting light path for eye refraction measurement, and the light receiving light path. Figures 20 and 21 show the shape of the cornea. La and Lb are lens systems. Company rules 1 is a lamp for observing the anterior segment of the eye, 4 is a lens and prism, 5 is an objective lens, 9 is a flip-up mirror, 11 is an eyepiece, 12 is an image recording means, 18 is a projection for measuring anti-refractive power chart. 18a, 18b, and 18c are slits, 20 is a light source for measuring eye refractive power, and 24 is an image display element. 28. 38 is the aperture stop, 22 is the light reception chart. 23a, 23b, 23c are light receiving elements, 32a, 32b,
... 132j is a light source for corneal shape measurement, 36 is a solid-state image sensor, 60 is a chart remover for alignment, and 80 is a ttK unit. Out M person Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 被検眼#J眼部を照明する手段と、照明された被
検眼前眼部を14察又は拡影する手段と。 被検眼lIド底に第1の指標光束を投影し、該指標光束
の被検眼眼底からの反射光を受光して眼屈折力を測定す
る手段と。 被検眼角膜に第2の指標光束を投影し、該指標光束の角
膜反射光を受光して角膜形状を測定する手段を有するこ
とを特徴とする眼科手術用顕微鏡。 2、 被検眼眼底に対し、前記第1の投影指標位置及び
眼底反射光受光位置を相対移動させ、相互に共役位置と
なるまでの移動量を検出して眼屈折力を測定する特許請
求の範囲第1項記載の眼科手術用顕微鏡。 3、 角膜反射像を撮像素子上へ投影し、交点座標又は
所定点から交点までの高さ若しくは径の大きさを検出し
て角膜形状を測定する特許請求の範囲第1項記載の眼科
手術用顕微鏡。 4、 前記第1の指標は少なくとも3つの方向のスリッ
トを有する特許請求の範囲第2項記載の眼科手術用顕微
鏡。 5、 少なくとも3箇の1次元撮像素子で角膜反射像を
検出する特許請求の範囲第3項記載の眼科手術用顕微鏡
。 6、 眼屈折力測定データ及び角膜形状測定データを表
示するイメージ表示手段を設け、該測定データを被検眼
前眼部とともに観察又は撮影する特許請求の範囲第1項
記載の眼科手術用顕微鏡、。 7、 撮像管を設はビデオ観察記録可能な特許請求の範
囲第6項記載の眼科手術用顕微鏡。 8 被検眼前眼部な観察又は撮影する光軸に対して、前
記第2の指標が周辺方向又は光軸方向に移動可能である
特許請求の範囲第1項記載の眼科手術用顕微鏡。 9 前記第2の指標による角膜反射像とのアライメント
を行なうアライメント用チャートを観察光路内に有する
特許請求の範囲第1項記載の眼科手術用顕微鏡。
[Scope of Claims] 1. Means for illuminating eye #J of eye to be examined, and means for observing or magnifying the illuminated anterior eye of eye to be examined. means for projecting a first index light beam onto the fundus of the eye to be examined and receiving reflected light of the index light beam from the fundus of the eye to be examined to measure eye refractive power; An ophthalmic surgical microscope characterized by having means for projecting a second index light beam onto the cornea of an eye to be examined, and receiving corneal reflected light of the index light beam to measure the corneal shape. 2. The scope of the patent claims, wherein the first projection index position and the fundus reflected light receiving position are moved relative to the fundus of the eye to be examined, and the amount of movement until they become mutually conjugate positions is detected to measure the eye refractive power. The ophthalmic surgery microscope according to item 1. 3. For ophthalmic surgery according to claim 1, which measures the corneal shape by projecting a corneal reflection image onto an image sensor and detecting the coordinates of the intersection or the height or diameter from a predetermined point to the intersection. microscope. 4. The ophthalmic surgical microscope according to claim 2, wherein the first indicator has slits in at least three directions. 5. The ophthalmic surgery microscope according to claim 3, wherein a corneal reflection image is detected by at least three one-dimensional image pickup devices. 6. The ophthalmic surgery microscope according to claim 1, which is provided with an image display means for displaying eye refractive power measurement data and corneal shape measurement data, and is configured to observe or photograph the measurement data together with the anterior segment of the eye to be examined. 7. The ophthalmic surgery microscope according to claim 6, which is equipped with an imaging tube and is capable of video observation and recording. 8. The ophthalmic surgical microscope according to claim 1, wherein the second indicator is movable in the peripheral direction or in the optical axis direction with respect to the optical axis for observing or photographing the anterior segment of the eye to be examined. 9. The ophthalmic surgery microscope according to claim 1, further comprising an alignment chart in the observation optical path for performing alignment with the corneal reflection image obtained by the second index.
JP57231534A 1982-12-29 1982-12-29 Microscope for ophthalmic operation Granted JPS59125552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231534A JPS59125552A (en) 1982-12-29 1982-12-29 Microscope for ophthalmic operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231534A JPS59125552A (en) 1982-12-29 1982-12-29 Microscope for ophthalmic operation

Publications (2)

Publication Number Publication Date
JPS59125552A true JPS59125552A (en) 1984-07-19
JPS633612B2 JPS633612B2 (en) 1988-01-25

Family

ID=16924993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231534A Granted JPS59125552A (en) 1982-12-29 1982-12-29 Microscope for ophthalmic operation

Country Status (1)

Country Link
JP (1) JPS59125552A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135633A (en) * 1984-12-07 1986-06-23 株式会社トプコン Apparatus for measuring eye refraction
JPS61234837A (en) * 1985-04-12 1986-10-20 キヤノン株式会社 Apparatus for measuring eye refraction
JPS6239702U (en) * 1985-08-28 1987-03-10
JPH0191829A (en) * 1987-09-30 1989-04-11 Canon Inc Apparatus for measuring shape of cornea
JPH07171102A (en) * 1993-11-12 1995-07-11 Canon Inc Optometry device
JPH0898803A (en) * 1995-09-04 1996-04-16 Canon Inc Eye refraction measuring instrument
JP2011177501A (en) * 2010-02-12 2011-09-15 Carl Zeiss Surgical Gmbh Measurement system and method for establishing refraction of eye, radius of curvature of cornea, or internal pressure of eye
JP2018083126A (en) * 2011-09-16 2018-05-31 カール ツアイス メディテック アクチエンゲゼルシャフト Method for automatic optimization of calculation of intraocular lens to be implanted

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286206U (en) * 1988-12-20 1990-07-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135597A (en) * 1976-04-02 1977-11-12 Zeiss Stiftung Combination device for eye examination
JPS5778837A (en) * 1980-10-31 1982-05-17 Canon Kk Eye inspecting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135597A (en) * 1976-04-02 1977-11-12 Zeiss Stiftung Combination device for eye examination
JPS5778837A (en) * 1980-10-31 1982-05-17 Canon Kk Eye inspecting machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135633A (en) * 1984-12-07 1986-06-23 株式会社トプコン Apparatus for measuring eye refraction
JPS61234837A (en) * 1985-04-12 1986-10-20 キヤノン株式会社 Apparatus for measuring eye refraction
JPH029805B2 (en) * 1985-04-12 1990-03-05 Canon Kk
JPS6239702U (en) * 1985-08-28 1987-03-10
JPH0191829A (en) * 1987-09-30 1989-04-11 Canon Inc Apparatus for measuring shape of cornea
JPH07171102A (en) * 1993-11-12 1995-07-11 Canon Inc Optometry device
JPH0898803A (en) * 1995-09-04 1996-04-16 Canon Inc Eye refraction measuring instrument
JP2011177501A (en) * 2010-02-12 2011-09-15 Carl Zeiss Surgical Gmbh Measurement system and method for establishing refraction of eye, radius of curvature of cornea, or internal pressure of eye
JP2018083126A (en) * 2011-09-16 2018-05-31 カール ツアイス メディテック アクチエンゲゼルシャフト Method for automatic optimization of calculation of intraocular lens to be implanted

Also Published As

Publication number Publication date
JPS633612B2 (en) 1988-01-25

Similar Documents

Publication Publication Date Title
US5757462A (en) Ophthalmic apparatus for photographing a section of an anterior part of an eye
US7354153B2 (en) Fundus camera
US5349398A (en) Ophthalmometer system
EP1452128B1 (en) Fundus camera
JPH0753151B2 (en) Ophthalmic measuring device
JP5654225B2 (en) Corneal shape measuring device
JPH04220233A (en) Stereoscopic fundus camera
JP5554610B2 (en) Fundus photographing device
JPH10243923A (en) Ophthalmological device
JP3605131B2 (en) Ophthalmic instruments
JPS59125552A (en) Microscope for ophthalmic operation
JP5745864B2 (en) Fundus photographing device
JP5710827B2 (en) Corneal shape measuring device
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPS59144436A (en) Ophthalmic apparatus
JP2933108B2 (en) Corneal surgery device
JP2691268B2 (en) Ophthalmic equipment
JPS6117494B2 (en)
US7802885B2 (en) Imaging unit for ophthalmological devices, in particular, for fundus cameras and method for the use thereof
JP3332489B2 (en) Optometry device
JPS6260095B2 (en)
JP3154533B2 (en) Ophthalmic equipment
JPH0595903A (en) Opthamological apparatus
JP5807701B2 (en) Fundus photographing device
JPS59137052A (en) Microscope for ophthalmic operation