JPS59103377A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59103377A
JPS59103377A JP21246382A JP21246382A JPS59103377A JP S59103377 A JPS59103377 A JP S59103377A JP 21246382 A JP21246382 A JP 21246382A JP 21246382 A JP21246382 A JP 21246382A JP S59103377 A JPS59103377 A JP S59103377A
Authority
JP
Japan
Prior art keywords
layer
oxide film
region
window
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21246382A
Other languages
Japanese (ja)
Inventor
Toru Inaba
稲葉 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21246382A priority Critical patent/JPS59103377A/en
Publication of JPS59103377A publication Critical patent/JPS59103377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To contrive improvement in the degree of integration of the titled semiconductor device by a method wherein a window is provided on the gate oxide film located on a P type Si substrate, a poly Si wiring is formed as a mask by adding P and As, a source and drain is formed by performing As-ion implantation, and an N type connection layer is formed by performing a diffusion from the window. CONSTITUTION:A P type Si substrate 11 is isolated by a channel stopper 13 and a field oxide film 12, and after an N-layer 17' has been provided by selectively performing ion implantation through the intermediary of a gate oxide film, a window 18 is selectively provided. The above is covered by a poly Si layer 19, and As-ion and P-ion are added successively. However, P remains in the state of low density. A patterning is performed in the layer 19, and As-ion implantation layer 20' is formed using electrodes 19B, 19D and 19E as masks. When 20a-20c are formed by performing an annealing, P is mainly diffused from the electrode 19B, an N<+> buried connection layer 21 of the expansion of 1mum or less is formed, it is connected to an N<+> layer 20b, and the layer 17' is turned to layer 17. Subsequently, the above is covered by a PSG22, a window is provided and an Al wiring 24 is attached. According to this constitution, the MOSIC of high degree of integration having the structure in which a gate electrode is connected to a diffusion layer can be formed.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置の製造方法に係り、特に半導体装置
の配設される埋込みコンタクト領域(Bu−ried 
Contact )の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a method of manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
Contact).

(b)  技術の背景 例えば第1図に回路図を示したようなエンハンスメント
・デプリーション・インバータに於ては、デプリーショ
ン・トランジスタのシリコン・ゲートとソース・ドレイ
ン領域とが電気的に接続される。図中D−Trはデプリ
ーション・トランジスタ、E−Trはエンハンスメント
・トランジスタ、s/Dはソース・ドしイン領域を示し
ている。
(b) Background of the Technology In an enhancement depletion inverter, such as the circuit diagram shown in FIG. 1, the silicon gate and source/drain regions of the depletion transistor are electrically connected. In the figure, D-Tr indicates a depletion transistor, E-Tr indicates an enhancement transistor, and s/D indicates a source/domain region.

上記シリコン・ゲートとソース・ドレイン領域(拡散領
域)との電気的接続を通常のアルミニウム配線を介して
行うと素子面積が拡大し、集精度が低下するという問題
がある。
If the electrical connection between the silicon gate and the source/drain region (diffusion region) is made via ordinary aluminum wiring, there is a problem that the element area increases and the focusing accuracy decreases.

そこでこのような場合、第2図に示す平面図のようにデ
プリーション・トランジスタのゲート電極の一部をソー
ス・ドレイン領域上に延長し、その部分をゲート電極か
ら不純物を固相−固相・拡散させて形成した埋込みコン
タクト領域を介してソース・ドレイン領域と電気的に接
続することにより、集積度や設計自由度の向上が図られ
る。第2図に於て、GDはデプリーション・トランジス
タのゲート電極、GD’は同延長部、GEはエンハンス
メント・トランジスタのゲート電極’10UTは出力配
線、S/Dはソース・ドレイン領域、Bcは埋込みコン
タクト領域を示している。
Therefore, in such a case, as shown in the plan view shown in Figure 2, a part of the gate electrode of the depletion transistor is extended over the source/drain region, and the impurity is solid-phase-diffused from the gate electrode. By electrically connecting to the source/drain regions through the buried contact regions formed in this manner, the degree of integration and design freedom can be improved. In Figure 2, GD is the gate electrode of the depletion transistor, GD' is its extension, GE is the gate electrode of the enhancement transistor, 10UT is the output wiring, S/D is the source/drain region, and Bc is the buried contact. It shows the area.

第3図は上記埋込みコンタクトを有するエンハンスメン
ト・デプリーション・インバータの断面を模式的に示し
たもので、図中1はp型シリコン(Si )基板、2は
p”型チャネル・カット層、3はフィールド酸化膜、4
はゲート酸化膜、5は多結晶Stからなるエンハンスメ
ント・トランジスタ(E−’I”r)のゲート電極(第
2図GEに相当)、6は多結晶Stからなるデプリーシ
ョン・トランジスタ(D−Tr)のゲート電極の延長部
(第2図GD′に相当)、7はn+型トドレイン領域第
2図S/D領域に相当)、8はn++ソース領域、9は
n++埋込みコンタクト領域(第2図BCに相当)、1
0は絶縁膜を表わしている。
FIG. 3 schematically shows a cross section of the enhancement depletion inverter having the above-mentioned buried contacts, in which 1 is a p-type silicon (Si) substrate, 2 is a p''-type channel cut layer, and 3 is a field. Oxide film, 4
is a gate oxide film, 5 is a gate electrode of an enhancement transistor (E-'I"r) made of polycrystalline St (corresponding to GE in FIG. 2), and 6 is a depletion transistor (D-Tr) made of polycrystalline St. (corresponding to GD' in Figure 2), 7 is an n+ type drain region (corresponding to S/D region in Figure 2), 8 is an n++ source region, and 9 is an n++ buried contact region (corresponding to BC in Figure 2). ), 1
0 represents an insulating film.

(c)従来技術と問題点 シリコン・ゲートMO8ICに於ては、多結晶は通常3
0〔Ω/口〕程度にする) このように高濃度にりん(P)がドープされた多結晶S
t層から、通常イオン注入されたひ素(As)を熱拡散
させてnuンソー・ドレイン領域を形成す1′− る際l同時にりん(P)を基板内に固相−同相・拡散せ
しめて埋込みコンタクトを形成した際には、りん(P)
の拡散係数がひ素(As )の5倍程度あるために、埋
込みコンタクト領域が著しく拡がって形成され、例えば
ソース・ドレイン領域の深さを0.5〔μm〕程度に形
成する場合、埋込みコンタクト領域の拡がりが1.5〜
2〔μm〕程度になる。
(c) Prior art and problems In silicon gate MO8IC, polycrystalline
(approximately 0 [Ω/mouth]) Polycrystalline S doped with phosphorus (P) at a high concentration in this way
When arsenic (As), which is usually ion-implanted, is thermally diffused from the t-layer to form the nucleo-drain region, phosphorus (P) is simultaneously diffused into the substrate in solid phase and buried. When a contact is formed, phosphorus (P)
Because the diffusion coefficient of As2 is about five times that of arsenic (As), the buried contact region is formed to expand significantly. For example, when forming the source/drain region to a depth of about 0.5 [μm], the buried contact region The spread is 1.5~
It will be about 2 [μm].

そして該埋込みコンタクト領域の拡がりは素子間分離領
域に及び、高集積化されたICに於ては防接するトラン
ジスタ等との分離を不完全にする。
The expansion of the buried contact region extends to the element isolation region, and in highly integrated ICs, the isolation from the shielding transistors and the like becomes incomplete.

そこで分離を完全にするために素子間分離領域の幅を標
準設計寸法より1〜2〔μm〕程度広くとる必要が生じ
、ICの集積度が低下するという問題があった。
Therefore, in order to achieve complete isolation, it is necessary to make the width of the element isolation region approximately 1 to 2 [μm] wider than the standard design dimension, resulting in a problem that the degree of integration of the IC decreases.

なお多結晶Siゲート電極の抵抗を下げるために、多結
晶シリコンにひ素(As)を高濃度にドープすることも
あるが、該多結晶シリコン層からひ素(As)を固相−
固相・拡散させた際にはひ素(As)の拡散係数が小さ
いため埋込みコンタクト領域の深さが充分に得られず、
良効なコンタクトイb ぼ抗が得られない。従って従来埋込みコンタクトの形成
には専らりん(P)が用いられていたため、前記のよう
に集積度の低下をもたらしていた。
Note that in order to lower the resistance of the polycrystalline Si gate electrode, polycrystalline silicon is sometimes doped with arsenic (As) at a high concentration.
When arsenic (As) is diffused in a solid phase, the diffusion coefficient of arsenic (As) is small, so the depth of the buried contact region cannot be obtained sufficiently.
Good contact resistance cannot be obtained. Therefore, conventionally, phosphorus (P) has been exclusively used for forming buried contacts, resulting in a reduction in the degree of integration as described above.

(d)  発明の目的 本発明は低いシート抵抗を有し、且つ良好な埋込みコン
タクトが得られる多結晶シリコン・ゲート電極の形成方
法を提供するものであり、その目的とするところは埋込
みコンタクトを有するシリコン・ゲートMO8ICの集
積度を向上せしめるにある。
(d) Object of the Invention The present invention provides a method for forming a polycrystalline silicon gate electrode having a low sheet resistance and a good buried contact. The purpose is to improve the degree of integration of silicon gate MO8ICs.

(e)発明の構成 即ち本発明は、半導体装置の製造方法に於て、p型半導
体基体の素子形成領域上にゲート酸化膜を形成し、該ゲ
ート酸化膜に電極コンタクト窓を形成し、該ゲート酸化
膜及び電極コンタクト窓上にそれぞれりんとひ素がドー
ズされた多結晶シリコンからなる電極配線を形成し、該
多結晶シリコン電極配線をマスクにしゲート酸化膜を介
してp型半導体基体面にひ素を導入してn型ソース・ド
レイン領域を形成すると同時に、前記多結晶シリコン電
極配線から前記電極コンタクト窓を介してドナーをp型
半導体基体面に選択的に固相−固相・拡散せしめてn型
埋込みコンタクト領域を形成する工程を有することを特
徴とする。
(e) Structure of the Invention That is, the present invention provides a method for manufacturing a semiconductor device, in which a gate oxide film is formed on an element formation region of a p-type semiconductor substrate, an electrode contact window is formed in the gate oxide film, and Electrode wiring made of polycrystalline silicon doped with phosphorus and arsenic is formed on the gate oxide film and the electrode contact window, respectively, and using the polycrystalline silicon electrode wiring as a mask, arsenic is applied to the p-type semiconductor substrate surface through the gate oxide film. At the same time, donors are selectively solid-phase-solid-phase-diffused from the polycrystalline silicon electrode wiring to the p-type semiconductor substrate surface through the electrode contact window to form n-type source/drain regions. The method is characterized by comprising a step of forming a buried contact region.

(f)  発明の実施例 以下本発明を一実施例について、第4図(イ)乃至(史
に示す工程断面図を用いて詳細に説明する。
(f) Embodiment of the Invention An embodiment of the present invention will be described in detail below with reference to process cross-sectional views shown in FIGS.

なおこの工程断面図は、第2図に於けるA−A’矢視断
面を表わしだものである。
Note that this process cross-sectional view represents a cross section taken along the line A-A' in FIG.

本発明の方法により埋込みコンタクトを有するエンハン
スメント・テフリークヨンーインパータを形成するに際
しては、例えばp型シリコン(Si )基板を用い、通
常通り硼素(B)の選択イオン注入、選択酸化(LOG
O8)、ゲート酸化を行って、第4図(イ)に示すよう
にp型Sl基板11面にフィールド酸化膜12及びp型
チャネル・カット層13で分Mf&され、例えば500
〜1000[A)程度の厚さのゲート酸化膜14で覆わ
れたインバータ領域15を形成する。
When forming an enhancement barrier imperter having a buried contact by the method of the present invention, for example, a p-type silicon (Si) substrate is used, and conventional selective ion implantation of boron (B) and selective oxidation (LOG) are carried out as usual.
O8), gate oxidation is performed, and as shown in FIG.
An inverter region 15 covered with a gate oxide film 14 having a thickness of about 1000 [A] is formed.

次いで第4図(ロ)に示すように、該基板上にデプリー
ション・トランジスタ形成領域f:表出する窓を有する
レジスト膜16を形成し、該レジスト膜16をマスクに
しゲート酸化膜14f:通してりん(P)又はひ素(A
s )の選択イオン注入を行い、p型Si基板11のデ
プリーション・トランジスタ形成領域面に浅いn型不純
物注入領域17′を形成する1、(p+はりんイオン、
As+はひ素イオン)次いで通常の選択エツチング方法
により、第4図(ハ)に示するようにゲート酸化膜14
にp 型S i基板11血を表出する埋込みコンタクト
拡散窓18を形成する。
Next, as shown in FIG. 4(b), a resist film 16 having a window exposing the depletion transistor formation region f is formed on the substrate, and using the resist film 16 as a mask, the gate oxide film 14f is exposed. Phosphorus (P) or arsenic (A
s) is selectively implanted to form a shallow n-type impurity implantation region 17' on the surface of the depletion transistor formation region of the p-type Si substrate 11.
(As+ is an arsenic ion) Next, by a normal selective etching method, the gate oxide film 14 is etched as shown in FIG.
A buried contact diffusion window 18 is formed to expose the p-type Si substrate 11.

以上の工程は従来と変わりがない。The above process is the same as before.

次いで本発明の方法に於ては、第4図に)に示すように
該基板上に厚さ3000〜5000Cλ〕程度の7ンド
ープの多結晶St層19を形成し、該多結晶St層工9
の全面にイオン注入法によりI X 1015〜2X1
016(atm/cJ:l程度のひ素(As )をイオ
ン注入し、次いで第4図G1ツに示すように該多結晶S
r層19の全面にI X 1015〜I X 1016
(atmA++f:)程度のりん(P)をイオン注入す
る。なお上記ひ素(As )及びりん(P)の注入順序
はいずれが先でもさしつかえない。又注入エネルギーは
いずれも40〜80(KeV)程度で良い。
Next, in the method of the present invention, as shown in FIG.
IX1015~2X1 by ion implantation method on the entire surface of
016 (atm/cJ: 1) of arsenic (As) was ion-implanted, and then the polycrystalline S
IX 1015 to IX 1016 on the entire surface of the r layer 19
Phosphorus (P) is ion-implanted to the extent of (atmA++f:). Note that the order of implanting the arsenic (As) and phosphorus (P) described above may be in any order. Further, the implantation energy may be approximately 40 to 80 (KeV).

ここで多結晶Si層19にドーズされるりん(P)は、
基板内に固相−固相・拡散されて形成される埋込みコン
タクトの拡がりを少なくするために従来より低濃度に制
御される。従ってりん(P)のみを下げるために、前記
のよう々条件でひ素(As )のドーズがなされる。
Here, the phosphorus (P) doped into the polycrystalline Si layer 19 is
The concentration is controlled to be lower than in the past in order to reduce the spread of the buried contact formed by solid phase-solid phase diffusion within the substrate. Therefore, in order to lower only phosphorus (P), arsenic (As) is dosed under the conditions described above.

なお多結晶St層19から基板内へのりん(P)の固相
−固相・拡散はソース・ドレイン領域形成時の熱処理で
同時に行われるが、例えば1050〜1100[:℃]
の間の温度で、ソース・ドレイン領域の深さ0.4〜0
.5〔μm〕が得られる所定の熱処理条件で埋込みコン
タクトの拡がりは、りん濃度4〜8 X 1015(a
tm/u+!’)に於て1〔μm〕以下に抑えら冬 れ、且つコンタクト修抗も充分に低く確保される。
Note that the solid phase-solid phase diffusion of phosphorus (P) from the polycrystalline St layer 19 into the substrate is performed at the same time as the heat treatment during the formation of the source/drain regions, for example, at 1050 to 1100 [:°C].
Source/drain region depth 0.4 to 0 at temperatures between
.. 5 [μm] under the specified heat treatment conditions, the spread of the buried contact is 4 to 8 × 1015 (a
tm/u+! ') is suppressed to 1 [μm] or less, and contact repair is also ensured to be sufficiently low.

次いで通常の方法により上記多結晶si i i 9の
パターニングを行い、第4図(へ)に示すように、前記
n!不純物注入領域1り′上にデプリーション・トラン
ジスタの多結晶Siゲート電極19Dを、埋込みコンタ
クト拡散窓18上に前記多結晶Siゲ−)19Dと一体
の埋込みコンタクト電極19Bを、p型領域の上部にエ
ンハンスメント・トランジスタの多結晶Stゲート電極
19Eをそれぞれ形成する。
Next, patterning of the polycrystalline Si I I 9 is carried out by a conventional method, and as shown in FIG. 4, the n! A polycrystalline Si gate electrode 19D of a depletion transistor is placed on the impurity implanted region 1', a buried contact electrode 19B integrated with the polycrystalline Si gate electrode 19D is placed on the buried contact diffusion window 18, and a buried contact electrode 19B is formed on the top of the p-type region. Polycrystalline St gate electrodes 19E of enhancement transistors are respectively formed.

次いで第4図(ト)に示すように、通常通り前記多結晶
Si電極19D 、19B 、19Fをマスクにし、ゲ
ート酸化膜14を通して基板面に、例えば4〜5 x 
1015Catrn/ff1)程度の濃度にひ素(As
 )をイオン注入する。なお図中20′はひ素注入領域
を示す。
Next, as shown in FIG. 4(g), using the polycrystalline Si electrodes 19D, 19B, and 19F as masks, a film of, for example, 4 to 5 x
Arsenic (As) is present at a concentration of about 1015Catrn/ff1).
) is ion-implanted. Note that 20' in the figure indicates an arsenic implanted region.

次いで通常通り1050〜1100〔℃〕の温度で所定
の時間アニール処理を行い、第4図けうに示すように例
えば深さ0.4〜0.5〔μm〕程度のn+型ソース領
域20a 、n型ソース・ドレイン領域20b。
Next, an annealing treatment is performed as usual at a temperature of 1050 to 1100 [°C] for a predetermined time, and as shown in FIG. type source/drain region 20b.

n型ドレイン領域20cを形成する。なおこの際前述し
たように埋込みコンタクト拡散窓18上の多結晶St埋
込みコンタクト電極19bから主としてりん(P)が固
相−固相・拡散され、1〔μm〕以下の拡がりを持つn
+型埋込みコンタクト領域21が形成され、デプリーシ
ョン・トランジスタのゲート電極19Dがこれと一体の
埋込みコンタクト電極19B及びn型埋込みコンタクト
領域21を介シてエンハンスメント・トランジスタと共
通なn型ソースφドレイン領域20bに電気的に接続さ
れる。又前記デプリーション・トランジスタ領域のn型
不純物注入領域17′はn型チャネル領域17となる。
An n-type drain region 20c is formed. At this time, as described above, phosphorus (P) is mainly solid-phase-solid-phase diffused from the polycrystalline St buried contact electrode 19b on the buried contact diffusion window 18, and the n
A +-type buried contact region 21 is formed, and the gate electrode 19D of the depletion transistor is connected to the n-type source φ drain region 20b which is common to the enhancement transistor via the buried contact electrode 19B and the n-type buried contact region 21. electrically connected to. Further, the n-type impurity implanted region 17' in the depletion transistor region becomes the n-type channel region 17.

次いで第4図(史に示すように、通常通り該基板上にり
ん珪酸ガラス等の絶縁膜22が形成され、該絶縁膜22
に電極コンタクト窓23が形成され、該絶縁膜22上に
前記電極コンタクト窓23に於てソース−ドレイン領域
20bに接続するアルミニウム配線24(出力配線)及
び図示しない領域に於ける入力配線等の形成がなされ、
次いで図示しないが表面保護膜の形成等がなされて、埋
込みコンタクトを具備するエンハンスメント・デプリー
ション・インバータが提供される。
Next, as shown in FIG. 4 (history), an insulating film 22 such as phosphosilicate glass is formed on the substrate as usual,
An electrode contact window 23 is formed on the insulating film 22, and an aluminum wiring 24 (output wiring) connected to the source-drain region 20b in the electrode contact window 23 and an input wiring in a region not shown are formed on the insulating film 22. was done,
Next, although not shown, a surface protection film is formed, etc., to provide an enhancement depletion inverter with buried contacts.

(g)発明の詳細 な説明したように本発明によれば、充分に低線 いシート停抗を有する多結晶シリコン・ゲート電極を、
低いコンタクト抵抗を有し且つ拡がりの少ない埋込みコ
ンタクト領域を介して拡散領域に電気的に接続せしめる
ことができる。
(g) DETAILED DESCRIPTION OF THE INVENTION According to the present invention, as described, a polycrystalline silicon gate electrode having a sufficiently low line resistance is provided.
Electrical connection to the diffusion region can be made via a buried contact region which has low contact resistance and has little spread.

従って本発明によれば、上記実施例に示しだエンハンス
メント・デプリーション・インバータ等、ゲート電極が
拡散層に電気的に接続される473造を有するシリコン
・ゲー)MO8ICの1度を向上せしめることができる
Therefore, according to the present invention, it is possible to improve the degree of silicon MO8IC, such as the enhancement depletion inverter shown in the above embodiment, which has a 473 structure in which the gate electrode is electrically connected to the diffusion layer. .

【図面の簡単な説明】[Brief explanation of the drawing]

filE1図ハエンハンスメント・デプリーション・イ
ンバータの回路図、第2図は埋込みコンタクトを具備す
るインバータの平面図、第3図は同インバータの断面図
、第4図(イ)乃至(す)は本発明の方法の一実施例に
於ける工程断面図である。 図に於て、11はp型シリコン基板、14はゲート酸化
膜、18は埋込みコンタクト拡散窓、19は多結晶シリ
コン層、19Dはデプリーション・トランジスタのゲー
ト電極、19Bは埋込みコンタクト電極、19Eはエン
ハンスメント・トランジスタのゲート電極、20bUn
 mソースeドレイン領域、21はn+型埋込みコンタ
クト領域、を示す。 第2図 第3 @ 第4間
Fig. filE1 is a circuit diagram of an enhancement depletion inverter, Fig. 2 is a plan view of an inverter equipped with buried contacts, Fig. 3 is a sectional view of the inverter, and Figs. It is a process sectional view in one Example of a method. In the figure, 11 is a p-type silicon substrate, 14 is a gate oxide film, 18 is a buried contact diffusion window, 19 is a polycrystalline silicon layer, 19D is a gate electrode of a depletion transistor, 19B is a buried contact electrode, and 19E is an enhancement.・Transistor gate electrode, 20bUn
21 indicates an m source e drain region and an n+ type buried contact region. Figure 2 Room 3 @ Room 4

Claims (1)

【特許請求の範囲】[Claims] p型半導体基体の素子形成領域上にゲート酸化膜を形成
し、該ゲート酸化膜に電極コンタクト窓を形成し、該ゲ
ート酸化膜及び電極コンタクト窓上にそれぞれりんとひ
素がドーズされた多結晶シリコンからなる電極配線を形
成し、該多結晶シリコン電極配線をマスクにしゲート酸
化膜を介してp型半導体基体面にひ素を導入してn型ソ
ース・ドレイン領域を形成すると同時に、前記多結晶シ
リコン電極配線から前記電極コンタクト窓を介してドナ
ーをp型半導体基体面に選択的に同相−固相・拡散せし
めてnm埋込みコンタクト領域を形成する工程を有する
ことを特徴とする半導体装置の製造方法。
A gate oxide film is formed on the element formation region of the p-type semiconductor substrate, an electrode contact window is formed on the gate oxide film, and polycrystalline silicon doped with phosphorus and arsenic is formed on the gate oxide film and the electrode contact window, respectively. Then, using the polycrystalline silicon electrode wiring as a mask, arsenic is introduced into the p-type semiconductor substrate surface through the gate oxide film to form an n-type source/drain region, and at the same time, the polycrystalline silicon electrode wiring is A method for manufacturing a semiconductor device, comprising the step of selectively in-phase-solid-phase diffusion of a donor into the surface of a p-type semiconductor substrate through the electrode contact window to form a nanometer buried contact region.
JP21246382A 1982-12-03 1982-12-03 Manufacture of semiconductor device Pending JPS59103377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21246382A JPS59103377A (en) 1982-12-03 1982-12-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21246382A JPS59103377A (en) 1982-12-03 1982-12-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59103377A true JPS59103377A (en) 1984-06-14

Family

ID=16623049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21246382A Pending JPS59103377A (en) 1982-12-03 1982-12-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59103377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105836A (en) * 1984-07-12 1986-05-23 ブルーハ ライクー Manufacture of low sheet resistance polysilicon having anisotropic etching property
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105836A (en) * 1984-07-12 1986-05-23 ブルーハ ライクー Manufacture of low sheet resistance polysilicon having anisotropic etching property
JPH0658895B2 (en) * 1984-07-12 1994-08-03 ブルーハ ライクー Method for treating low sheet resistance polycrystalline material having anisotropic etching properties
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique

Similar Documents

Publication Publication Date Title
JP2510751B2 (en) Process for forming high voltage and low voltage CMOS transistors on a single integrated circuit chip
US4272880A (en) MOS/SOS Process
US4536945A (en) Process for producing CMOS structures with Schottky bipolar transistors
JPS62174966A (en) Manufacture of semiconductor device
US5055420A (en) Process for fabricating semiconductor integrated circuit devices
JPS6143464A (en) Semiconductor device
JPS63102264A (en) Thin film semiconductor device
JP4109364B2 (en) Manufacturing method of semiconductor device
JPS6360549B2 (en)
JPS59103377A (en) Manufacture of semiconductor device
JPS6380560A (en) Method of manufacturing bipolar transistor and complementary field effect transistor simultaneously with the minimum number of masks
US4772568A (en) Method of making integrated circuit with pair of MOS field effect transistors sharing a common source/drain region
JPH0653237A (en) Manufacture of semiconductor element
JPH02237024A (en) Semiconductor device and manufacture thereof
JPS59100521A (en) Manufacture of semiconductor device
JPS5988868A (en) Manufacture of semiconductor device
JP3253712B2 (en) Method for manufacturing semiconductor device
KR950001171B1 (en) Semiconductor device and manufacturing method thereof
JP3379312B2 (en) Method for suppressing impurity diffusion into semiconductor, method for selectively diffusing impurity into semiconductor, semiconductor device, and method for manufacturing semiconductor device
JP2948256B2 (en) Method for manufacturing semiconductor memory device
JPS59138363A (en) Semiconductor device and manufacture thereof
JP2980084B2 (en) Method of manufacturing complementary MOS semiconductor device
JPH06224379A (en) Manufacture of semiconductor device
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH0658899B2 (en) Method for manufacturing semiconductor device