JPS59101850A - Semiconductor device having groove filled with insulation resin - Google Patents

Semiconductor device having groove filled with insulation resin

Info

Publication number
JPS59101850A
JPS59101850A JP21173882A JP21173882A JPS59101850A JP S59101850 A JPS59101850 A JP S59101850A JP 21173882 A JP21173882 A JP 21173882A JP 21173882 A JP21173882 A JP 21173882A JP S59101850 A JPS59101850 A JP S59101850A
Authority
JP
Japan
Prior art keywords
groove
oxide film
insulation resin
grooves
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21173882A
Other languages
Japanese (ja)
Inventor
Hisao Yoshida
吉田 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21173882A priority Critical patent/JPS59101850A/en
Publication of JPS59101850A publication Critical patent/JPS59101850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable to fill a V-groove at a low temperature and facilitate the formation of a small chip and the high integration by a method wherein the groove reaching a substrate from an eqitaxial layer is provided at the part of insolation between semiconductor elements of a bipolar integrated circuit, an oxide film and a nitride film are formed over the surface including this groove, and only this groove is filled with insulation resin. CONSTITUTION:After removing the fixed oxide film 9 on the surface of a semiconductor by using a mask, the V-grooves 13 having apertures reaching the substrate 1 from the epitaxial layer 3 are formed by anisotropic etching with an alkaline solution. Next, the fixed oxide film 9 is removed by using a mask after forming the oxide film 9 over the entire surface, thereafter phosphorus is diffused to the collector 5 and boron to the base 6 and the graft base 7, which are then oxidized, and further phosphorus is diffused to the emitter 8. Then, after forming the oxide film 9 over the entire surface, the nitride film 10 is formed thereon. Afterwards, the coating to the V-grooves 13 and the part other than the V-grooves 13 is performed by coating the surface of the wafer with the insulation resin 14. The insulation resin 14 is plasma-etched, thus leaving the insulation resin 14 only in the V-grooves 13.

Description

【発明の詳細な説明】 本発明はバイポーラ集積回路の集積度を高めることを目
的として、半導体素子間の分離部にV溝を形成した後、
該■溝のみに絶縁樹脂を充填した半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to increase the degree of integration of bipolar integrated circuits by forming a V-groove in a separation area between semiconductor elements.
This invention relates to a semiconductor device in which only the groove is filled with an insulating resin.

従来、素子分離領域を形成する方法としては半導体表面
を覆っている所足の酸化膜を除去後、n形エピタキシャ
ル層の一部分をp形化させるために導入されるボロンを
エピタキシャル層中に選択的に拡散及び酸化することに
より形成される。
Conventionally, the method for forming an element isolation region is to remove a sufficient amount of oxide film covering the semiconductor surface, and then selectively introduce boron into the epitaxial layer in order to convert a part of the n-type epitaxial layer into a p-type. It is formed by diffusion and oxidation.

しかし、この方法におけるボロンは拡散及び酸化によっ
てエピタキシャル層の厚さ方向(以下縦方向という)に
拡散されると同時に横方向に対しても縦方向の80%の
距離迄拡散されるため、その拡散距離を考慮した設計を
せざるを得す、半導体装置の集積度を低める要因となっ
ていた。
However, in this method, boron is diffused in the thickness direction (hereinafter referred to as the vertical direction) of the epitaxial layer by diffusion and oxidation, and at the same time, it is also diffused in the horizontal direction up to 80% of the distance in the vertical direction. This has forced designs to take distance into account, and has become a factor in reducing the degree of integration of semiconductor devices.

−また、素子分離領域を形成するための他の方法として
はエピタキシャル層の縦方向に対し、凹部を形成した後
、凹内部に多結晶シリコンを充填し、且つ表面にレジス
トを塗布した後、プラズマエツチングにより表面を平坦
化する方法等があるが、多結晶シリコンを充填するには
約600〜700℃前後で長時間加熱する等の欠点を有
する。
- Another method for forming an element isolation region is to form a recess in the vertical direction of the epitaxial layer, fill the inside of the recess with polycrystalline silicon, apply a resist on the surface, and then plasma There are methods such as flattening the surface by etching, but these methods have drawbacks such as requiring heating at approximately 600 to 700° C. for a long time in order to fill with polycrystalline silicon.

本発明の目的は上述の欠点を除去した半導体装置を提供
することにある。
An object of the present invention is to provide a semiconductor device that eliminates the above-mentioned drawbacks.

本発明の特徴は、バイポーラ集積回路において、半導体
素子間の分離部にエピタキシャル層から基板布達するV
溝をもち、とのV溝を含む半導体表面に酸化膜及び窒化
膜が形成せられ、とのV溝のみに絶縁樹脂が充填せられ
た半導体装置にある。
A feature of the present invention is that in a bipolar integrated circuit, V
The semiconductor device has a groove, an oxide film and a nitride film are formed on the surface of the semiconductor including the V-groove, and an insulating resin is filled only in the V-groove of the semiconductor device.

以下、本発明の一実施例を図面を参照して詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は従来例の断面図である。第1図において、ボロ
ンを拡散後酸化することによって素子分離領域4を形成
し、これによってベース6、グラフトベース7、コレク
タ5及びエミッタ8ヲ含tr素子を隣接素子から分離さ
れる。この上には更に酸化膜9.窒化膜10.コンタク
ト部15.アルミニウム11及びアルミナ12が形成さ
れる。この様な従来例においては素子分離領域4は横方
向への拡散によって集積度が低くなる要因となる。
FIG. 1 is a sectional view of a conventional example. In FIG. 1, boron is diffused and then oxidized to form a device isolation region 4, which isolates the TR device including the base 6, graft base 7, collector 5, and emitter 8 from adjacent devices. On top of this is an oxide film 9. Nitride film 10. Contact part 15. Aluminum 11 and alumina 12 are formed. In such a conventional example, the element isolation region 4 causes a reduction in the degree of integration due to lateral diffusion.

第2図(N〜(qは本発明実施例の工程順断面図である
。第2図(5)において、マスクを用い゛C半導体表面
の所定の酸化膜9を除去後、アルカリ溶液で異方性エツ
チングを行なってエピタキシャル層3から基板1迄到達
する開孔部をもつV溝13を形成する。
FIG. 2 (N~(q) is a cross-sectional view of the process according to the embodiment of the present invention. In FIG. 2 (5), after removing a predetermined oxide film 9 on the surface of the C semiconductor using a mask, Directional etching is performed to form a V-groove 13 having an opening extending from the epitaxial layer 3 to the substrate 1.

次に第2図(5)に示す様に、全面的に酸化膜9を形成
後、マスクを使用して所定の酸化膜9を除去し、しかる
後コレクタ5にリン、ベース6及びグラフトベース7に
ボロンを拡散及び酸化し、さらにエミッタ8にリンを拡
散する。次に表面全体に酸化膜9を形成した後、その上
に窒化膜10を形成する。その後、ウェハー表面にレジ
ストを塗布する要領と同じ要領で、ウェハーを回転しな
がら絶縁樹脂14を塗布することによってV溝13及び
該V溝13以外部分への塗布がなされる。次に絶縁樹脂
14をプラズマエツチングして、第2図(Qに示す様に
V溝13の中にのみ、絶縁樹脂14を残す。その後、コ
ンタクト部15.アルミニウム11及びアルミナ12か
らなる半導体装置を得る。なお、■溝13へ絶縁樹脂1
4を充填する目的は素子間の絶縁性を得、且つウェハー
表面を平坦化することによりアルミニウム配線時におけ
る段差による段切れ不良を防止するためである。
Next, as shown in FIG. 2 (5), after forming an oxide film 9 on the entire surface, a mask is used to remove a predetermined portion of the oxide film 9, and then the collector 5 is covered with phosphorus, the base 6 and the graft base 7. Boron is diffused and oxidized into the emitter 8, and phosphorus is further diffused into the emitter 8. Next, after forming an oxide film 9 over the entire surface, a nitride film 10 is formed thereon. Thereafter, the insulating resin 14 is applied to the V-groove 13 and the portions other than the V-groove 13 by rotating the wafer in the same manner as applying resist to the wafer surface. Next, the insulating resin 14 is plasma-etched to leave the insulating resin 14 only in the V-groove 13 as shown in FIG. In addition, insulating resin 1 is added to groove 13.
The purpose of filling the layer 4 is to obtain insulation between elements and to flatten the wafer surface to prevent defective steps due to step differences during aluminum wiring.

この様な実施例では第1図の従来構造に見られる様な素
子分離領域4の横方向への拡散を無視できる。
In such an embodiment, the lateral diffusion of the element isolation region 4 as seen in the conventional structure of FIG. 1 can be ignored.

以上の説明から明らかな様に、本発明の半導体装置は従
来構造に比べて低温でV溝13への充填が可能であり、
且つ素子分離領域4へのボロンの拡散及び酸化面積の減
少により、半導体装置の小チツプ化並びに高集積度化を
容易にならしめる効果を′有する。
As is clear from the above description, the semiconductor device of the present invention can fill the V-groove 13 at a lower temperature than the conventional structure.
Furthermore, by diffusing boron into the element isolation region 4 and reducing the oxidized area, it has the effect of facilitating miniaturization and higher integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例による半導体装置の断面図、第2図(5
)〜0は本発明実施例の工程順断面図で第2図(5)は
異方性エツチングにより■溝を形成した断面図、第゛2
図(B)はV溝形成後、酸化膜及び窒化膜を形成し、さ
らにグラフトベース、エミッタ及びコレクタを形成し、
しかる後絶縁樹脂を塗布した断面図、第2図(qは本発
明の半導体装置の最終的な断面図、である。 なお図において、1・・・・・・基板(p又はn形)、
2°°°°°°埋込み(sb又はB又はAs)、3・・
・・・・エピタキシャル層(n形又はp形)、4・・・
・・・素子分離領域、5・・・・・・コレクタ、6・・
・・・・ベース、7・・・・・・グラフトベース、8・
・・・・・エミッタ、9・・・・・・酸化膜、10・・
・・・・窒化膜、11・・・・・・アルミニウム、12
・・・・・・アルミナ(AAzOs)、x3・・・・・
・V溝、14・・・・・・絶縁樹脂、15・・・・・・
コンタクト部、である。
Figure 1 is a sectional view of a conventional semiconductor device, and Figure 2 (5
) to 0 are cross-sectional views in the order of steps of the embodiments of the present invention, and FIG. 2 (5) is a cross-sectional view in which the
Figure (B) shows that after forming the V-groove, an oxide film and a nitride film are formed, and then a graft base, emitter and collector are formed.
FIG. 2 is a cross-sectional view after the insulating resin is applied (q is the final cross-sectional view of the semiconductor device of the present invention. In the figure, 1...substrate (p or n type),
2°°°°°°embedding (sb or B or As), 3...
...Epitaxial layer (n-type or p-type), 4...
...Element isolation region, 5...Collector, 6...
...Base, 7...Graft base, 8.
...Emitter, 9...Oxide film, 10...
... Nitride film, 11 ... Aluminum, 12
...Alumina (AAzOs), x3...
・V groove, 14...Insulating resin, 15...
This is the contact part.

Claims (1)

【特許請求の範囲】[Claims] バイポーラ型集積回路装置において、半導体素子間の分
離部にエピタキシャル層から基板布達するV溝をもち、
該V溝を含む半導体表面に酸化膜及び窒化膜が形成せら
れ、該V溝のみに絶縁樹脂が充填せられたことを特徴と
する半導体装置。
In a bipolar integrated circuit device, a separation part between semiconductor elements has a V-groove extending from an epitaxial layer to a substrate,
A semiconductor device characterized in that an oxide film and a nitride film are formed on a semiconductor surface including the V-groove, and only the V-groove is filled with an insulating resin.
JP21173882A 1982-12-02 1982-12-02 Semiconductor device having groove filled with insulation resin Pending JPS59101850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21173882A JPS59101850A (en) 1982-12-02 1982-12-02 Semiconductor device having groove filled with insulation resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21173882A JPS59101850A (en) 1982-12-02 1982-12-02 Semiconductor device having groove filled with insulation resin

Publications (1)

Publication Number Publication Date
JPS59101850A true JPS59101850A (en) 1984-06-12

Family

ID=16610764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21173882A Pending JPS59101850A (en) 1982-12-02 1982-12-02 Semiconductor device having groove filled with insulation resin

Country Status (1)

Country Link
JP (1) JPS59101850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302002A (en) * 1990-09-28 1994-04-12 Shiroki Corporation Hip supporting apparatus of seat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302002A (en) * 1990-09-28 1994-04-12 Shiroki Corporation Hip supporting apparatus of seat

Similar Documents

Publication Publication Date Title
US4404733A (en) Method of producing semiconductor devices
JPH0449777B2 (en)
JPH0555364A (en) Method of forming isolating film of semiconductor element
US4073054A (en) Method of fabricating semiconductor device
EP0111651B1 (en) Semiconductor device comprising dielectric isolation regions
JPS59101850A (en) Semiconductor device having groove filled with insulation resin
KR100311103B1 (en) Manufacturing method of semiconductor device
JPS6358852A (en) Manufacture of semiconductor integrated circuit device
JPS63228730A (en) Manufacture of semiconductor integrated circuit
JPS62120040A (en) Manufacture of semiconductor device
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS5951745B2 (en) Manufacturing method of semiconductor device
JPS60211958A (en) Semiconductor device
JP2741757B2 (en) Semiconductor device and manufacturing method thereof
JPS59184523A (en) Manufacture of semiconductor integrated circuit
JPS5941851A (en) Manufacture of semiconductor device
JPS6292452A (en) Manufacture of semiconductor device
JPS5996744A (en) Manufacture of semiconductor device with separated element region
JPS6312380B2 (en)
JPS6229890B2 (en)
JPS5897858A (en) Manufacture of semiconductor device
JPH01189159A (en) Manufacture of semiconductor integrated circuit device
KR19980037506A (en) Field oxide film formation method of a semiconductor device
JPH0621243A (en) Manufacture of semiconductor device
JPH04217343A (en) Semiconductor device and fabrication thereof