JPS6358852A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS6358852A
JPS6358852A JP20167086A JP20167086A JPS6358852A JP S6358852 A JPS6358852 A JP S6358852A JP 20167086 A JP20167086 A JP 20167086A JP 20167086 A JP20167086 A JP 20167086A JP S6358852 A JPS6358852 A JP S6358852A
Authority
JP
Japan
Prior art keywords
layer
type
type semiconductor
semiconductor layer
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20167086A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
研一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20167086A priority Critical patent/JPS6358852A/en
Publication of JPS6358852A publication Critical patent/JPS6358852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To realize a complete isolation structure in a simple process which is the strong point of an anode formation method by a method wherein grooves, which penetrate an N-type semiconductor layer and reach a P-type semiconductor layer, are formed and after the grooves are filled with a P-type semiconductor, an anode formation treatment is performed, the whole region of the P-type semiconductor and the P-type semiconductor layer just under the N-type semiconductor layer are covered into a porous semiconductor layer and the porous semiconductor layer is converted into an oxide film. CONSTITUTION:Opening parts 26 are provided in a nitride film 25 and an oxide film 24 for buffering, grooves 27 to reach a P-type Si substrate 21 are formed, a P-type poly Si layer 28 is deposited to fill the grooves 27, the poly Si layer 28 is etched back and the poly Si layer 28 is made to remain only in the interiors of the grooves 27. Then, the P-type poly Si layer 28 and the P-type Si substrate 21 are converted into a porous Si layer 29. Then, the porous Si layer 29 is converted into a porous Si oxide film 30 using the nitride film 25 as a mask, the nitride film 25 and the oxide film 24 for buffering are removed and an n-type element forming region 31 consisting of an n<+> buried diffusion layer 22 and an n<-> epitaxial layer 23 is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体集積回路装置の製造方法に係シ、特に
素子分ivに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and particularly to an element iv.

(従来の技術) ノ々イポーラ型半導体集積回路装置の素子分#は、古く
はPN接合分離法によってい念が、素子が微細化され集
粘度が増大するにつれ分離領域の開祖を削減する必要が
生じ、シリコン酸化Dk利用した酸化膜分離法、いわゆ
るアイソプレーナて移行していった。
(Prior art) The element size of a non-polar type semiconductor integrated circuit device was originally achieved by using the PN junction separation method, but as the elements become smaller and the viscosity increases, it becomes necessary to reduce the number of separation regions. This led to a transition to an oxide film separation method using silicon oxide Dk, the so-called isoplanar method.

酸化膜分離法は、PN接合分離法に比べて著しく分離領
域を減少させるのみならず、素子形成領域以外のすべて
の領域を厚い酸化膜に変換するため、配線一基板間の浮
遊容量が減少し、高速化にも寄与する効果的な方法であ
った。
The oxide film isolation method not only significantly reduces the isolation area compared to the PN junction isolation method, but also converts all areas other than the element formation area into a thick oxide film, which reduces the stray capacitance between the wiring and the substrate. This was an effective method that also contributed to speeding up the process.

しかし、近年、素子の高速化への要求は増々強まり、高
速化への妨げとなる寄生容fAk極力低減化させる検討
が行われている。
However, in recent years, there has been an increasing demand for higher speed devices, and studies are being conducted to reduce the parasitic capacitance fAk, which is an impediment to higher speeds, as much as possible.

素子分離技術に関しては、基板−コレクタ間の寄生容1
Fを低減化するために、素子の側面ばつりでなく底面を
も絶縁物で分離する完全分離構造とすることが高速化に
対し有効である。
Regarding element isolation technology, parasitic capacitance between substrate and collector1
In order to reduce F, it is effective to increase the speed by creating a complete isolation structure in which not only the sides but also the bottom of the element are separated by an insulator.

完全分離構造?実現する一乎段として、半心体トランジ
スタ研究5SD79−95.P45〜54に開示される
ように、陽極化成法によりシリコン基板内に多孔質シリ
コン層を形成し、これを酸化することにより得られる多
孔質シリコン酸化膜を利用する方法が提案されている。
Completely separated structure? As a step toward realization, half-core transistor research 5SD79-95. As disclosed in pages 45 to 54, a method has been proposed in which a porous silicon layer is formed in a silicon substrate by an anodization method and a porous silicon oxide film obtained by oxidizing the layer is utilized.

陽極化成法では、多孔質シリコンは、シリコン中の正孔
電流によシ形成されるので、陽極化成電流を適当な通路
に形成しておくことにより、シリコン基板内の任意の場
所に多孔質シリコンを形成することが可能である。
In the anodization method, porous silicon is formed by hole current in silicon, so by forming the anodization current in an appropriate path, porous silicon can be formed anywhere in the silicon substrate. It is possible to form

第2図に、従来技術の一例として、陽極化成法による完
全分離技術をパイボーラデノ々イスに適用した場合の完
全分離構造を得るまでの工程断面図を示す。
FIG. 2 shows, as an example of the prior art, a cross-sectional view of the steps taken to obtain a complete separation structure when a complete separation technique using an anodization method is applied to a pie-bola denomination chair.

まず、第2図(A)に示すように、P型シリコン基板1
0トランジスタを形成すべき領域の表面上に?型埋込拡
散層2を形成した後、全表面上にV型エピタキシャル層
3を形成する。さらに、そのN″″型エピタキシャル層
3の全表面上に緩衝用酸化膜4.窒化シリコン膜(以下
窒化膜と呼ぶ)5を順次形成する。
First, as shown in FIG. 2(A), a P-type silicon substrate 1
0 on the surface of the area where the transistor is to be formed? After forming the type buried diffusion layer 2, a V-type epitaxial layer 3 is formed on the entire surface. Furthermore, a buffer oxide film 4 is formed on the entire surface of the N'''' type epitaxial layer 3. A silicon nitride film (hereinafter referred to as nitride film) 5 is sequentially formed.

次に、第2図(B)に示すように、通常の写真食刻法に
よシ窒化膜5および緩衝用酸化膜4に開口部6を形成し
、この開ロ部6全通してN−型エピタキシャル層3中へ
P+型不純物を拡散し、戸型拡散層7全形成する。この
P型拡散N7は、少なくともP型シリコン基板1vC到
達するまで深く拡散する必要がある。
Next, as shown in FIG. 2(B), an opening 6 is formed in the silicon nitride film 5 and the buffer oxide film 4 by ordinary photolithography, and the opening 6 is completely passed through. A P+ type impurity is diffused into the type epitaxial layer 3 to completely form the door type diffusion layer 7. This P-type diffusion N7 needs to be diffused deeply until it reaches at least the P-type silicon substrate 1vC.

次に、第3図に示すようにシリコン基板lと白金電極1
1とを7ツ化水素酸水溶液12中に浸て、相互間に電源
13t−接続することによシ、前記フッ化水素酸水溶液
12中で陽極化成処理を行い、第2図(C)に示すよう
な多孔質シリコン層8を形成する。ここで、陽極化成反
応はシリコンの電気化学反応による俗解現象であり、半
導体中の正孔の働きによりP型シリコン領域において選
択的に反応が進行する。したがって、第2図(B)の(
14造体に対して陽極化成処理を施すと、陽極化成反応
は開口部6よりP型拡散層7内に進行し、更に陽極化成
電流の通路にそってP型シリコン基板1内に拡がる。そ
して、ここでは、N型埋込拡散層2の全底面が多孔質化
されるまで陽極化成処理を行うもので、これにより、P
+型拡散層7とP型シリコン基板lの表面側が多孔質シ
リコン層8に変換された第2図(c)の構造が得られる
Next, as shown in FIG.
1 and 2 in a hydrofluoric acid aqueous solution 12 and a power supply 13t connected between them, anodizing treatment was performed in the hydrofluoric acid aqueous solution 12, as shown in FIG. 2(C). A porous silicon layer 8 as shown is formed. Here, the anodization reaction is a common phenomenon caused by an electrochemical reaction of silicon, and the reaction progresses selectively in the P-type silicon region due to the action of holes in the semiconductor. Therefore, (
When the anodization treatment is performed on the structure 14, the anodization reaction proceeds from the opening 6 into the P-type diffusion layer 7 and further spreads into the P-type silicon substrate 1 along the path of the anodization current. Here, anodization treatment is performed until the entire bottom surface of the N-type buried diffusion layer 2 is made porous.
The structure shown in FIG. 2(c) is obtained in which the + type diffusion layer 7 and the surface side of the P type silicon substrate 1 are converted into a porous silicon layer 8.

その後、窒化膜5をマスクとして多孔質シリコン層8を
酸化することによシ第2図(D)に示すように多孔質シ
リコン酸化膜9を得る。この時、多孔質シリコン層8は
実効的な表面積が非常に大きいため酸化速夏が著しく速
く、フた、多孔質シリコン層8全体がほぼ16」時に酸
化されるため、炉型埋込拡散層2の底面まで容易に酸化
膜9に変換することができる。また、陽極化成処理にお
いて多孔質密度を制御することにより、酸化による体積
増加分を吸収することが可能であり、酸化後も酸化処理
前の形状は保存され、通常選択酸化法で問題となる段差
の発生全回避することができる。
Thereafter, porous silicon layer 8 is oxidized using nitride film 5 as a mask to obtain porous silicon oxide film 9 as shown in FIG. 2(D). At this time, since the effective surface area of the porous silicon layer 8 is very large, the oxidation rate is extremely fast. Even the bottom surface of 2 can be easily converted into oxide film 9. In addition, by controlling the porous density during anodization treatment, it is possible to absorb the volume increase due to oxidation, and the shape before oxidation is preserved even after oxidation, eliminating the step difference that is usually a problem with selective oxidation. The occurrence of this can be completely avoided.

その後、同第2図(D)に示すように、窒化膜5と緩衝
用酸化膜4を除去するもので、以上によシ、炉型埋込拡
散層2とその上のN−型エピタキシャル層3が前記多孔
質シリコン酸化膜9で完全分離された第2図(D)に示
すような完全分離構造が得られる。
Thereafter, as shown in FIG. 2(D), the nitride film 5 and the buffer oxide film 4 are removed, and the furnace-type buried diffusion layer 2 and the N-type epitaxial layer thereon are removed. 3 is completely separated by the porous silicon oxide film 9, resulting in a completely isolated structure as shown in FIG. 2(D).

以上のように、陽極化成法により形成される多孔質シリ
コン層を利用した完全分離法は、プロセスが比較的簡単
で有効な方法であると言える。
As described above, it can be said that the complete separation method using a porous silicon layer formed by anodization is an effective method with a relatively simple process.

(発明が解決しようとする問題点) しかるに、上記従来技術では、1〜3μm厚のエピタキ
シャル層3中へP+型拡散全行うため戸型拡散層7の横
方向拡散が大きく、また、写真食刻法を用いてのN+型
埋込拡散層2の形成が必要なため、P型拡散用の開口部
6を形成する際のマスク合わせ余裕を見込む必要があυ
、これらから分離領域幅の縮小に限界を与えると云う問
題点があった。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional technology, since the P+ type is completely diffused into the epitaxial layer 3 having a thickness of 1 to 3 μm, the lateral diffusion of the door-shaped diffusion layer 7 is large, and the photoetching Since it is necessary to form the N+ type buried diffusion layer 2 using the method, it is necessary to allow for mask alignment allowance when forming the opening 6 for P type diffusion.
However, there is a problem in that there is a limit to the reduction of the isolation region width.

この発明は、以上述べた分離領域の微細化全行いにくい
という従来技術の問題点全除去して、陽極化成法の特長
である簡単なプロセスで完全分離構造を実現することの
できる半導体集積回路装置の製造方法全提供することを
目的とする。
The present invention is a semiconductor integrated circuit device that completely eliminates the problems of the conventional technology that it is difficult to miniaturize the isolation region as described above, and realizes a completely isolated structure with a simple process that is a feature of the anodization method. The purpose is to provide complete manufacturing methods.

(問題点を解決するための手段) この発明は、完全分離構造を有する半導体集積回路装置
の&遣方法において、N型半導体層を表面上に有するP
型半導体層の選択された領域に、前記N型半導体層を貫
通してP型半導体層に達する清音形成し、その溝をP型
半導体で埋めた後、そのP型半導体と前記P型半導体層
に陽極化成熟3t’を行い、P型半導体の全領域および
、前記N型半導体層直下のP型半導体層あるいはP型半
導体層の全領域を多孔質半導体層に変換し、その多孔質
半導体層を酸化膜に変換するようにしたものである。
(Means for Solving the Problems) The present invention provides a method for using a semiconductor integrated circuit device having a completely isolated structure.
After forming a groove that penetrates the N-type semiconductor layer and reaches the P-type semiconductor layer in a selected region of the type semiconductor layer, and filling the groove with the P-type semiconductor, the P-type semiconductor and the P-type semiconductor layer are formed. Anodization maturation 3t' is performed to convert the entire region of the P-type semiconductor and the P-type semiconductor layer immediately below the N-type semiconductor layer or the entire region of the P-type semiconductor layer into a porous semiconductor layer, and the porous semiconductor layer is converted into an oxide film.

(作 用) このような方法においては、N型およびP型半導体層に
形成される溝によって素子分離領域幅が決定される。ま
た、溝形成によって3豐部分が除去されるようになるの
で、P型半導体層の表面全体にN型半導体層の一部とし
て埋込拡散層を形成しておくことができ、その結果、前
記溝を形成する際にマスク合わせ余裕を考慮する必要が
なくなる。
(Function) In such a method, the width of the element isolation region is determined by the grooves formed in the N-type and P-type semiconductor layers. In addition, since the three-layered portion is removed by forming the groove, a buried diffusion layer can be formed as a part of the N-type semiconductor layer on the entire surface of the P-type semiconductor layer, and as a result, the above-mentioned There is no need to consider mask alignment allowance when forming grooves.

(実袴例) 以下、この発明の半導体集積回路装置の段進方法の一実
施例について図面に基づき説明する。第1図(A)〜(
G)は一実施例の工程断面図である。
(Example of a Practical Hakama) Hereinafter, an embodiment of a method for advancing a semiconductor integrated circuit device according to the present invention will be described with reference to the drawings. Figure 1 (A) - (
G) is a process sectional view of one embodiment.

この図示の一実施例は、この発F!Aヲパイポーラ型半
導体集積回路装置に適用したものであるが、この発明の
適用範囲は、これに限るものではなく、M OS型その
他の半導体集積回路装置に適用することも可能である。
One example of this illustration is this F! Although the present invention is applied to a bipolar type semiconductor integrated circuit device, the scope of application of the present invention is not limited thereto, and can also be applied to MOS type and other semiconductor integrated circuit devices.

まず、第1図(A)は、P型シリコン基板21の全面に
厚み1〜2μmのN+型埋込拡散層22を形成し、その
上に1〜3μm厚のN−型エピタキシャル層23を形成
し、更に200〜500A厚の緩衝用酸化膜24.10
00〜2000Å厚の窒化シリコン膜(以下窒化膜と呼
ぶ)25を順次形成したものである。なお、後工程のシ
リコン基板21の陽極化成処理を容易にするため、N+
型埋込拡散層22の形成前に更にP+型埋込拡散層を必
要に応じて全面に形成してもよい(図には示していない
)。
First, in FIG. 1(A), an N+ type buried diffusion layer 22 with a thickness of 1 to 2 μm is formed on the entire surface of a P type silicon substrate 21, and an N− type epitaxial layer 23 with a thickness of 1 to 3 μm is formed thereon. In addition, a buffer oxide film 24.10 with a thickness of 200 to 500 A is added.
Silicon nitride films (hereinafter referred to as nitride films) 25 having a thickness of 00 to 2000 Å are sequentially formed. Note that in order to facilitate the anodization treatment of the silicon substrate 21 in the subsequent process, N+
Before forming the type buried diffusion layer 22, a P+ type buried diffusion layer may be further formed on the entire surface as required (not shown in the figure).

この場合、シリコン基板21はP型に限らずN型も可能
となる。
In this case, the silicon substrate 21 is not limited to P type, but can also be N type.

次に、第1図fB)に示すように、通常の写真食刻法全
用いて素子分離領域となるべき領域の窒化膜25および
緩衝用酸化膜24に幅1〜3μmの開口部26を設け、
さらにこの開口部26全通して、シリコン基板表面に対
して垂直にエピタキシャル層23およびr型埋込拡散層
22を貫通してP型シリコン基板21に達する深さ4〜
6μmの溝27を形成する。
Next, as shown in FIG. 1fB), an opening 26 with a width of 1 to 3 μm is formed in the nitride film 25 and the buffer oxide film 24 in the region to be the element isolation region by using the usual photolithography method. ,
Further, the opening 26 passes through the epitaxial layer 23 and the r-type buried diffusion layer 22 perpendicularly to the silicon substrate surface to a depth of 4 to 4000 to reach the p-type silicon substrate 21.
A groove 27 of 6 μm is formed.

続いて、第1図(C)に示すように、全表面に埋込材料
として、P型不純物であるボロンを添加しmP型多結晶
シリコン層28を厚く(2〜4μm)堆積して溝27を
埋める。その後、第1図(D)に示すようrこ、公知の
方法によシ多結晶シリコン層28をエッチパックし、溝
27の内部にのみ多結晶シIJ :7ン層28を残存さ
せる。その際、エッチノ々ツクの深さは、最終工程にお
いて素子形成領域と素子分離領域が平坦となるような適
轟な深さとする。なお、多結晶シリコン層中へのボロン
の添加方法は、該多結晶シリコン層の気相化学成長中に
添加する方法に限るものではなく、無添加の多結晶シリ
コン層を堆積させ溝27を埋め、エッテノ々ツクによシ
溝27の内部にのみ多結晶シリコン層を残存形成した後
に、多結晶シリコン層中でのボロンの拡散速度が速いこ
とを利用して、多結晶シリコン層中へ選択的にボロン拡
散全行ってもよい。
Subsequently, as shown in FIG. 1C, a mP type polycrystalline silicon layer 28 is deposited thickly (2 to 4 μm) by adding boron, which is a P type impurity, to the entire surface as an embedding material. fill in. Thereafter, as shown in FIG. 1D, the polycrystalline silicon layer 28 is etched and packed using a known method, leaving the polycrystalline silicon layer 28 only inside the groove 27. At this time, the depth of the etch notches is set to an appropriate depth so that the element forming region and the element isolation region become flat in the final step. Note that the method of adding boron into the polycrystalline silicon layer is not limited to the method of adding boron during the vapor phase chemical growth of the polycrystalline silicon layer. After forming the polycrystalline silicon layer remaining only inside the groove 27 by etching, the boron is selectively diffused into the polycrystalline silicon layer by taking advantage of the high diffusion rate of boron in the polycrystalline silicon layer. All boron diffusion may be performed.

続いて、フッ化水素酸水溶液中で陽極化成処理を行うこ
とにより、第1図tE)に示すように、溝27内部のP
型多結晶シリコン層28および素子形成領域となるN+
ya埋込拡散層22の底面下のP型シリコン基板21を
多孔質シリコン層29に変換する。この時、陽極化成反
応は、P型シリコン領域において選択的に反応が進行し
、N23シリコン領域へは反応が進行しないため、結局
、多孔質シリコン層29で囲まれた!型埋込拡散層22
とN−型エピタキシャル層23からなるN型の素子形成
領域31が島状に形成される。
Subsequently, by performing anodization treatment in a hydrofluoric acid aqueous solution, P inside the groove 27 is removed, as shown in FIG.
N+ type polycrystalline silicon layer 28 and an element formation region
The P-type silicon substrate 21 under the bottom surface of the ya buried diffusion layer 22 is converted into a porous silicon layer 29. At this time, the anodization reaction proceeds selectively in the P-type silicon region and does not proceed to the N23 silicon region, which is eventually surrounded by the porous silicon layer 29! Mold embedded diffusion layer 22
An N-type element formation region 31 consisting of the N-type epitaxial layer 23 and N-type epitaxial layer 23 is formed in an island shape.

次に、窒化膜25をマスクとして熱酸化処理を行い、第
1図(F)に示すように多孔質シリコン層29を多孔質
シリコン酸化膜30に変換する。
Next, thermal oxidation treatment is performed using the nitride film 25 as a mask to convert the porous silicon layer 29 into a porous silicon oxide film 30 as shown in FIG. 1(F).

最後に、第1図(G)に示すように窒化膜25と緩衝用
酸化@24を除去するもので、以上により、多孔質シリ
コン酸化膜30で完全分離されたゾ型埋込拡散層22と
N−型エピタキシャル層23からなるN型の素子形成領
域31が得られる。
Finally, as shown in FIG. 1(G), the nitride film 25 and the buffer oxide layer 24 are removed. An N-type element formation region 31 made of the N-type epitaxial layer 23 is obtained.

なお、上記一実施例では、!型埋込拡散層22直下のP
型シリコン基板部分のみを多孔シリコン層29とし、更
に多孔質シリコン酸化膜30に変換したが、P型シリコ
ン基板21の全領域を多孔質シリコン層とし、更に多孔
質シリコン酸化膜に変換してもよい。
Note that in the above embodiment, ! P directly under the mold-embedded diffusion layer 22
Although only the P-type silicon substrate portion is made into a porous silicon layer 29 and further converted into a porous silicon oxide film 30, it is also possible to make the entire area of the P-type silicon substrate 21 into a porous silicon layer and further convert it into a porous silicon oxide film. good.

(発明の効果) 以上詳細に説明したように、この発明の方法によれば、
N型半導体層を表面上に有するP型半導体層の選択され
た領域に前記N型半導体層を貫通してP型半導体層に達
する溝を形成し、その溝をP型半導体で埋めた後、陽極
化成反応を進行させるようにしたので、従来方法で問題
となっていたP+拡散の横方内拡が9による化成反応領
域の拡大を防止することができ、化成反応領域延いては
素子分離領域は溝幅で正確に決定されるようになり、そ
の結果、ノミターン変換差の殆どない微細な分離領域幅
を有する完全分離構造を得ることができる。
(Effect of the invention) As explained in detail above, according to the method of this invention,
Forming a trench in a selected region of a P-type semiconductor layer having an N-type semiconductor layer on the surface thereof, penetrating the N-type semiconductor layer and reaching the P-type semiconductor layer, and filling the trench with a P-type semiconductor; Since the anodic chemical reaction is allowed to proceed, the lateral inward expansion of P+ diffusion, which was a problem in the conventional method, can be prevented from expanding the chemical reaction region due to 9, and the chemical reaction region and, by extension, the element isolation region. is now accurately determined by the groove width, and as a result, it is possible to obtain a complete isolation structure having a fine isolation region width with almost no difference in nomiturn conversion.

ま之、この方法によれば、為形成によって不要部分が除
去されるようになるので、P型半導体層の表面全体にN
型半導体層の一部として埋込拡散層を形成しておくこと
ができ、その結果として埋込拡散用のマスクが不要とな
るため工程を著しく短縮することができるとともに、前
記溝形成時にマスク合わせ余裕を考慝する必要がなくな
るので、分離領域幅の一層の微細化が可能となる。さら
に、この発明の方法によれば従来と同様に表面を平坦に
できる。
However, according to this method, unnecessary parts are removed by the formation, so N is applied to the entire surface of the P-type semiconductor layer.
A buried diffusion layer can be formed as a part of the semiconductor layer, and as a result, a mask for buried diffusion is not required, so the process can be significantly shortened. Since there is no need to consider the margin, it is possible to further reduce the width of the isolation region. Furthermore, according to the method of the present invention, the surface can be made flat as in the conventional method.

これらのように、この発明の製造方法によれば、表面が
平坦で、パターン寸法変換差の殆どない微細な分離領域
幅を有する理想的な完全分離構造が得られ、その結果、
例えばバイポーラ型半導体集積回路装置に適用すれば、
コレクター基板間の寄生容量や浮遊容量が大幅に低減さ
れるばかりでなく、分離領域縮小による集積度の向上が
図れるとともに、配線長の短縮によ)配線遅延を低減す
ることができるので、高速高集積ノ々イポーラデバイス
の実現が可能となる。
As described above, according to the manufacturing method of the present invention, an ideal complete isolation structure with a flat surface and a fine isolation region width with almost no difference in pattern dimension conversion can be obtained, and as a result,
For example, if applied to a bipolar semiconductor integrated circuit device,
Not only can the parasitic capacitance and stray capacitance between the collector substrates be significantly reduced, but also the degree of integration can be improved by reducing the isolation area, and wiring delays can be reduced (by shortening the wiring length), so high-speed, high-speed It becomes possible to realize integrated non-polar devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体集積回路装置の製造方法の一
実施例を示す工程断面図、第2図は従来技術の一例を示
す工程断面図、第3図は陽極化成処理工程の配線図であ
る。 21・・・P型シリコン基板、22・・・!型埋込拡散
層、23・・・y型エピタキシャル層、27・・・溝、
28・・・P型多結晶シリコン層、29・・・多孔質シ
リコン層、30・・・多孔質シリコン酸化膜。 特許出願人 沖電気工業株式会社− 1。 37   3027    ’ 第1図
FIG. 1 is a process cross-sectional view showing an embodiment of the method for manufacturing a semiconductor integrated circuit device of the present invention, FIG. 2 is a process cross-sectional view showing an example of the prior art, and FIG. 3 is a wiring diagram of the anodizing process. be. 21...P-type silicon substrate, 22...! Type buried diffusion layer, 23... Y type epitaxial layer, 27... Groove,
28... P-type polycrystalline silicon layer, 29... Porous silicon layer, 30... Porous silicon oxide film. Patent applicant: Oki Electric Industry Co., Ltd. - 1. 37 3027' Figure 1

Claims (1)

【特許請求の範囲】 (a)N型半導体層を表面上に有するP型半導体層の選
択された領域に、前記N型半導体層を貫通してP型半導
体層に達する溝を形成する工程と、(b)その溝をP型
半導体で充填する工程と、(c)そのP型半導体と前記
P型半導体層に陽極化成処理を行い、P型半導体の全領
域および、前記N型半導体層直下のP型半導体層あるい
はP型半導体層の全領域を多孔質半導体層に変換する工
程と、 (d)その多孔質半導体層を酸化して酸化膜に変換する
工程とを具備することを特徴とする半導体集積回路装置
の製造方法。
[Scope of Claims] (a) A step of forming a groove in a selected region of a P-type semiconductor layer having an N-type semiconductor layer on the surface thereof, penetrating the N-type semiconductor layer and reaching the P-type semiconductor layer; , (b) filling the trench with a P-type semiconductor, and (c) performing an anodization treatment on the P-type semiconductor and the P-type semiconductor layer, so that the entire region of the P-type semiconductor and directly under the N-type semiconductor layer is (d) oxidizing the porous semiconductor layer to convert it into an oxide film; and (d) oxidizing the porous semiconductor layer to convert it into an oxide film. A method for manufacturing a semiconductor integrated circuit device.
JP20167086A 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device Pending JPS6358852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20167086A JPS6358852A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20167086A JPS6358852A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6358852A true JPS6358852A (en) 1988-03-14

Family

ID=16444951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20167086A Pending JPS6358852A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6358852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277748A (en) * 1992-01-31 1994-01-11 Canon Kabushiki Kaisha Semiconductor device substrate and process for preparing the same
US5597738A (en) * 1993-12-03 1997-01-28 Kulite Semiconductor Products, Inc. Method for forming isolated CMOS structures on SOI structures
WO2006006392A1 (en) * 2004-07-07 2006-01-19 Matsushita Electric Industrial Co., Ltd. Solid-state image pickup device, manufacturing method thereof and camera using the solid-state image pickup device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277748A (en) * 1992-01-31 1994-01-11 Canon Kabushiki Kaisha Semiconductor device substrate and process for preparing the same
US5597738A (en) * 1993-12-03 1997-01-28 Kulite Semiconductor Products, Inc. Method for forming isolated CMOS structures on SOI structures
WO2006006392A1 (en) * 2004-07-07 2006-01-19 Matsushita Electric Industrial Co., Ltd. Solid-state image pickup device, manufacturing method thereof and camera using the solid-state image pickup device
CN100459141C (en) * 2004-07-07 2009-02-04 松下电器产业株式会社 Solid-state image pickup device, manufacturing method thereof and camera using the solid-state image pickup device
US7696592B2 (en) 2004-07-07 2010-04-13 Panasonic Corporation Solid state imaging apparatus method for fabricating the same and camera using the same
JP4719149B2 (en) * 2004-07-07 2011-07-06 パナソニック株式会社 Solid-state imaging device and camera using the same

Similar Documents

Publication Publication Date Title
US4546538A (en) Method of manufacturing semiconductor integrated circuit devices having dielectric isolation regions
US8334188B2 (en) Process for manufacturing a wafer by annealing of buried channels
JPH0449777B2 (en)
JPS59188974A (en) Manufacture of semiconductor device
GB2156149A (en) Dielectrically-isolated integrated circuit manufacture
JPS6348180B2 (en)
JPH05190663A (en) Manufacture of semiconductor integrated circuit
JPS58220445A (en) Manufacture of semiconductor integrated circuit
JPH02119238A (en) Semiconductor device and manufacture thereof
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
JPS6358852A (en) Manufacture of semiconductor integrated circuit device
JPS60208843A (en) Manufacture of semiconductor device
JPS6324672A (en) Manufacture of semiconductor device
JPS5992547A (en) Isolation process
JPS6167932A (en) Manufacture of semiconductor integrated circuit device
JPS60211958A (en) Semiconductor device
JPH0420267B2 (en)
JPS60161632A (en) Semiconductor device and manufacture thereof
JPH05226466A (en) Manufacture of semiconductor device
JPH05121537A (en) Manufacture of semiconductor device
JPH06104334A (en) Semiconductor device
JPS62213258A (en) Manufacture of semiconductor device
JPS6025247A (en) Manufacture of semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPH0423828B2 (en)