JPS5895816A - Preparation of semiconductor device having laminate structure - Google Patents

Preparation of semiconductor device having laminate structure

Info

Publication number
JPS5895816A
JPS5895816A JP56194713A JP19471381A JPS5895816A JP S5895816 A JPS5895816 A JP S5895816A JP 56194713 A JP56194713 A JP 56194713A JP 19471381 A JP19471381 A JP 19471381A JP S5895816 A JPS5895816 A JP S5895816A
Authority
JP
Japan
Prior art keywords
silicon layer
single crystal
layer
crystal silicon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56194713A
Other languages
Japanese (ja)
Inventor
Nobufumi Komori
伸史 小守
Sunao Nishioka
西岡 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56194713A priority Critical patent/JPS5895816A/en
Publication of JPS5895816A publication Critical patent/JPS5895816A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a single crystal silicon layer being excellent in the uniformity both of the quality and thickness of a film, by applying laser beams from a number of directions when laser annealing for forming single crystals are performed. CONSTITUTION:A single crystal silicon substrate whereon a dioxide silicon layer 2 having an opening is formed is placed in the ambience of epitaxial growing, and polycrystalline silicon 4a is grown on the dioxide silicon layer 2, while a single crystal silicon layer 3a is grown in the opening of the dioxide silicon layer 2. Thereafter, the ununiform surface of the layer is irradiated by laser beams 5b applied from a number of directions, and thereby single crystal silicon layers 3b and 4b being excellent both in the thickness and quality of a film can be formed with the part of the single crystal silicon layer 3b as a nucleus, as shown in the Figure.

Description

【発明の詳細な説明】 この発明は、積層構造を有する半導体装置の製一方法に
関する吃のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device having a stacked structure.

従来、積層部の単結晶基板を形成するためには、まず第
1図に示すように、開口部を有する二酸化シリコン層(
2)を形成した単結晶シリコン基板(1)をエビ成長雰
囲気中に直いて二酸化シリコン層(2)の上には多結晶
シリコン層(4a)を、また、二酸化シリコン層(2)
の開口部分には単結晶シリコン)II (8a)を成長
させた後、単方向からレーサー光# (5)を照射し、
第2図に示すように単結晶シリコン層(8b)の部分を
核として多結晶シリコン層(4a)を単結晶シリコン層
(4b)化させていた。
Conventionally, in order to form a single-crystal substrate for a laminated part, first, as shown in FIG. 1, a silicon dioxide layer (
The single crystal silicon substrate (1) on which 2) was formed is placed in a shrimp growth atmosphere, and a polycrystalline silicon layer (4a) is placed on top of the silicon dioxide layer (2), and a polycrystalline silicon layer (4a) is placed on top of the silicon dioxide layer (2).
After growing single-crystal silicon II (8a) in the opening, laser beam # (5) is irradiated from a single direction.
As shown in FIG. 2, the polycrystalline silicon layer (4a) was turned into a single-crystalline silicon layer (4b) using the single-crystalline silicon layer (8b) as a nucleus.

従来の方法では、単方向からのレーザー照射であるため
、二酸化シリコン層(2)の開口端の周辺に結晶欠陥が
多く含まれる(81b)、また、積層部が平たんになシ
にくい等の欠点があった、この発明は、上記の従来法の
欠点を除去するためになされたもので、8!i1一部の
単結晶シリコン層を形成する時に、多方向からレーザー
光線を照射することにより、結晶欠陥が少なく、また平
たんなai層部を形成することを目的としている。
In the conventional method, since laser irradiation is performed from a single direction, many crystal defects are included around the opening end of the silicon dioxide layer (2) (81b), and the laminated portion is difficult to flatten. This invention was made to eliminate the drawbacks of the above-mentioned conventional method. The purpose of this method is to form a flat ai layer portion with few crystal defects by irradiating laser beams from multiple directions when forming a part of the single crystal silicon layer i1.

以下、本発明の内容を一実施例を示す断面図。The following is a sectional view showing one embodiment of the present invention.

第8図、第4図で説明する。This will be explained with reference to FIGS. 8 and 4.

第8図に示すように、従来法と同様に、開口部を有する
二酸化シリコン層(2)を形成した単結晶シリコン基板
をエビ成長雰囲気中に直いて、二酸化シリコン層(2)
の上には多結晶シリコン(4a)を、また、二酸化シリ
コン層(2)の開口部には単結晶シリコン層(8a)を
成長させる。この後、多方向からレーサー光m (5b
)を照射することによって凹凸面に均一にレーサー光線
を照射し、第4図にボすように単結晶シリコン層(8b
)の部分を核として膜季、膜質ともに良好な単結晶シリ
コン層(ab)。
As shown in FIG. 8, similarly to the conventional method, a single crystal silicon substrate on which a silicon dioxide layer (2) having an opening is formed is placed in a shrimp growth atmosphere, and a silicon dioxide layer (2) is formed.
Polycrystalline silicon (4a) is grown on top of the polycrystalline silicon layer (4a), and a single crystalline silicon layer (8a) is grown in the opening of the silicon dioxide layer (2). After this, the racer light m (5b
), the uneven surface is uniformly irradiated with a laser beam, and the monocrystalline silicon layer (8b
) A single-crystal silicon layer (ab) with good film thickness and film quality.

(4b)が得らnる。(4b) is obtained.

なお、上記実施例では、多方向から複数のレーザー光線
を照射する場合について述べたが、レーザー光線の光源
を移動してもよいし、また、試料を移動させても同様の
効果が得られることは言うまでもない。
In the above embodiment, a case was described in which multiple laser beams were irradiated from multiple directions, but it goes without saying that the same effect can be obtained by moving the light source of the laser beam or by moving the sample. stomach.

以上のように、単結晶化のためのレーザーアニールを行
なう時に多方向からレーザー光線を照射することによっ
て、膜質、膜厚の均一性ともに良好な単結晶シリコン層
が得られるという効果がある。
As described above, by irradiating laser beams from multiple directions during laser annealing for single crystallization, a single crystal silicon layer with good film quality and uniform thickness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の方法、による製造過程を示す断
面図であり、第8図、第4図は本発明の一実施例を示す
断面図であり、(1)は単結晶シリコン基板、(2)は
二酸化シリコン層、(8a)はレーザー照射前の単結晶
シリコン層、(8b)はレーザー照射後の単結晶シリコ
ン層、(81b)は、レーザー照射後も、結晶欠陥を多
く含む単結晶シリコン層、(4a)はレーザー照射前の
多結晶シリコン層、(4b)はレーザー照射後の単結晶
シリコン層、(5a)はレーザー光線、(6b)は多方
向からのレーザー光線を示している。 なお、図中同一符号は同一、または相当部分を示す。 代理人   葛 野 信 − 第1図 第2図 第3図 第4図
FIGS. 1 and 2 are cross-sectional views showing the manufacturing process using a conventional method, and FIGS. 8 and 4 are cross-sectional views showing an embodiment of the present invention. Substrate, (2) is a silicon dioxide layer, (8a) is a single crystal silicon layer before laser irradiation, (8b) is a single crystal silicon layer after laser irradiation, (81b) is a layer with many crystal defects even after laser irradiation. (4a) is a polycrystalline silicon layer before laser irradiation, (4b) is a single crystal silicon layer after laser irradiation, (5a) is a laser beam, and (6b) is a laser beam from multiple directions. There is. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 積層部の基板を単結晶化するためのレーザーアニールを
行なう時に、多方向からレーザー光線を照射することを
特徴とする81層構造を有する半導体装置の製造方法。
A method for manufacturing a semiconductor device having an 81-layer structure, characterized in that laser beams are irradiated from multiple directions when performing laser annealing to single-crystallize a substrate in a laminated portion.
JP56194713A 1981-11-30 1981-11-30 Preparation of semiconductor device having laminate structure Pending JPS5895816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194713A JPS5895816A (en) 1981-11-30 1981-11-30 Preparation of semiconductor device having laminate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194713A JPS5895816A (en) 1981-11-30 1981-11-30 Preparation of semiconductor device having laminate structure

Publications (1)

Publication Number Publication Date
JPS5895816A true JPS5895816A (en) 1983-06-07

Family

ID=16329006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194713A Pending JPS5895816A (en) 1981-11-30 1981-11-30 Preparation of semiconductor device having laminate structure

Country Status (1)

Country Link
JP (1) JPS5895816A (en)

Similar Documents

Publication Publication Date Title
JPS5918196A (en) Preparation of thin film of single crystal
JPS5895816A (en) Preparation of semiconductor device having laminate structure
JPS5895815A (en) Preparation of semiconductor device having laminate structure
JPS6119116A (en) Manufacture of semiconductor device
JPS5825221A (en) Manufacture of semiconductor device
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPS60210832A (en) Manufacture of compound semiconductor crystal substrate
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS6265410A (en) Formation of single crystal thin film
JPS62226621A (en) Forming method for single crystal silicon thin film
JPH0236052B2 (en)
JPS5886716A (en) Forming of single crystal semiconductor film
JPS5874034A (en) Preparation of semiconductor device
JPS58180019A (en) Semiconductor base body and its manufacture
JPS62297289A (en) Formation of single crystal thin film
JPS5856408A (en) Method of growing single crystal silicon film
JPS63278217A (en) Manufacture of semiconductor substrate
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JPH01239093A (en) Method for crystal growth
JPS6265411A (en) Formation of single crystal thin film
JPH027414A (en) Formation of soi thin film
JPS63142810A (en) Manufacture of semiconductor device
JPS58197718A (en) Preparation of single crystal thin film
JPS6236381B2 (en)
JPH0795523B2 (en) Method for manufacturing three-dimensional semiconductor device