JPS589387A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS589387A
JPS589387A JP10676781A JP10676781A JPS589387A JP S589387 A JPS589387 A JP S589387A JP 10676781 A JP10676781 A JP 10676781A JP 10676781 A JP10676781 A JP 10676781A JP S589387 A JPS589387 A JP S589387A
Authority
JP
Japan
Prior art keywords
region
layer
conductivity type
laser device
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10676781A
Other languages
Japanese (ja)
Inventor
Yoshito Ikuwa
生和 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10676781A priority Critical patent/JPS589387A/en
Publication of JPS589387A publication Critical patent/JPS589387A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a large laser output by a method wherein, in the case of the laser device having a lateral junction stripe structure, the horizontal angle of emission is symmetrized by flattening the density distribution of the active region in an active layer which is called carrier density distribution in other words. CONSTITUTION:An N type Ga0.65Al0.35As first clad layer 2, a Ga0.9Al0.1As active layer 3, and the second clad layer 4 of the same composition as the layer 1 are formed by lamination on a GaAs substrate 1, and the forbidden band width of the layer 3 is narrowered than that of the layers 2 and 4. Then, a P<+> type region 5 is formed by diffusing P type impurities on a part of the surface of the layer 4 in such a manner that the P type impurities will be entering into the substrate 1, a shallow P type region 6a which comes in contact with the region 5 is provided and this stripe region is used as an active region 10a. Subsequently, a P-side electrode 8 and an N-side electrode 9 are coated on both sides of the region 10a respectively while a part of region 10a is being exposed. Accordingly, as a part having different impurity density is not existed on the region 5, the current which does not contribute to oscillation is reduced, and the output of the title device can be increased.

Description

【発明の詳細な説明】 この発明は半導体レーザ装置の一種である横方向接合ス
トライプ(以下「T、rsJと略称する。)レーザ装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a lateral junction stripe (hereinafter abbreviated as "T" or "rsJ") laser device, which is a type of semiconductor laser device.

半導体レーザ装置でレーザ発振を生ずるしきい値電流を
小さくすることは望ましく、このための構造はいくつか
知られているが、安定した単一モード発振が得られ、1
06時間を越える長寿命動作の可能なT、rEIレーザ
装置は特に優れたものである。
It is desirable to reduce the threshold current that causes laser oscillation in a semiconductor laser device, and several structures for this purpose are known.
A T, rEI laser device capable of long-life operation exceeding 0.6 hours is particularly excellent.

第1図は従来のTJSレーザ装置の構造の一例を示す断
面図で、(1)は半絶縁ガリウムーヒ素(GaAs)基
板、(2)はガリウム・アルミニウム・ヒ素(Ga (
1−x)At、A8 )層からなる第1クラッド層、(
3)はGa(s −、)At、As層からなる活性層、
(4)はGa (1−、)ムt、As層からなる第2ク
ラッド層で、各定数xtyおよび2は次のように設定さ
れる。
Figure 1 is a cross-sectional view showing an example of the structure of a conventional TJS laser device, in which (1) is a semi-insulating gallium-arsenide (GaAs) substrate, (2) is a gallium-aluminum-arsenide (Ga
1-x) A first cladding layer consisting of At, A8) layer, (
3) is an active layer consisting of a Ga(s-,)At, As layer;
(4) is a second cladding layer consisting of Ga(1-,)mut and As layers, and the constants xty and 2 are set as follows.

0≦y (x * z (1 従って、活性層(3)の禁制帯幅は第1クラッド層(2
)および第2クラッド層(4)の禁制帯幅より狭い。(
5)は高濃度p形不純物拡散(p+形)領域、(6)は
低濃度p形不純物拡散(p形)領域、(7)はn影領域
、(8)はp電極、(9)はn電極、a*#i活性層(
3)に形成された低濃度ア形不純物拡散領域からなり、
レーザ発振が起こる活性領域である。
0≦y (x * z (1) Therefore, the forbidden band width of the active layer (3) is the same as that of the first cladding layer (2
) and the forbidden band width of the second cladding layer (4). (
5) is a high concentration p type impurity diffusion (p+ type) region, (6) is a low concentration p type impurity diffusion (p type) region, (7) is an n shadow region, (8) is a p electrode, and (9) is a n electrode, a*#i active layer (
3) consists of a low concentration A-type impurity diffusion region formed in
This is the active region where laser oscillation occurs.

ところで、この従来のT、T8レーザ装置では、活性領
域(イ)が構成されるp影領域(6)はp形不純物を拡
散先端がGaAs基板(1)に到達する程度に高濃度に
拡散してp+十形領域5)を形成した後に、拡散温度よ
り高温で熱処理することによって形成される。
By the way, in this conventional T, T8 laser device, the p-type impurity is diffused in the p-shade region (6) constituting the active region (a) to such a high concentration that the diffusion tip reaches the GaAs substrate (1). After forming the p+ 10-shaped region 5), heat treatment is performed at a temperature higher than the diffusion temperature.

このため、活性層(3)のp+十形領域5)からp影領
域(6)で構成される活性領域αQを経てn影領域(7
)に到るキャリヤ密度分布は第2図ムに示すようになり
、これに対応する屈折率の分布は第2図Bに示すように
なる。従って、従来のT、rSレーザ装置には次のよう
な欠点があった。
Therefore, from the p + 10-shaped region 5) of the active layer (3) through the active region αQ consisting of the p shadow region (6), the n shadow region (7
) is as shown in FIG. 2M, and the corresponding refractive index distribution is as shown in FIG. 2B. Therefore, the conventional T, rS laser device has the following drawbacks.

(イ) p影領域(6)からp+十形領域5)へかけて
の屈折率変化がゆるやかであるため、光のp影領域(6
)への閉じ込めが不十分で、p+十形領域5)側へ延び
やすい。その結果\水平方向放射角パターンが非対称と
なる。
(a) Since the refractive index change from the p shadow region (6) to the p+ decagonal region 5) is gradual, the p shadow region (6) of light is
) is insufficiently confined, and tends to extend toward the p+ decagonal region 5). As a result, the horizontal radiation angle pattern becomes asymmetric.

(ロ)注入キャリヤはp影領域(6)で再結合してレー
ザ発振に寄与するが、この再結合が最大の位置に比較し
てpn接合付近の方が屈折率が高いので、光の閉じ込め
が悪く発振しにくくなシ易い。
(b) The injected carriers recombine in the p shadow region (6) and contribute to laser oscillation, but the refractive index near the pn junction is higher than the position where this recombination is maximum, so light is confined. It is easy to cause poor oscillation and difficult to oscillate.

(ハ) p影領域(6)におけるキャリヤ密度分布は第
2図Aに示すような形状であるので、p+十形領域5)
から注入される正孔の中でp影領域(6)で再結合せず
、n影領域(7)で再結合して無駄な電流成分となるも
のが少くない。
(c) Since the carrier density distribution in the p shadow region (6) has a shape as shown in Figure 2A, the p+ dec-shaped region 5)
Among the holes injected from the p-shade region (6), many of the holes do not recombine in the p-shade region (6) but recombine in the n-shade region (7), resulting in wasted current components.

この発明は以上のような点に鑑みてなされたもので、活
性領域のキャリヤ密度分布が平坦になる構成とすること
によって、水平方向放射角パターンの対称性がよく、無
駄な電流成分も少く、大きなレーザ出力の得られる半導
体レーザ装置を得ることを目的としている。
This invention was made in view of the above points, and by adopting a configuration in which the carrier density distribution in the active region is flat, the horizontal radiation angle pattern has good symmetry, and there are fewer unnecessary current components. The objective is to obtain a semiconductor laser device that can obtain a large laser output.

Jila図はこの発明の一実施例であるT、78レーザ
装置の構造を示す断面図で、第1図の従来例と同等部分
は同一符号で示す。第1クラッド層(2)および第2ク
ラッド層(4)はGa0J5 AZo、3sAI!層が
らなり、活性層(3)は両クラッド層(2)および(4
)よシ禁制帯幅の狭いGa(1,gAt。、IAB層か
らなる。(δ)は従来例と同様の形態に、活性層(3)
における不純物濃度が1×10 /am になるように
形成されたp十形領域、(6a)は上記p十形領域(5
)に隣接して、第2り2ラド層(4)の表面から活性層
(3)を横切って第1クラッド層(2)に達するように
存在し、ストライプ幅が4μmで、活性層(3)におけ
る不純物濃度が8×1o18/cm3になるように形成
されたp影領域である。
Figure JILA is a sectional view showing the structure of a T,78 laser device which is an embodiment of the present invention, and parts equivalent to those of the conventional example in FIG. 1 are designated by the same reference numerals. The first cladding layer (2) and the second cladding layer (4) are Ga0J5 AZo, 3sAI! The active layer (3) is composed of both cladding layers (2) and (4).
) is composed of a Ga (1, gAt., IAB layer) with a narrow forbidden band width.
The p-type region (6a) is formed such that the impurity concentration in the p-type region (5
), the stripe width is 4 μm, and the stripe width is 4 μm. ) is a p-shaded region formed such that the impurity concentration at 8×1o18/cm3.

この実施例装置では、活性領域四は低濃度p形不縄物領
域を図示(5) 、(6a)の領域にわたって形成し先
後、この低濃度p形不純物領域に活性領域(6)に相当
する幅の部分を残して、更に高濃度にp形不純物を拡散
してp1領域(5)を構成することによって形成される
。従って、活性層(3)におけるキャリヤ密度分布は第
4図Aに示すようにp影領域すなわち活性領域αQでは
平坦となる。従って、次のような効果がある。
In the device of this embodiment, in the active region 4, a low concentration p-type impurity region is formed over the regions (5) and (6a) shown in the figure, and later, this low concentration p-type impurity region corresponds to the active region (6). The p1 region (5) is formed by diffusing p-type impurities at a higher concentration, leaving the width portion intact. Therefore, the carrier density distribution in the active layer (3) becomes flat in the p shadow region, that is, in the active region αQ, as shown in FIG. 4A. Therefore, there are the following effects.

ビ) レーザ発振に寄与する注入キャリヤの再結合が最
大な位置近−傍すなわち、p影領域(6a)において屈
折率が第4図Bに示すように平坦であるので、光のn影
領域(7)側およびp+十形領域5)側への広がシは対
称となシ、すなわち、水平方向放射角は対称となる。
B) The refractive index is flat near the position where the recombination of the injected carriers contributing to laser oscillation is maximum, that is, the p-shadow region (6a), as shown in FIG. 4B. The spread toward the 7) side and the p+ decagonal region 5) side is symmetrical, that is, the horizontal radiation angle is symmetrical.

(ロ) p影領域(5)から注入される正孔はp影領域
(6a)で#1とんど再結合するため、n影領域(7)
でキャリヤが再結合する無駄な電流成分が少ない。
(b) Holes injected from the p shadow region (5) recombine #1 in the p shadow region (6a), so the holes injected from the p shadow region (7)
There is less wasted current component due to carrier recombination.

e→ 活性領域000幅が広くできるので、大きな出力
を得ることができる。
e→ Since the width of the active region 000 can be widened, a large output can be obtained.

なお、上記実施例ではp影領域(6m)の拡散先端を第
1クラッド層(2)内でとめているが、この拡散先端を
Gaム−基板(1)にまで到達する構造にしてもよいこ
とは当然である。
In addition, in the above embodiment, the diffusion tip of the p shadow region (6 m) is stopped within the first cladding layer (2), but this diffusion tip may be structured to reach as far as the Ga layer substrate (1). Of course.

以上詳述したように、この発明になるTJSレーザ装置
では活性層の中の活性領域の不純物濃度分布すなわちキ
ャリヤ密度分布が平坦になる構成にし次ので、レーザ放
出光の水平方向放射角が対称となり、発振に寄与しない
電流成分が減少し、大きなレーザ出力を得られるなどの
効果がある。
As detailed above, the TJS laser device according to the present invention has a structure in which the impurity concentration distribution in the active region in the active layer, that is, the carrier density distribution is flat, so that the horizontal radiation angle of the laser emitted light is symmetrical. , current components that do not contribute to oscillation are reduced, and a large laser output can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のTJSレーザ装置の構造の一例を示す断
面図、第2図ムはそのキャリヤ密度分布を示す図、第2
図Bはその屈折率の分布を示す図、第3図はこの発明の
一実施例であるTJ8レーザ装置の構造を示す断面図、
第4図Aはこの実施例におけるキャリヤ密度分布を示す
図、第4図Bは同じく屈折率の分布を示す図である。 図において、(1)は基板、(2)は第1クラッド層、
(3)は活性層、(4)は第2クラッド層、(5)はp
+形領領域高湊度不純物拡散領域)、(6a)はp影領
域(低濃度不純物拡散領域’g@る。 なお、図中同一符号は同一または相当部分を示す。 代理人 葛野信−(外1名) 第1図 第2図 第31A 第4図 手続補正書(自11) 特許庁長官殿 1、事件の表示    特願昭56−10616v号2
、発明の名称    牛導体レーザ装置3、補正をする
者 事件との関係   特許出願人 5、 補正の対象 明細書の発明の詳細な説明の欄 6.11正の内容 明細書の菖6頁第1行、第6行および第17行に「活性
領域QQ Jとあるのをいずれも「活性領域(10a)
 Jと訂正する。 以上
Figure 1 is a cross-sectional view showing an example of the structure of a conventional TJS laser device, Figure 2 is a diagram showing its carrier density distribution,
Fig. B is a diagram showing the refractive index distribution, and Fig. 3 is a cross-sectional view showing the structure of a TJ8 laser device, which is an embodiment of the present invention.
FIG. 4A is a diagram showing the carrier density distribution in this example, and FIG. 4B is a diagram similarly showing the refractive index distribution. In the figure, (1) is the substrate, (2) is the first cladding layer,
(3) is the active layer, (4) is the second cladding layer, (5) is the p
+ shape region (high concentration impurity diffusion region), (6a) is the p shadow region (low concentration impurity diffusion region'g@ru. In addition, the same reference numerals in the figure indicate the same or equivalent parts. Agent Makoto Kuzuno - ( Figure 1 Figure 2 Figure 31A Figure 4 Procedural amendment (self 11) Commissioner of the Japan Patent Office 1, Indication of the case Patent application No. 10616v 1987 2
, Title of the invention Cattle conductor laser device 3, Relationship with the case of the person making the amendment Patent applicant 5, Column 6.11 Detailed explanation of the invention in the specification subject to amendment 6.11 Correct contents Page 6 of the specification, No. 1 In rows 6 and 17, "active region QQ J" is replaced with "active region (10a).
Correct it with J. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)  半絶縁性半導体基板上に第1導電形を有する
1s1クラッド層、第1導電形を有する活性層および第
1導電形を有する第2クラッド層を順次形成してなる半
導体基板の一方の側面部に上記第2クラッド層の表面か
ら第2導電形不純物管拡散してその拡散先端が少なくと
も上記第1クラッド層に到達するようにjI2導電形を
有する低濃度不純物拡散領域を形成し、更にこの低濃度
不純物拡散領域の表面の上記第1導電形の第2クラッド
層に隣接しない個の一部から更に第2導電形不純物を拡
散してその拡散先端が少なくとも上記ml$クラッド層
に到達するように第2導電形を有する高濃度不純物拡散
領域を形成してなるととを特徴とする半導体レーザ装置
(1) One of the semiconductor substrates formed by sequentially forming an 1s1 cladding layer having a first conductivity type, an active layer having the first conductivity type, and a second cladding layer having the first conductivity type on a semi-insulating semiconductor substrate. forming a low-concentration impurity diffusion region having a jI2 conductivity type in a side surface portion such that a second conductivity type impurity tube diffuses from the surface of the second cladding layer so that the diffusion tip thereof reaches at least the first cladding layer; The second conductivity type impurity is further diffused from a part of the surface of the low concentration impurity diffusion region that is not adjacent to the first conductivity type second cladding layer, and the diffusion tip thereof reaches at least the above ml$ cladding layer. What is claimed is: 1. A semiconductor laser device characterized in that a high concentration impurity diffusion region having a second conductivity type is formed.
(2)半導体基板にガリウム・ヒ素基板を、活性層に第
1のガリウム・アルミニウム−ヒ素層を、第1および第
2クラッド層にそれぞれ上記第1のガリウム・アルミニ
ウム・ヒ素層より禁制帯幅の広い第2および第3のガリ
ウム・アルミニウム・ヒ素層を用いたことを特徴とする
特許請求の範囲第1項記載の半導体レーザ装置。
(2) The semiconductor substrate is a gallium arsenide substrate, the active layer is a first gallium aluminum arsenide layer, and the first and second cladding layers each have a forbidden band width smaller than that of the first gallium aluminum arsenide layer. 2. The semiconductor laser device according to claim 1, characterized in that the second and third wide gallium-aluminum-arsenide layers are used.
(3)低濃度不純物拡散領域の活性層における不純物濃
度砂X 10 ”70m3以下に、高濃度不純物拡散領
域の活性層における不純物濃度を2X10”7cm3以
上にしたζ七を特徴とする特許WI!求の範囲第1項ま
たは第2項記載の半導体レーザ装置。
(3) Patent WI featuring ζ7 in which the impurity concentration sand in the active layer of the low-concentration impurity diffusion region is less than 10"70m3, and the impurity concentration in the active layer of the high-concentration impurity diffusion region is 2X10"7cm3 or more! A semiconductor laser device according to claim 1 or 2.
JP10676781A 1981-07-08 1981-07-08 Semiconductor laser device Pending JPS589387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10676781A JPS589387A (en) 1981-07-08 1981-07-08 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10676781A JPS589387A (en) 1981-07-08 1981-07-08 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS589387A true JPS589387A (en) 1983-01-19

Family

ID=14442050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10676781A Pending JPS589387A (en) 1981-07-08 1981-07-08 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS589387A (en)

Similar Documents

Publication Publication Date Title
JPH0449691A (en) Visible-ray laser diode
Lee et al. GaAs‐GaAlAs injection lasers on semi‐insulating substrates using laterally diffused junctions
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPH04249391A (en) Semiconductor laser and manufacture thereof
JPS589387A (en) Semiconductor laser device
US20040013146A1 (en) Laser diode with a low absorption diode junction
JPS62282482A (en) Semiconductor laser device
JPS5839085A (en) Semiconductor laser device
JPS6086879A (en) Semiconductor light-emitting element
JPS6021587A (en) Semiconductor laser device
JPS62186582A (en) Semiconductor laser device
JPH03203282A (en) Semiconductor laser diode
JPH0239483A (en) Semiconductor laser diode and manufacture thereof
JPS5824456Y2 (en) semiconductor laser
JPS6097685A (en) Semiconductor laser diode
JPS5856376A (en) Semiconductor laser device
JPH04257284A (en) Buried hetero structured semiconductor laser
JPS5914691A (en) Semiconductor laser
JPH0330487A (en) Semiconductor laser and manufacture thereof
JPH01152789A (en) Semiconductor laser device and its manufacture
JPH0227829B2 (en)
JPS6284580A (en) Manufacture of optical semiconductor device
JPS59112671A (en) Semiconductor laser
JPS63104494A (en) Semiconductor laser device
JPS63287079A (en) Manufacture of semiconductor laser