JPS5856376A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS5856376A
JPS5856376A JP15462281A JP15462281A JPS5856376A JP S5856376 A JPS5856376 A JP S5856376A JP 15462281 A JP15462281 A JP 15462281A JP 15462281 A JP15462281 A JP 15462281A JP S5856376 A JPS5856376 A JP S5856376A
Authority
JP
Japan
Prior art keywords
active layer
layer
refractive index
striped
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15462281A
Other languages
Japanese (ja)
Inventor
Shigeo Osaka
重雄 大坂
Kiyoshi Hanamitsu
花光 清
Katsuto Shima
島 克人
Katsuji Seki
瀬木 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15462281A priority Critical patent/JPS5856376A/en
Publication of JPS5856376A publication Critical patent/JPS5856376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Abstract

PURPOSE:To stabilize a lateral mode, and to obtain high output by forming a guide mechanism effectively using the change of a refractive index by a P<+> type diffusion layer and the change of a refractive index by carriers being injected. CONSTITUTION:An active layer 9, which consists of a GaAlAs semiconductor layer, etc. and generates laser oscillation, and clad layers 8, 10, which have forbidden band width larger than the active layer 9 and hold the active layer 9, are formed onto a substrate 7. The P<+> type diffusion layer 13 is shaped through the diffusion of Zn, etc., and a P<-> pushed-in layer 14 is formed through heat treatment. The P<+> type diffusion layer 13 takes striped form, and the section is W-shaped form. Consequently, impurity concentration is made higher than the center at both ends of a striped region, and the refractive indices becomes smaller than the center. Refractive indices at both ends of the striped region are further lowered through the injection of currents from a P-N junction section 17 under the state of operation. Accordingly, the laser device, the guide mechanism thereof is effective and which has striped type double-hetero structure, is obtained.

Description

【発明の詳細な説明】 本発明はストライプ構造を有する半導体レーザ装置11
1K係り、特に屈折率ガイド機能を備えた半導体レーデ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor laser device 11 having a stripe structure.
1K, and particularly relates to a semiconductor radar device having a refractive index guide function.

半導体レーザは他のレーザ系に比べて波長の選択が比較
的容易であって、小皺、高効4動作、畏寿命、高速直装
変調及び単−献長一作等の数々の利点があり、光伝送り
埋の容積の実用システムの光源として用いられている。
Semiconductor lasers are relatively easy to select wavelengths compared to other laser systems, and have many advantages such as small wrinkles, high efficiency 4-operation, short lifespan, high-speed direct modulation, and single-length operation. It is used as a light source in practical systems of transmission burial volumes.

纂1図は従来の半導体レーザの構造を示した該半導体レ
ーザの断面図である。従来、n形活性層lを上下から挾
むようにn形りラッド層3.8を配置し、亜鉛(Za)
拡散によって屈折率ガイドを付けようとする場合%第1
図の工うに活性層1近くまで高濃度Za拡散層、即ちP
十形拡散項番を接近させて形成した後、熱処理に工つて
活性層lをP十形拡歓層番の不純物濃度よりも小さ−?
−形押し込み層5に導電形質供する構造が最も製作容易
である。しかし、この構造ではP十形拡散項番が活性層
lに接近している九め活性ノー1内のP十形拡散1−4
が該活性層IK接近している部分での幅に対応した領域
(この後%線領域をスト2イブ餉域と呼ぶことにする0
ンでの不純物−Kが高く、従って該領域での屈折率か小
さくなる。一方、動作状−では活性層l内のp  n僧
曾部6での注入電R1の増加に伴って、ストライブ領域
111111のキャリアー嵐か壇刀口し、領域中央エリ
も両端の屈折率が低くなり、光が中心に閉じ込められる
ようなセル77オーカスが慟< o lE 11図は8
11図の構造を有する半導体レーザ装置の動作状層にお
ける屈折率分布を示したものである。縞z図からもわか
るように少数キャリアの注入に工つてストライプ領域両
端の屈折率か低(なることは有益であるが。
Figure 1 is a cross-sectional view of a conventional semiconductor laser showing its structure. Conventionally, an n-type rad layer 3.8 is placed between the n-type active layer l from above and below, and zinc (Za)
When trying to attach a refractive index guide by diffusion, %1st
As shown in the figure, there is a high concentration Za diffusion layer up to near the active layer 1, that is, P
After forming the 10-type diffusion layers close to each other, heat treatment is performed to make the active layer l smaller than the impurity concentration of the 10-type diffusion layers.
- A structure in which the shaped indentation layer 5 is provided with conductive material is the easiest to manufacture. However, in this structure, the P ten diffusion number 1-4 in the ninth active layer 1 is close to the active layer l.
A region corresponding to the width of the part where is close to the active layer IK (hereinafter, the % line region will be referred to as the stroke region)
The impurity -K in the region is high, and therefore the refractive index in that region is low. On the other hand, in the operating state, as the injected current R1 increases at the pn crest 6 in the active layer l, a carrier storm in the stripe region 111111 occurs, and the refractive index at both ends of the region center area is low. The cell 77 orcus is such that light is confined in the center. Figure 11 shows 8.
11 shows the refractive index distribution in the active layer of the semiconductor laser device having the structure shown in FIG. As can be seen from the stripe z diagram, it is beneficial to have a low refractive index at both ends of the stripe region in order to inject minority carriers.

P十形拡散層4が活性層IKM近しているために生じる
ストライプ領域内の屈折率の低下は、filWの屈折率
差を得ることができず、有効なガイド憬能を果すことが
できないという欠点がある。
It is said that the decrease in the refractive index within the stripe region caused by the proximity of the P 10-shaped diffusion layer 4 to the active layer IKM makes it impossible to obtain the refractive index difference of filW, making it impossible to achieve an effective guiding function. There are drawbacks.

本発明の目的は%P十形拡散層による屈折4変化と注入
キャリアによる屈折率変化t−M効に用いたガイド機構
によって、横モードを安定にし、かつ高出力が祷られる
半導体レーザを提供するにあるO だ縞1及び、@Sのクラッド層と、*クラッド層の一方
に電流路を一定するストライプ形状の不#lIwlll
領域とを有するストライプ形ダブルへテロ構造の不純物
領域の喪さ方向に直交する断面の含有不純  物の等−
fIliIの形状が、中央付近で活性層より離れ1両側
で活性層に接近することを特徴とするものである。
The object of the present invention is to provide a semiconductor laser that can stabilize the transverse mode and achieve high output by using a guide mechanism that uses the refractive 4 change due to the %P dec-shaped diffusion layer and the refractive index change t-M effect due to the injected carriers. The O stripe 1 in
Contained impurities in a cross section perpendicular to the direction of the impurity region of a striped double heterostructure having a region
The shape of fIliI is characterized by being away from the active layer near the center and approaching the active layer on one side.

以下、本発明を本発明の一実施例の製造方法及び半導体
レーザ装置11を用いて説明することにする。
The present invention will be explained below using a manufacturing method and a semiconductor laser device 11 according to an embodiment of the present invention.

gasは本発明の一実施例の製造方法及び半導体レーザ
ifcmt示した該装置の断面図である。n形GaAs
基板丁上に厚さ15μmで不純物濃度が5xl□  c
m   のn形Ga(1,6Atg、、Am層(クラブ
ト層)8、厚さQ、tIImで不純WaXが1lxlo
”1−1のn形” 06Ql”@、@BAm層(活性4
>us厚さく第8図1aj)。次に、該クラッド層IQ
よにストライプmsを6〜81諏り、該−8以外の領域
及びSの中央に2μm1lliのマスク兼絶*g、ここ
ではシリコンナイトライド8i、N、Jig目Ilzを
形成する。該81易N1−昌−賑11.1gをマスクと
して700℃でZat拡散して不純物mW101(IO
”m−”’P十形拡散層1Bをり2ラド層lo内に形成
した後、旧INI膜を除去しs 9GQr:で熱逃坦す
ることによって不純物一度IQ”L−IQ”1m−”の
P−形押し込み層14が形成される。この時、クラッド
層IQ内のP十形拡散層18の形状はストライプ幅の中
央では活性層9より@fLs該幅肉端では該活性J@9
に接近しているW形状ft取る(#!易図(b) ) 
Gas is a cross-sectional view of the device showing the manufacturing method and semiconductor laser ifcmt according to one embodiment of the present invention. n-type GaAs
On the substrate, the thickness is 15μm and the impurity concentration is 5xl□c
n-type Ga (1,6Atg, Am layer (Crabt layer) 8, thickness Q, tIIm and impurity WaX 1lxlo
“1-1 n-type” 06Ql”@, @BAm layer (active 4
> us thickness (Fig. 8 1aj). Next, the cladding layer IQ
Similarly, 6 to 81 stripes ms are formed, and in the region other than -8 and the center of S, a 2 μm 1lli mask double*g, here silicon nitride 8i, N, and Jig-th Ilz are formed. The impurity mW101 (IO
After forming the ``m-'''P 10-shaped diffusion layer 1B in the 2-rad layer lo, the old INI film is removed and the impurity is once IQ''L-IQ''1m-'' by heat dissipation with s9GQr:. At this time, the shape of the P-type diffusion layer 18 in the cladding layer IQ is smaller than the active layer 9 @fLs at the center of the stripe width, and the active J@9 at the edge of the width.
Take the W shape ft approaching (#!Easy diagram (b))
.

:&j?、 84.N、11に11はこの後、esdg
として用いられる。最後に81sNJ11及びクラッド
層1G上に金亜鉛(AaZn)電#A15、基板T11
ilに金ゲルマニウム(AuGe)電+IA16を設け
る(第8図1cn。
:&j? , 84. N, 11 to 11 will be esdg after this
used as. Finally, on 81sNJ11 and cladding layer 1G, gold zinc (AaZn) electrode #A15, substrate T11
A gold germanium (AuGe) electrode +IA16 is provided on the il (FIG. 8, 1cn).

本発明ではP 形拡歓層1gがW形状をしているため、
活性層に接近している2ケ所、即ちストライプ領域の両
端では皺領域の中央に比べて不軸物濃度が高くなり、従
って屈折率が中央と比較して小さくなる。一方、動作状
層では活性1@ 9内のp−o1!合部17から電流が
注入されることによって p −n板台部17のo−1
即ち、ストライプ領域の一端でのキャリア製板が増加す
るtめ、該部分での屈折率は低下し、更に前述したこと
も加わって、ストライプ領域両端の屈折率は一戚と低下
する0第4図は本発明の一実施例の動作状層での屈折率
分布及び発光パターンを示した−のである0本発明によ
れば屈折率を大きくすることができるのでガイド機構が
有効に働き、横モードの安定なV−ザt−得ることがで
きる◎また。電流量の増加に伴なってセルフフォーカス
が大! <匍<ため電流−光出力特性では光出力の高い
領域まで得られるという利点がある。
In the present invention, since the P type expansion layer 1g has a W shape,
At two locations close to the active layer, that is, at both ends of the stripe region, the concentration of axes is higher than at the center of the wrinkled region, and therefore the refractive index is lower than at the center. On the other hand, in the active layer, p-o1 in active 1@9! By injecting a current from the joining part 17, o-1 of the p-n board base part 17
That is, as the number of carrier plates increases at one end of the stripe region, the refractive index at that portion decreases, and in addition to the above-mentioned factors, the refractive index at both ends of the stripe region decreases to the same degree. The figure shows the refractive index distribution and light emission pattern in the active layer of one embodiment of the present invention.According to the present invention, since the refractive index can be increased, the guide mechanism works effectively, and the transverse mode It is also possible to obtain a stable V-the-t-. Self-focus increases as the amount of current increases! The current-light output characteristic has the advantage that a high light output range can be obtained.

なお、本発明−冥m例の半導体レーデ装置を用いて電流
の変化に対する出力の変化、即ち、田方変化/電ft変
化を測定し友ところ0.5W/人を傅几。
In addition, using the semiconductor radar device of the present invention, the change in output with respect to the change in current, that is, the change in electric current/change in electric power, was measured and the result was 0.5 W/person.

さらにlsOmW[で@疎性が得られた。従来の半導体
レーザでは通常0.g−0,8W/ALか得ることがで
きない友めP十形拡散層18をW形状にし次ことによっ
て効率が艮〈なりたものと考えられる。
Furthermore, @sparseness was obtained with lsOmW[. Conventional semiconductor lasers usually have 0. It is thought that the efficiency was improved by making the P-shaped diffusion layer 18, which cannot obtain g-0.8W/AL, into a W shape.

本発明によ几ば、4伝層による屈折率のに化と注入中ヤ
リアによる屈折率の変化を有効に用いることかでを、横
モードか安定で、かつ高出力か傅られるという効果があ
る。
According to the present invention, by effectively using the change in the refractive index due to the four conductive layers and the change in the refractive index due to the layer during injection, it is possible to achieve stable transverse mode and high output power. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザの構造を示した該半導体レ
ーザ装置の断面図srs図は#I1図の構造を有する半
導体レーデ装置の動作状態における屈折率分布を示し九
図、第11は本発明の一実施例の製造方法及び半導体レ
ーザ装置を示した該装置の断面図、第4図は、@S図の
構造を有する半導体レーザ装置の動作状llKおける屈
折率分布及び発光パターンを示しtものである0 1、II・・・・・・活性層、$’elle8−10・
・・・・・クラッド層、4.18・・・・・・P十形拡
散層、5*トド・・・・P−形押し込み層、11.12
・・・・・・絶縁膜兼マスク膜17  口 芽 2 圀 第 J 図 (0) (6) 著31舅 5 1Δ (C)
FIG. 1 is a cross-sectional view of the semiconductor laser device showing the structure of a conventional semiconductor laser. FIG. FIG. 4, which is a cross-sectional view of the semiconductor laser device and the manufacturing method of one embodiment, shows the refractive index distribution and light emission pattern in the operating conditions of the semiconductor laser device having the structure shown in diagram @S. 0 1, II...Active layer, $'elle8-10.
... Cladding layer, 4.18 ... P-shaped diffusion layer, 5*Todo ... P-type intrusion layer, 11.12
・・・・・・Insulating film/mask film 17 Mouth bud 2 Diagram J (0) (6) Author 31 5 1Δ (C)

Claims (1)

【特許請求の範囲】[Claims] レーデ発振を起こす活性層と該活性層より大きい禁制帯
幅t−有し、かつ該活性層を挾んだ第l及び第3のクラ
ッド層と、該クラッド層の一方に電流路を一定するスト
2イブ形状の不純物領域とき有するストライプ形ダブル
へテロ構造の半導体レーザ装置において、1紀ストライ
プ状の不純物領域の長さ方向に直交する断面での含有不
純物の等濃fllIの形状が、中央付近で活性層より離
れ、両側で活性層に接近していることを特徴とする半導
体レーザ装置。
an active layer that causes Raded oscillation, first and third cladding layers that have a larger forbidden band width t- than the active layer and sandwich the active layer, and a resistor that maintains a constant current path in one of the cladding layers. In a semiconductor laser device with a stripe-type double heterostructure having a two-beam-shaped impurity region, the shape of the equal concentration fllI of the contained impurity in the cross section perpendicular to the length direction of the primary stripe-shaped impurity region is approximately A semiconductor laser device characterized in that it is separated from an active layer and close to the active layer on both sides.
JP15462281A 1981-09-29 1981-09-29 Semiconductor laser device Pending JPS5856376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15462281A JPS5856376A (en) 1981-09-29 1981-09-29 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15462281A JPS5856376A (en) 1981-09-29 1981-09-29 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS5856376A true JPS5856376A (en) 1983-04-04

Family

ID=15588201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15462281A Pending JPS5856376A (en) 1981-09-29 1981-09-29 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS5856376A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320786A (en) * 1976-08-10 1978-02-25 Nec Corp Injection type semiconductor laser element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320786A (en) * 1976-08-10 1978-02-25 Nec Corp Injection type semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2008135786A (en) High power semiconductor laser diode
US4525841A (en) Double channel planar buried heterostructure laser
JPS6343908B2 (en)
US4546481A (en) Window structure semiconductor laser
JPS5856376A (en) Semiconductor laser device
JPS5932910B2 (en) semiconductor laser
JPH0474876B2 (en)
JPS60198796A (en) Semiconductor laser having stopping layer
RU2035103C1 (en) Injection laser
JPS61242091A (en) Semiconductor light-emitting element
JPH0231476A (en) Semiconductor laser element
JP2740165B2 (en) Semiconductor laser
EP0144205B1 (en) Semiconductor laser
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPS5956783A (en) Semiconductor laser
JP2988552B2 (en) Semiconductor laser device and method of manufacturing the same
JPS5931084A (en) Injection type laser
JPH0191479A (en) Semiconductor light emitting element and its manufacture
JPS60245191A (en) Single beam type semiconductor laser array
JPS6244439B2 (en)
JPS5853879A (en) Semiconductor light emitting device
JPS60154587A (en) Semiconductor laser element
JPS60163483A (en) Semiconductor laser
JPS5864086A (en) Buried hetero semiconductor laser
JPS58110085A (en) Buried type semiconductor laser