JPS5931084A - Injection type laser - Google Patents

Injection type laser

Info

Publication number
JPS5931084A
JPS5931084A JP14140282A JP14140282A JPS5931084A JP S5931084 A JPS5931084 A JP S5931084A JP 14140282 A JP14140282 A JP 14140282A JP 14140282 A JP14140282 A JP 14140282A JP S5931084 A JPS5931084 A JP S5931084A
Authority
JP
Japan
Prior art keywords
type
layer
junction
semiconductor layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14140282A
Other languages
Japanese (ja)
Inventor
Wataru Suzaki
須崎 渉
Kenji Ikeda
健志 池田
Hirobumi Namisaki
浪崎 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14140282A priority Critical patent/JPS5931084A/en
Publication of JPS5931084A publication Critical patent/JPS5931084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer

Abstract

PURPOSE:To increase the photo output of limit and decrease the reactive power by a method wherein the structure is so formed that the P-N junction in the neighborhood of a resonant end surface does not reach the hetero junction between an electrode side semiconductor layer and the semiconductor at the center, in a crank type TJS (transverse directional junction stripe) laser. CONSTITUTION:An N type GaAs substrate 1, N type AlyGa1-yAs layer 2, N type AlXGa1-XAs layer 3, and N type AlZGa1-ZAs layer 4 are successively laminated, the required part of each layer is changed into a P type, and accordingly P type regions 12-14 are formed. The P-N junction plane is bent to the P type region side in the neighborhood of the resonant end surfaces 51 and 52, resulting in the formation in crank form. In the crank type TJS laser constituted in this manner, the P type AlZGa1-ZAs region in the neighborhood of the resonant end surface is so constituted as not to reach the hetero junction part between the N type layer 3 and the N type layer 4. By constituting like this, the photo output of limit is increased, and the TJS laser with decreased reactive power can be obtained.

Description

【発明の詳細な説明】 この発明は、注入形レーザに係り、特に横方向接合スト
ライプrTranverse Junction 5t
ripe :T JS ’)レーザの高出力化に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection laser, and more particularly to a transverse junction stripe rTransverse Junction 5t.
ripe: T JS') This relates to increasing the output power of lasers.

’I’J8レーザは低しきい値で、安定した単一モード
発振が得られる優れた注入形レーザである。
The 'I'J8 laser is an excellent injection laser with a low threshold and stable single mode oscillation.

このT、TSレーザの問題点として出力が約20’mW
になると共振端面の破壊妬よる劣化が生ずる。高出力化
には端面破壊の生ずる限界光出力を向上させることが必
要である。従来のT、TSレーザでは、レーザ光はpn
接合に沿って約20μmの幅のキャリヤ注入領域から取
り出される。この場合、共振端面(bl)s(52)に
露出しているキャリヤ注入領域では表面再結合により注
入キャリヤ密度が減少するので反転分布が不十分であり
、強いレーザ光に対しては吸収による発熱が生じ、つい
には、結晶が融けるまでに温度が上昇する。
The problem with this T and TS laser is that the output is about 20'mW.
When this happens, deterioration occurs due to destruction of the resonant end face. In order to increase the output, it is necessary to improve the critical optical output at which end face destruction occurs. In conventional T and TS lasers, the laser light is pn
The carriers are extracted from a carrier injection region approximately 20 μm wide along the junction. In this case, in the carrier injection region exposed to the resonant end face (bl) s (52), the density of injected carriers decreases due to surface recombination, resulting in insufficient population inversion, and heat generation due to absorption for strong laser light. occurs, and the temperature eventually rises until the crystals melt.

この限界光出力を向上させる方策として、クランク形T
JSレーザが提案されている。
As a measure to improve this limit optical output, crank type T
A JS laser has been proposed.

第1図はクランク形TJ8レーザの基本構造を示す斜視
図である。第1図において、(1)はn形GaA s基
板結晶、(2) 、 (3)および(4)はn形GaA
s基板結晶(1)上に順次形成されたn形AZ y G
a 1−y As層、n形A7゜Ga +、As層およ
びn形A1!yzGa、−、As層(y、y’>x)で
ある。H,+11および(14)はそれぞれn形A l
 y Ga 1 □As層(2) 、 n形Al xG
 a + 、 A 8層(3)およびn形Al、。
FIG. 1 is a perspective view showing the basic structure of a crank type TJ8 laser. In Figure 1, (1) is an n-type GaAs substrate crystal, (2), (3) and (4) are n-type GaAs substrate crystals.
n-type AZ y G sequentially formed on s-substrate crystal (1)
a 1-y As layer, n-type A7°Ga +, As layer and n-type A1! yzGa, -, As layer (y, y'>x). H, +11 and (14) are each n-type A l
y Ga 1 □As layer (2), n-type Al xG
a + , A 8 layer (3) and n-type Al,.

Ga 1−、t As層(4〕の所要部分をp形に変換
したp形AI!。
P-type AI in which necessary parts of the Ga 1-,tAs layer (4) are converted to p-type!

Ga 1−y A s領域、p形A Z 、Ga 1−
、A、8領域およびp形Al、rGa、−y、As領域
である。(51)および(52)はへ@開面から彦る共
振端面、(6)は出力レーザ光である。第1図および以
降の図において、図の解読を容易にするために、p形半
導体の露出面または切断端面のみに斜線を施しておる。
Ga 1-y As region, p-type A Z , Ga 1-
, A, 8 region and p-type Al, rGa, -y, As region. (51) and (52) are the resonant facets extending from the open plane, and (6) is the output laser beam. In FIG. 1 and the subsequent figures, only the exposed surface or cut end surface of the p-type semiconductor is shaded to facilitate interpretation of the figures.

共振端面(51)、(52)はAj?。Are the resonant end faces (51) and (52) Aj? .

Ga 、、As / Al xGa 、−、Asヘテロ
接合面とAl 、Ga 、−x A、s/Al、、Ga
、−y、ASへテロ接合面との二つの接合面と垂直な一
対の平面により形成される。pn接合面は、共振端面(
51)、(52)附近でp形領域側に曲げられ、クラン
ク状に形成されている。
Ga,,As/AlxGa,-,As heterojunction surface and Al,Ga,-xA,s/Al,,Ga
, -y, is formed by a pair of planes perpendicular to the two junction surfaces with the AS heterojunction surface. The pn junction surface is the resonant end surface (
51) and (52) are bent toward the p-type region and formed into a crank shape.

上記のクランク形TJ8レーザでは、pn接合を共振端
面(ax)、(52)の附近でp形領域側に曲げ、レー
ザ光をn影領域から取り出している。この方策では、注
入千ヤリャの異面再結合による不完全なキャリヤ反転分
布を生ずる領域には強いレーザ光が導波されず、吸収の
少ないn影領域を通し放出されるので、限界光出力を従
来の約10倍に向上させることができる。しかし、共振
端面(bl)、(52)附近のpn接合を流れる電流は
レーザ発光に寄与しない無効電流であり、この無効電流
を低減させることは、より高い温度で動作させる上から
も要求される課題でめった。
In the crank type TJ8 laser described above, the pn junction is bent toward the p-type region near the resonant end face (ax), (52), and the laser beam is extracted from the n-shaded region. In this strategy, the strong laser light is not guided to the region where incomplete carrier population inversion occurs due to the different plane recombination of the injection beam, but is emitted through the n-shaded region with little absorption, so the critical optical output can be reduced. This can be improved by about 10 times compared to the conventional method. However, the current flowing through the pn junction near the resonance end face (bl) and (52) is a reactive current that does not contribute to laser emission, and reducing this reactive current is required from the perspective of operating at higher temperatures. I had a hard time with an assignment.

この発F3Aは、上記の点に鑑みてなされたものであり
、共振端面附近ではpn接合を、二つのへテロ接合を形
成する三つの半導体層のうち電極が接着される側の半導
体層と中央の半導体層とが形成するヘテロ接合に達しな
いように形成する仁とによって、限界光出力が大きく、
かつ無効電力が小石いTJSレーザを提供することを目
的としたものである。
This oscillation F3A was made in view of the above points, and the pn junction is connected near the resonant end face to the semiconductor layer on the side to which the electrode is bonded among the three semiconductor layers forming the two heterojunctions. The critical optical output is large due to the layer formed so as not to reach the heterojunction formed by the semiconductor layer.
The purpose of this invention is to provide a TJS laser with small reactive power.

第2図はこの発明によるTJ8レーザの一実施例の要部
を共振端面側から見た正面図、第3図は第2図の■−■
線における断面図である。第2図および第3図において
、第1図と同一符号は第1図にて示したものと同様のも
のを表わしている。
FIG. 2 is a front view of the main part of an embodiment of the TJ8 laser according to the present invention, viewed from the resonance end face side, and FIG.
FIG. In FIGS. 2 and 3, the same reference numerals as in FIG. 1 represent the same components as shown in FIG.

(14a)は共振端面(51)、(5z)附近を除く部
分でl。
(14a) is a portion excluding the vicinity of the resonance end face (51) and (5z).

Gap−、As / Al、、Ga1−、、As ヘテ
ロ接合に達するように形成された第1のp形AZ y 
(G a 1−y ’ As領域、(14b)は共振端
面(bl)+(52)附近でAlxGa 1−、A s
/ Al、/ Ga 1−y /Asヘテロ接合に達し
ないように形成された第2のp形kl、I Ga1−、
、As領域でおる。
The first p-type AZ y formed to reach the Gap-, As/Al,, Ga1-,, As heterojunction
(Ga 1-y' As region, (14b) is AlxGa 1-, As near the resonance end face (bl) + (52)
/Al, /Ga1-y A second p-type kl, IGa1-, formed so as not to reach the /As heterojunction.
, in the As region.

上記の実施例の’I’JSレーザでは、共振端面(51
)。
In the 'I' JS laser of the above embodiment, the resonant end face (51
).

(52)附近のpn接合はへテロ接合と交差せず、Al
、。
(52) The nearby p-n junction does not intersect with the heterojunction, and the Al
,.

Qa、As層中にあるので、レーザ光はn形Afμm、
、、ヨ−y 無効電力を低減することができる。これは、禁制帯幅の
広い半導体中のpn接合では、禁制帯幅の狭い半導体中
のpn接合よりpn接合の障壁電位を大きくでき、これ
らのpn接合が並列に接続された場合には、電流は禁制
帯幅の狭い半導体中のpn接合に集中するためである。
Since it is in the Qa and As layers, the laser beam is n-type Afμm,
,,Yaw-y reactive power can be reduced. This means that the barrier potential of a pn junction in a semiconductor with a wide bandgap can be larger than that of a pn junction in a semiconductor with a narrow bandgap, and when these pn junctions are connected in parallel, the current This is because it is concentrated at the pn junction in the semiconductor, which has a narrow forbidden band width.

次に上記の実施例を製造する方法の要点をなす工程を示
す。
Next, the main steps of the method for manufacturing the above embodiment will be described.

第4図に示す方法は、pn接合を形成するためのZn(
亜鉛)の拡散深さを、共振端面(51)、(52)附近
で小さくするために、813M4などによる薄い絶縁膜
(7)をn形Al、 J Ga 1−、HAs層(4)
の共振端面(51)。
The method shown in FIG. 4 uses Zn(
In order to reduce the diffusion depth of zinc) near the resonance end faces (51) and (52), a thin insulating film (7) made of 813M4 or the like is replaced with an n-type Al, J Ga 1-, HAs layer (4).
resonant end face (51).

(52)附近の部分の表面上に形成した後に、Zn拡散
を行いpn接合を形成するものでらる。
(52) After forming on the surface of a nearby portion, Zn is diffused to form a pn junction.

第5図に示す方法は、共振端面(bl)z (52)附
近のn # Al、、Ga1−、、As層(4)を厚さ
を厚くしてZn拡散を行いpn接合を形成するものであ
る。
The method shown in Fig. 5 is to increase the thickness of the n # Al, Ga1-, As layer (4) near the resonance end face (bl)z (52) and perform Zn diffusion to form a p-n junction. It is.

第6図および第7図はオーミック接触を改善するために
Al y t Ga 1−、Z As層上にGaAs層
を形成したこの発明の互に異なる他の実施例の畏部を示
す断面図であシ、第6図はn形Al y HGa s 
−y z As層(4)上に一様な厚さのn形層aAs
層(8)を形成し、第4図と同様の方法でpn接合を形
成したものであり、第7図はn形Al y t Ga1
−y ”8層(4)上に厚さが共振端面(5x)。
FIGS. 6 and 7 are cross-sectional views showing other different embodiments of the present invention in which a GaAs layer is formed on the Al y t Ga 1-, Z As layer to improve ohmic contact. Figure 6 shows n-type Al y HGa s.
-y z N-type layer aAs of uniform thickness on As layer (4)
A layer (8) was formed, and a pn junction was formed in the same manner as in Fig. 4, and Fig. 7 shows n-type Al y t Ga1.
-y” 8 layers (4) with thickness resonant end face (5x).

(52)附近で厚く日なったn形層aAs層(8a)を
形成してZn拡散を行い、共振端面(51) 1(52
)附近ではA l y I Ga 1−y / A s
層に達しないpn接合を形成したものである。f18)
 、 (18a)はp形層aAa層である。
(52) A thick n-type aAs layer (8a) is formed nearby, Zn is diffused, and the resonant end face (51) 1 (52
) In the vicinity, Aly I Ga 1-y / As
A pn junction that does not reach the layer is formed. f18)
, (18a) is a p-type layer aAa layer.

以上述べたように、この発明による注入形レーザでは、
共振端面附近では、pn接合が電極が形成される側の第
3の半導体層と中央の第2の半導体層とが形成するヘテ
ロ接合に達しないように形成されているので、共振端面
附近を除く主要部のpn接合の延長面上の第2の半導体
層の共振端面附近はn影領域となっているから、限界光
出力を向上させることができる。また、共振端面附近の
pn接合が禁制帯幅の狭い中央の半導体層に達していな
いから無効電力を低減させることができる。
As mentioned above, in the injection laser according to the present invention,
In the vicinity of the resonant end face, the pn junction is formed so as not to reach the heterojunction formed by the third semiconductor layer on the side where the electrode is formed and the second semiconductor layer in the center; Since the vicinity of the resonant end face of the second semiconductor layer on the extended surface of the pn junction in the main part is an n-shaded region, the critical light output can be improved. Furthermore, since the pn junction near the resonant end face does not reach the central semiconductor layer where the forbidden band width is narrow, reactive power can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクランク形TJSレーサの装部の余1視図、第
2図はこの発明の一実施例の要部の正面図、第3図は第
2図のIII−III線における断面図、第4図および
第5図はそれぞれ第1図および第2図に示す実施例のT
、TSレーザを製造する互いに異なる方法の要点をなす
工程を示す断面図、第6図および第7図はそれぞれこの
発明の互いに異なる他の実施例の要部を示す断面図であ
る。 図において、(1)はn形GaAs基板結晶、(2)は
n形Al y aa l □A8層、(3)はn形1’
、Ga1−、 A13層、(4)はn形A/!ylGa
1−y、A8層、(’l + (8a)はn形GaAs
 JtJ、o’aはp形A−1y Ga 1−y人8%
域、1+J a: p形A t’ 、Ga 1−声領域
、(14a)は第1のp形A e y (Ga s −
y l A s領域、(14b)は第2のp形AJ、l
Ga1.、As領域、(18) 、(lea)はp形G
aA、s層、(51)、(52)は共振端面である。 なお、図中同一符号はそれぞれ同一士たは相当部分を示
す。 代理人 葛野信−(外1名) 第2図 一二−−−−−〜・ 第4図 /、/ 第5図
FIG. 1 is a perspective view of the mounting part of a crank type TJS racer, FIG. 2 is a front view of the main parts of an embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. FIGS. 4 and 5 show the T of the embodiment shown in FIGS. 1 and 2, respectively.
, sectional views showing essential steps of different methods for manufacturing a TS laser, and FIGS. 6 and 7 are sectional views showing essential parts of other different embodiments of the present invention. In the figure, (1) is an n-type GaAs substrate crystal, (2) is an n-type Al y aa l □A8 layer, and (3) is an n-type 1'
, Ga1-, A13 layer, (4) is n-type A/! ylGa
1-y, A8 layer, ('l + (8a) is n-type GaAs
JtJ, o'a is p-type A-1y Ga 1-y 8%
area, 1+J a: p-type A t' , Ga 1- voice area, (14a) is the first p-type A ey (Ga s -
y l A s region, (14b) is the second p-type AJ, l
Ga1. , As region, (18) , (lea) is p-type G
aA, s layer, (51) and (52) are resonant end faces. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 2 12 ------- Figure 4/,/ Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)第1の半導体層、第2の半導体層および第3の半
導体層が順次積層され、第2の半導体層の禁制帯幅はこ
れを挾む第1の半導体層および第3の半導体層の禁制帯
幅よシ狭く、上記三つの半導体層はそれらが形成する二
つのへテロ接合面と交わるpn接合面によりp影領域と
n影領域とに分割され上記二つのへテロ接合面と上記p
n接合面とにほとんど垂直な平行平面の共振端面を有す
ると共に上記第3の半導体層側にp側電極およびn側電
極が形成されたものにおいて、上記pn接合は上記共振
端面附近においては上記第2の半導体層と上記第3の半
導体層とが形成するヘテロ接合に達しないように形成さ
れていることを特徴とする注入形レーザ〇
(1) A first semiconductor layer, a second semiconductor layer, and a third semiconductor layer are sequentially stacked, and the forbidden band width of the second semiconductor layer is the same as that of the first semiconductor layer and the third semiconductor layer sandwiching the second semiconductor layer. The above three semiconductor layers are divided into a p shadow region and an n shadow region by a pn junction plane that intersects with the two heterojunction planes that they form. p
In the device having a resonant end surface that is a parallel plane almost perpendicular to the n-junction surface, and in which a p-side electrode and an n-side electrode are formed on the third semiconductor layer side, the p-n junction An injection type laser, characterized in that it is formed so as not to reach the heterojunction formed by the second semiconductor layer and the third semiconductor layer.
(2)第3の半導体層とp側電極およびn側電極との間
にこれらの電極のオーミック接触を良くする半導体層を
設けたことを特徴とする特許請求の範囲第1項記載の注
入形レーザ。
(2) The injection type according to claim 1, characterized in that a semiconductor layer is provided between the third semiconductor layer and the p-side electrode and the n-side electrode to improve ohmic contact between these electrodes. laser.
JP14140282A 1982-08-13 1982-08-13 Injection type laser Pending JPS5931084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14140282A JPS5931084A (en) 1982-08-13 1982-08-13 Injection type laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14140282A JPS5931084A (en) 1982-08-13 1982-08-13 Injection type laser

Publications (1)

Publication Number Publication Date
JPS5931084A true JPS5931084A (en) 1984-02-18

Family

ID=15291164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14140282A Pending JPS5931084A (en) 1982-08-13 1982-08-13 Injection type laser

Country Status (1)

Country Link
JP (1) JPS5931084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018451A1 (en) * 2005-08-05 2007-02-15 General Nano Optics Limited Injection laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432283A (en) * 1977-08-17 1979-03-09 Nec Corp Semiconductor laser unit
JPS54150990A (en) * 1978-05-18 1979-11-27 Mitsubishi Electric Corp Semiconductor laser device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432283A (en) * 1977-08-17 1979-03-09 Nec Corp Semiconductor laser unit
JPS54150990A (en) * 1978-05-18 1979-11-27 Mitsubishi Electric Corp Semiconductor laser device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018451A1 (en) * 2005-08-05 2007-02-15 General Nano Optics Limited Injection laser
US7787508B2 (en) 2005-08-05 2010-08-31 General Nano Optics Limited Injector laser

Similar Documents

Publication Publication Date Title
JPS59208889A (en) Semiconductor laser
JPS6343908B2 (en)
US5388116A (en) Semiconductor laser device
JPS60789A (en) Semiconductor laser device
US4759025A (en) Window structure semiconductor laser
JPS5931084A (en) Injection type laser
JPS5932910B2 (en) semiconductor laser
JPH0156547B2 (en)
JPS5839085A (en) Semiconductor laser device
JPH0478036B2 (en)
JP2672872B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61128589A (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS58110085A (en) Buried type semiconductor laser
JP2574670B2 (en) Surface emitting laser
JPS5956783A (en) Semiconductor laser
JPS5856376A (en) Semiconductor laser device
JPS60257583A (en) Semiconductor laser device
JPS6353718B2 (en)
JPS58207691A (en) Semiconductor laser element
JPS60245191A (en) Single beam type semiconductor laser array
JPH0438880A (en) Semiconductor light emitting element
JPS6028157B2 (en) Manufacturing method of semiconductor light emitting device
JPS5914691A (en) Semiconductor laser
JPS63104494A (en) Semiconductor laser device