JPS5887862A - Long-sized one-dimensional thin film sensor - Google Patents

Long-sized one-dimensional thin film sensor

Info

Publication number
JPS5887862A
JPS5887862A JP56185188A JP18518881A JPS5887862A JP S5887862 A JPS5887862 A JP S5887862A JP 56185188 A JP56185188 A JP 56185188A JP 18518881 A JP18518881 A JP 18518881A JP S5887862 A JPS5887862 A JP S5887862A
Authority
JP
Japan
Prior art keywords
thin film
transparent electrode
electrode
light
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56185188A
Other languages
Japanese (ja)
Other versions
JPS6314872B2 (en
Inventor
Hisao Ito
久夫 伊藤
Toshihisa Hamano
浜野 利久
Takeshi Nakamura
毅 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP56185188A priority Critical patent/JPS5887862A/en
Publication of JPS5887862A publication Critical patent/JPS5887862A/en
Publication of JPS6314872B2 publication Critical patent/JPS6314872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To suppress the variation in the sensor area of each bit as well as to eliminate the non-uniformity of the voltage applied to the sensing part of the titled sensor by a method wherein the transparency-deteriorated edge part of a narrow-stripped transparent electrode is coated by a non-light-transmitting metal film, and voltage is applied to the transparent electrode through said non-light-transmitting metal film. CONSTITUTION:On a glass substrate 1, a lower metal electrode 2 is formed with its sensing part formed in a longtudinally long rectangle. An optical semiconductor thin film 3, consisting of a non-amorphous or polycrystalline semiconductor, is coated on the electrode 2. Besides, on the above electrode 2, a narrow-stripped transparent electrode 4 of almost the same width as that of the lower metal electrode in longitudinal direction is provided. On the top of the above, a non-light-transmitting metal thin film 5 is formed in such a manner that the film 5 is covering the low light-transmitting edge part located at both ends of the narrow-stripped transparent electrode 4. Both of the left and right ends of said non-light-transmitting metal thin film 5 are connected to the voltage supplying source terminal (not shown in the diagram) which supplies voltage to the narrow-stripped transparent electrode 4. Voltage is applied to the narrow-stripped transparent electrode 4 by the metal thin film 5, and bias voltage is applied to an optical semiconductor thin film 3 located between electrodes 2 and 4. Accordingly, electric charge can be stored in the thin film 3.

Description

【発明の詳細な説明】 本発明は、薄膜半導体な用いた長尺−次元薄膜センサに
関し、特に帯状透明電極の透光性の低下したエツジ部分
を非透光性金属膜で核種し、この非透光性金属膜を通し
て透明電極に電圧を印加するようにしだ長尺−次元薄膜
センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a long-dimensional thin film sensor using a thin film semiconductor, and in particular, the edge portion of a band-shaped transparent electrode where the light transmittance is reduced is nuclided with a non-light transmitting metal film, and this non-transparent metal film is used as a nuclide. The present invention relates to a long-dimensional thin film sensor in which a voltage is applied to a transparent electrode through a transparent metal film.

薄膜半導体を用いた受光素子は、大面積化が容易な為、
原稿密着型のコンパクトなイメージセンサとして有望で
ある。センサ構造としては、薄膜半導体を上下両電極で
狭んだサンドイッチ型と平面的に両側から狭んだプレー
ナ型がある。これらのうち、光応答性に関しては、サン
ドイッチ型の方が薄膜半導体の膜厚を薄く出来る為に有
利である。
Light-receiving elements using thin-film semiconductors are easy to increase in area, so
It is promising as a compact image sensor that is in close contact with the document. Sensor structures include a sandwich type in which a thin film semiconductor is narrowed between upper and lower electrodes, and a planar type in which a thin film semiconductor is narrowed from both sides. Among these, the sandwich type is more advantageous in terms of photoresponsiveness because the thickness of the thin film semiconductor can be made thinner.

弟1図にこのサンドイッチ型センサの平面図を第2図に
第1図のA −A’線断面図を示す1.第1゜2図にお
いて、1はカバラス基板、2は下部金属電極、3は光半
導体薄膜、4は帯状透明電極を示す。
Figure 1 shows a plan view of this sandwich type sensor, and Figure 2 shows a sectional view taken along line A-A' in Figure 1. In FIG. 1-2, 1 is a caballas substrate, 2 is a lower metal electrode, 3 is an optical semiconductor thin film, and 4 is a band-shaped transparent electrode.

従来のこの椋lセンサ溝造では、ビット密)川を上げ長
尺化した場合、下記のような2つの問題があった。
With this conventional sensor groove structure, when increasing the bit density and increasing the length, there were two problems as described below.

(1)帯状透明電極4の長手方向のエツジ部分aでは透
光性が悪くなり、虜だ土部金属電極2の周辺部にはオー
バエツチングが見られる。このオ、<エツチングは特に
四つの角部すにおいて著しい。したがって、センサの上
動面積が減少すると共に、各ビット毎のセンサ面績のは
らっきが増大する。
(1) Translucency is poor at the edge portion a in the longitudinal direction of the band-shaped transparent electrode 4, and overetching is observed in the peripheral portion of the hollow metal electrode 2. This etching is particularly noticeable at the four corners. Therefore, the moving area of the sensor is reduced, and the spread of the sensor performance for each bit is increased.

(2帝状透明亀&40)幅の狭小化に伴ない、帯状透明
電極の抵抗値が増大すると共にセンサ部にかかる電圧が
不均一になる。
(2 Emperor Transparent Tortoise & 40) As the width becomes narrower, the resistance value of the band-shaped transparent electrode increases and the voltage applied to the sensor section becomes non-uniform.

本発明の目的は、上記した従来の薄膜センサの欠点を除
去し、各ビット毎のセンサ[111槓(こばらつきかな
く、センサ部にかかる電圧が均一な長尺−次元薄膜セン
サf1:提惧することにある。
The purpose of the present invention is to eliminate the drawbacks of the conventional thin film sensor described above, and to create a long-dimensional thin film sensor f1 in which the voltage applied to the sensor part is uniform without variations in each bit. It's about doing.

本発明の%徴は、帯状透明電極の幅方向端部の透光性の
低下したエツジ部分を非J六光恒金楓躊膜で覆い、核帯
状透明電極の透光性の良い鴇域のみをセンサ部として用
いるJJI lこより谷ピットのセンサ面績のばらつき
を小さく抑えるようにした点、および前記非透光性金用
博膜を通して抵抗率の高い透明電極に電圧を印加する月
3により、センサ部に印加される亀L1−の不均一を)
IJ)消した点にある。
The % characteristic of the present invention is that the edge portions of the width direction ends of the band-shaped transparent electrodes where the translucency has decreased are covered with a non-J six-light permanent gold maple film, and only the edge portions of the core band-shaped transparent electrodes with good translucency are covered. By using JJI l as a sensor part, the variation in sensor surface performance of the pit is kept small, and by applying a voltage to the transparent electrode with high resistivity through the non-transparent gold film, (The non-uniformity of torque L1- applied to the sensor part)
IJ) It is at the erased point.

以下に本発明を実施例(こよって説明する。本発明の一
実施例のセンサ構造の平面図を第3図に、そのA−A′
載断[「1図を第4図に7J<丁。ガラス基板1(〕)
上に、下部金属電極2がそのセンサ部分が縦長の長方形
となる様に形成されている。その上(こ非晶質或いは多
結晶半導体からなる光半導体薄膜3が薄膜8れている。
The present invention will be described below by way of an embodiment. A plan view of a sensor structure according to an embodiment of the present invention is shown in FIG.
Cutting [Figure 1 into Figure 4 7J<D.Glass substrate 1 (])
A lower metal electrode 2 is formed on the top so that its sensor portion has a vertically long rectangular shape. Moreover, an optical semiconductor thin film 3 made of an amorphous or polycrystalline semiconductor is formed as a thin film 8.

さら番こその圭に帯状透明電極4が下部金属電極の縦方
向の幅とほぼ同じ幅で帯状に設けられている。−売上1
こは、非透光性金属淘膜5か帝秋透明′a極4の両端の
透光性の悪いエツジ=1(分(i:覆うようiこ形成さ
れている。この非透光性金精薄膜5の左右両端は帯状J
h明電極4への電圧供給源端子(図示されていない)へ
接続される。
A band-shaped transparent electrode 4 is provided in a band-like manner with a width approximately equal to the vertical width of the lower metal electrode. -Sales 1
This is formed so as to cover the edges with poor translucency at both ends of the non-transparent metal membrane 5 or the transparent electrode 4. Both left and right ends of the fine thin film 5 are band-shaped J.
h is connected to a voltage supply source terminal (not shown) to the bright electrode 4;

次に、上記した本実施例の製造方法の一例を説明する。Next, an example of the manufacturing method of this embodiment described above will be explained.

この製造方法は、下部金属電極2として、A1、光半導
体薄膜3として非晶質シリコン、帯状透明電極4として
イン/ツムと錫の酸化物および最上j−の非透光性金桶
膜5としてAlを用いた場合の一例である。
This manufacturing method uses A1 as the lower metal electrode 2, amorphous silicon as the optical semiconductor thin film 3, an oxide of in/tsum and tin as the band-shaped transparent electrode 4, and a non-transparent metal film 5 as the uppermost layer. This is an example when Al is used.

先ず、ガラス基板1上に、Al’z電子ビーム蒸着によ
り約3u o o人の厚さに着膜する。続いて、フォト
リソグラフィによりセンサ部とそのリードの電極パター
ンを形成し、下部金属電極2とする。
First, an Al'z film is deposited on a glass substrate 1 to a thickness of about 3 uOm by electron beam evaporation. Subsequently, an electrode pattern for the sensor section and its leads is formed by photolithography to form the lower metal electrode 2.

その際、センサ部は、l*幅(こ対し縦幅を約1,5倍
にとり、縦長の長方形にする。例えば、解峠夏8本/韻
のセンサを作製する場合には、センサ部の縦、Xを15
oμm、横幅’&100/Jmにすると好適である。
At that time, the sensor part should be made into a vertically long rectangle with a width of l* (about 1.5 times the vertical width. For example, when making a sensor with 8 Kaitoge summers/rhyme, the sensor part should be Vertical, X is 15
It is preferable to set the width to 0 μm and the width to be 100/Jm.

次に、光半導体薄膜3を形成するため、水素化した非晶
質シリコンをグロー放電法により約1μmの厚さに着膜
する。作成粂件は109%S+Hを用い、Rli’パ’
7−2O−50W、ガス流i20−50SCCM、圧カ
0.4−0.6 Torr  、基板海度200−30
0−C,極板間距離40+mで、30分〜1時間の曲グ
ロー放′Mを行なう。
Next, in order to form an optical semiconductor thin film 3, hydrogenated amorphous silicon is deposited to a thickness of about 1 μm by a glow discharge method. For the creation, use 109% S+H, Rli'Pa'
7-2O-50W, gas flow i20-50SCCM, pressure 0.4-0.6 Torr, substrate sea level 200-30
0-C, a distance between the electrode plates of 40+m, and a curved glow release for 30 minutes to 1 hour.

続いて、帯状透明電極4のITO(10モル係In2L
)g + 90 七iv%Sn 02 ) ’i: D
 Cスハッタ’) 7 りにより約5ooXの厚さに着
膜する。スパッタ条件トシテ、パ’7−170−250
W#l!累分圧15X 10 ’ Torr+全圧カ(
全圧子アルゴン)4×10”Torrで、約1o分間ス
パッタリングkhなう。帯状透明電極4の着膜はメタル
マスクラ用い、下部金属電極2のセンサ部の縦方向の損
トホぼ同じ1禍で帯状に形成する。
Next, ITO (10 molar In2L) of the band-shaped transparent electrode 4 was added.
) g + 90 7iv%Sn 02 ) 'i: D
A film is deposited to a thickness of about 5ooX by C-shatta')7. Sputtering conditions: Pa'7-170-250
W#l! Cumulative pressure 15X 10' Torr + total pressure (
Sputtering is carried out for about 10 minutes at 4 x 10" Torr (all indenter argon). The band-shaped transparent electrode 4 is deposited using a metal masker. to form.

最後に、非透光性金踊としてAlk用い電子ビーム蒸着
により約3000人())厚さに着膜する。この時の、
胸は下部金属電極2のセンザ都縦方向に25μmfつか
かる様をこ、50μmの帽′とした。この7 ルミ薄膜
の形成はメタルマスクを用いても、又センサ部へAtを
全面着膜後、フォトリングラフィによってパターン形成
しても良い。後名の方が精度は高いか工程数はふえる。
Finally, a non-transparent gold film is deposited to a thickness of approximately 3000 mm by electron beam evaporation using Alk. At this time,
The chest had a cap of 50 .mu.m so as to extend 25 .mu.m in the longitudinal direction of the lower metal electrode 2. This 7-luminium thin film may be formed by using a metal mask, or by forming a pattern by photolithography after depositing At on the entire surface of the sensor portion. The latter name is more accurate or requires more steps.

以上θ)ブjf1.:により、長尺−次元薄膜セノザ介
ル成することが−Cきる。
Above θ) Bujf1. : It is possible to form a long-dimensional thin film using -C.

次に本実施例による長尺−次元薄j挨七ンサU)動作に
ついて説明する。
Next, a description will be given of the operation of the long-dimension and thin-dimension sensor U) according to this embodiment.

帯状透明’、11極4には金属薄膜5(こより電圧が印
力口される。そうすると、帯状透明電極4と下部金属電
極2との間にある光半導体薄膜3に対してバイアス電圧
が印加される。これによって、光半導体薄膜3に電荷が
蓄積される。
A voltage is applied to the metal thin film 5 (to the band-shaped transparent electrode 4 and the lower metal electrode 2).A bias voltage is then applied to the optical semiconductor thin film 3 between the band-shaped transparent electrode 4 and the lower metal electrode 2. As a result, charges are accumulated in the optical semiconductor thin film 3.

このようにバイアス′市圧が印加された各ザンドイツチ
状受光素子に図示しない光学装置から光像が照射される
。そうすると、光の当った受光素子から前記のようにし
て蓄積されていた電荷は受光素子内で中和消失する。一
方、光の当らない部分の受光素子中には蓄積された電荷
が残留する。このようにして、光隊に応じて薄膜センサ
中に形成された′wIL向パターンは、下部金属電極2
のリードに接続された明記しないスインチング牛段によ
り各ビート毎に読み取られる。したがって、光の像本発
明は以上述べた構成をとることにより、下6己の効果を
奏することができる。
A light image is irradiated from an optical device (not shown) onto each Sanderutsch-shaped light receiving element to which a bias voltage is applied in this manner. Then, the charge accumulated in the above-described manner from the light-receiving element hit by the light is neutralized and disappears within the light-receiving element. On the other hand, accumulated charges remain in the light-receiving element in areas not exposed to light. In this way, the 'wIL direction pattern formed in the thin film sensor according to the photons is formed on the lower metal electrode 2.
Each beat is read by an unspecified swinging cow step connected to the lead. Therefore, by employing the above-described configuration, the optical image of the present invention can achieve the following effects.

(1)各受光素子にかかる電圧を一定とすることができ
るθ)で、センサの有効曲損のばらつきを従来の約10
%から5%以下に下げる小が出来る。
(1) The voltage applied to each light-receiving element can be kept constant at θ), which reduces the variation in effective bending loss of the sensor by about 10
It is possible to reduce the percentage from 5% to less than 5%.

これによって、読取時のエラーを大幅に下げる事ができ
る。
This can significantly reduce errors during reading.

(2)帯状透明電極の端部投手方向に形成された非運フ
Y−性金属膜により帯状透明を極に′電圧を供給するこ
とができるので、帯状透明電極の厚みを1500人から
500人程置きする事かできる。
(2) Since it is possible to supply a voltage to the pole of the strip-shaped transparent electrode by means of the non-transparent metal film formed in the pitch direction at the end of the strip-shaped transparent electrode, the thickness of the strip-shaped transparent electrode can be reduced from 1500 to 500. You can give it some time.

この為、光透過率を従来の85φ程度から90係以上に
上げる事が出来、照射光透を減らす事が出来る。
Therefore, the light transmittance can be increased from the conventional approximately 85φ to 90 or more, and the transmission of irradiated light can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサンドイッチ型センサの平面図、第2図
は第1図のA−A’腺1LIT曲図、第3図は本発明の
一実施例の平面図、第4図は第3図のA−λ線断面図を
示す。 1・・ガラス基板、2・下部金属電極、3・・・光半導
体薄膜、4・帯状透明11L極、5・・非透光性金属膜 代理人弁理士 平 木 道 人 外1名 第1 図 ニ 第2 図
FIG. 1 is a plan view of a conventional sandwich type sensor, FIG. 2 is a 1-LIT curve diagram of the AA' gland in FIG. 1, FIG. 3 is a plan view of an embodiment of the present invention, and FIG. A sectional view taken along the line A-λ in the figure is shown. 1. Glass substrate, 2. Lower metal electrode, 3. Optical semiconductor thin film, 4. Band-shaped transparent 11L pole, 5. Non-transparent metal film Patent attorney Michi Hiraki (1 non-person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)  基板、該基板上に複数個に分割して形成され
たセンサ部とリードを形成する下部金属電極、該複数個
の下部金属m極を覆う如く設けられた光半導体薄膜、お
よび該光半導体薄膜上の、少なくとも該複数個の下部金
属1!極に対向する部分に設けられた帯状透明電極を有
する長尺−次元薄膜センサlこ於て、該帯状透8A11
i極の、一方向端部に非透光性金属薄膜を設けた墨を特
徴とする長尺−次元薄膜センサ。 (2繭記非透光性金槁薄膜から印加される電圧によって
、前記帯状透明電極と前記下部金属電極との間にバイア
ス電圧を印加するようにした事を特徴とする特許 薄膜センサ。 (3)  前記非透光性金属薄膜は前記帯状透明電極の
幅方向両端(こ設けられている小を特徴とする@記特許
開求の範囲第1項又は第2項{己載の長尺−次元薄膜セ
ンサ。
[Scope of Claims] (1) A substrate, a lower metal electrode forming a sensor section and a lead formed on the substrate in a plurality of parts, and a light provided so as to cover the plurality of lower metal m-poles. A semiconductor thin film, and at least the plurality of lower metals 1 on the optical semiconductor thin film! In this case, the long-dimensional thin film sensor having a strip-shaped transparent electrode provided in a portion facing the pole, the strip-shaped transparent electrode 8A11.
A long-dimensional thin film sensor characterized by a black color with a non-transparent metal thin film provided at one end of the i-pole. (2) A patented thin film sensor characterized in that a bias voltage is applied between the band-shaped transparent electrode and the lower metal electrode by a voltage applied from a non-light-transmitting thin film. (3 ) The non-light-transmitting metal thin film is provided at both ends in the width direction of the band-shaped transparent electrode. Thin film sensor.
JP56185188A 1981-11-20 1981-11-20 Long-sized one-dimensional thin film sensor Granted JPS5887862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185188A JPS5887862A (en) 1981-11-20 1981-11-20 Long-sized one-dimensional thin film sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185188A JPS5887862A (en) 1981-11-20 1981-11-20 Long-sized one-dimensional thin film sensor

Publications (2)

Publication Number Publication Date
JPS5887862A true JPS5887862A (en) 1983-05-25
JPS6314872B2 JPS6314872B2 (en) 1988-04-01

Family

ID=16166385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185188A Granted JPS5887862A (en) 1981-11-20 1981-11-20 Long-sized one-dimensional thin film sensor

Country Status (1)

Country Link
JP (1) JPS5887862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108480A2 (en) * 1982-11-01 1984-05-16 Kabushiki Kaisha Toshiba Photoelectric conversion element
JPS6037161A (en) * 1983-08-09 1985-02-26 Toshiba Corp Photoelectric conversion element
JPH01143150U (en) * 1988-03-28 1989-10-02

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879756A (en) * 1981-11-06 1983-05-13 Nec Corp Amorphous si image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879756A (en) * 1981-11-06 1983-05-13 Nec Corp Amorphous si image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108480A2 (en) * 1982-11-01 1984-05-16 Kabushiki Kaisha Toshiba Photoelectric conversion element
US4672221A (en) * 1982-11-01 1987-06-09 Tokyo Shibaura Denki Kabushiki Kaisha Photoelectric conversion element with light shielding conductive layer
JPS6037161A (en) * 1983-08-09 1985-02-26 Toshiba Corp Photoelectric conversion element
JPH01143150U (en) * 1988-03-28 1989-10-02

Also Published As

Publication number Publication date
JPS6314872B2 (en) 1988-04-01

Similar Documents

Publication Publication Date Title
US4623751A (en) Photovoltaic device and its manufacturing method
JP2007080579A (en) Surface light emitting device
JPS5887862A (en) Long-sized one-dimensional thin film sensor
JPS63237489A (en) Semiconductor laser and its manufacture
JPS60239072A (en) Photosensor
JPS61163671A (en) Thin-film solar cell
KR100537875B1 (en) Reflective Liquid Crystal Display and Manufacturing Method Thereof
JPS61161769A (en) Insulated gate type non-volatile semiconductor memory device
JPS5471593A (en) Production of photo sensor array
JPS5917286A (en) Photoconductive potentiometer
JP3078395B2 (en) Optical element
JPS61128561A (en) Manufacture of image sensor
JPS613476A (en) Amorphous si photosensor
JP2804253B2 (en) Electronic device
JPH0370184A (en) Photovoltaic device
JPS5471594A (en) Production of photo sensor array
JP2774791B2 (en) Electronic device
JPS6218066A (en) Image sensor and manufacture of the same
JPH01307280A (en) Manufacture of thin-film element
JPS60167388A (en) Photodetector
JPH04120773A (en) Element structure for thin film solar cell
JPH03185864A (en) Image reader
JPS6181661A (en) Photo conductive element
JPS5586172A (en) Manufacture of semiconductor pickup device
JPS62176159A (en) Manufacture of image sensor