JPS5886769A - Lateral p-n-p type transistor - Google Patents

Lateral p-n-p type transistor

Info

Publication number
JPS5886769A
JPS5886769A JP18580281A JP18580281A JPS5886769A JP S5886769 A JPS5886769 A JP S5886769A JP 18580281 A JP18580281 A JP 18580281A JP 18580281 A JP18580281 A JP 18580281A JP S5886769 A JPS5886769 A JP S5886769A
Authority
JP
Japan
Prior art keywords
region
type
layer
type semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18580281A
Other languages
Japanese (ja)
Inventor
Yoshitaka Umeki
梅木 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18580281A priority Critical patent/JPS5886769A/en
Publication of JPS5886769A publication Critical patent/JPS5886769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To eliminate the loss of a collector current by growing an epitaxial layer on a semiconductor substrate having a buried layer, forming the layer in an insular shape with an insulation isolating region, and annularly forming the region of the same conductive type which is connected to a buried layer to the surface of a substrate when the layer is used as a base region, and using it as a base region. CONSTITUTION:An N<+> type buried layer 105 is diffused and formed on the surface layer of a P type Si substrate 107, an N type layer 104 is epitaxially grown on the overall surface which includes the layer 105, and is insulated and isolated in an insular shape via a P type region 106 which is contacted with the substrate. Then, when a P type emitter region 101 and a collector region 103 are diffused and formed in the layer 104 to become insular and a P type base region 102 is further formed, the same N<+> type region 109 to be intruded into the region 105 is annularly formed to the surface of the layer 104 while surrounding the regions 101 and 103, and the region 102 is disposed on the surface layer. In this manner, the reactive injection of holes to the substrate 107 and the region 106 is eliminated, hFE times of base current can be all produced as a collector current.

Description

【発明の詳細な説明】 本発明は横型PNP )ランジスタに関する。[Detailed description of the invention] The present invention relates to a horizontal PNP transistor.

現在使用さhているバイポーラトランジスタは。What are the bipolar transistors currently in use?

製造技術上の容易さからNPN形が主体でおるが。The NPN type is the main type due to the ease of manufacturing technology.

PNP形を混用することにより、レベルシフト。Level shift by mixing PNP type.

位相反転などが容易になり、設計の自由度の増大。Phase inversion becomes easier, increasing the degree of freedom in design.

回路構成の簡素化などが可能となる。またNPNトラン
ジスタの負荷としてPNP ) 、yンジスタを用いふ
ことにより、消費電力の減少、集積密度の増大など数多
くの利点を有しているので、PNPトランジスタを積極
的に利用する傾向にある。
It becomes possible to simplify the circuit configuration. Furthermore, by using a PNP transistor as a load for an NPN transistor, there are many advantages such as a reduction in power consumption and an increase in integration density, so there is a tendency to actively utilize PNP transistors.

NPN )ランジスタの製造プロセスのもとにおいて、
工程数を増加することなく導入できるPNPトランジス
タとして、コレクタが基板に接続され。
NPN) Under the transistor manufacturing process,
The collector is connected to the substrate as a PNP transistor that can be introduced without increasing the number of steps.

エミッタを出力とする縦型PNP トランジスタとコレ
クタを出力として取り出す横型”PNP トランジスタ
が知られているが、411F殊な使用以外は横型PNP
 トランジスタを用いることが多い。
Vertical PNP transistors with emitter as output and horizontal PNP transistors with collector as output are known, but 411F except for special use uses horizontal PNP transistors.
Transistors are often used.

第1図に縦来の横型PNP )ランジスタの断面□□□
管示す。
Figure 1 shows a cross-section of a vertical and horizontal PNP transistor □□□
Show tube.

横型PNPトランジスタは9通常のNPN )ランシス
タのベース拡散を利用して、エミッタlとコレクタ3を
同時に形成することにより作られる。
A lateral PNP transistor is fabricated by simultaneously forming the emitter l and collector 3 using the base diffusion of nine conventional NPN transistors.

またNPN )ランジスタのコレクタ抵抗を減少させる
目的で導入されているN十型埋込/1ii5をエミッタ
とコレクタの底面に近接して設けている。図において2
はN生型ベース、4はN型ベース領域。
Further, an N0-type buried /1ii5 introduced for the purpose of reducing the collector resistance of the NPN transistor is provided close to the bottom surfaces of the emitter and collector. In the figure 2
is the N-type base, and 4 is the N-type base region.

6はP+型絶縁分離領域、7はP型半導体基板である。6 is a P+ type insulation isolation region, and 7 is a P type semiconductor substrate.

また6には負のバイアス8が印加されている。Further, a negative bias 8 is applied to 6.

ここでPNP トランジスタにおけるN+型埋込層の働
きについて説明する。ベースとN+型埋込層の境界にけ
N+型埋込層からベースへ向かうB111t−in 電
界が存在するので、縦方向へ注入される正孔はこの電界
に妨げられてN+型埋込層に入り込むことができな−い
。したがってN+型埋込層は正孔の縦方向への無効注入
を減少させる役割ケ果たしている。
Here, the function of the N+ type buried layer in the PNP transistor will be explained. Since there is a B111t-in electric field from the N+ buried layer toward the base at the boundary between the base and the N+ buried layer, holes injected in the vertical direction are blocked by this electric field and flow into the N+ buried layer. I can't get into it. Therefore, the N+ type buried layer plays the role of reducing ineffective injection of holes in the vertical direction.

バイポーラ型集積回路においては基板に負のバイアス・
電圧會印加して使用するのが通例であるから、N 型埋
込層がなければベース−基板間のN−P接合は逆バイア
スされ、縦方向に注入さhる正孔のほとんどは基板へ流
れ込んでしまう。つまり、横型PNP ) ?ンジスタ
の動作とともに、縦型PNP)、7ンジスタの動作tす
る。したがって+JHlf PNP ) ?ンジスタの
みの動作をするためには一9N型ベース領域とP型基板
の接合部分が無いようKする。すなわちN+型埋込層か
絶縁分離領域と接するように形成すれば良い。しかし第
1図に示すように通常用いられている横型PNP )ラ
ンジスタにおいては、上記の様な構造をとっていない。
In bipolar integrated circuits, the substrate is negatively biased.
Since it is customary to use a voltage applied, if there is no N-type buried layer, the N-P junction between the base and the substrate will be reverse biased, and most of the holes injected in the vertical direction will be directed to the substrate. It flows into me. In other words, horizontal PNP)? Along with the operation of the transistor, the operation of the vertical PNP) and seven transistors also occurs. Therefore +JHlf PNP)? In order to operate only the transistor, the junction between the N-type base region and the P-type substrate should be eliminated. That is, it may be formed so as to be in contact with the N+ type buried layer or the insulation isolation region. However, as shown in FIG. 1, the commonly used horizontal PNP transistor does not have the above structure.

これは仮にN十型埋込層5と、絶縁分離領域6とが接し
ていれば、ベース2と基板7との接合容量が著しく増大
するとともに、ベース−基板間の耐圧が極端に低下する
からで1両者の間にはある程度の間隔を必要とする。し
たがってこのような構造の横型)’NP )ランジスタ
においテハエミッタからベースに流れる電流のhFg倍
すべてがコレクタには流れず、一部N+型埋込層と絶縁
分離領域のすき間を通って基板へ流れ込むので。
This is because if the N-type buried layer 5 and the insulation isolation region 6 were in contact with each other, the junction capacitance between the base 2 and the substrate 7 would increase significantly, and the withstand voltage between the base and the substrate would be extremely reduced. 1. A certain amount of space is required between the two. Therefore, in a horizontal (NP) transistor with such a structure, all of the current flowing from the emitter to the base (hFg times) does not flow to the collector, but partially flows into the substrate through the gap between the N+ type buried layer and the insulation isolation region. .

コレクタ3には所望のコレクタ電流を得ることができな
かった。また基板に電流が流れ込むことにより基板の電
位を上昇させるので、近傍のトランジスタの動作を不安
定にさせるという欠点があった。さらに、絶縁分離領域
6とエミッタ1が接近していれば、上記6をコレクタと
するPNP )ランジスタ動作を起こす危険性があるの
で、絶縁分離領域とエミッタの間隔全充分に取る必要が
有り。
A desired collector current could not be obtained in the collector 3. Furthermore, since current flows into the substrate, the potential of the substrate is increased, which has the disadvantage of destabilizing the operation of nearby transistors. Furthermore, if the isolation region 6 and the emitter 1 are close to each other, there is a risk that a PNP transistor will operate with the collector 6, so it is necessary to provide a sufficient distance between the isolation region and the emitter.

このことが素子の縮少化を難しくしていた。This makes it difficult to reduce the size of the device.

本発明は上記不都合に鑑みてなされたもので。The present invention has been made in view of the above disadvantages.

コレクタ電流の損失を無くシ、安定した横型PNPトラ
ンジスタを提供するものである。
This provides a stable lateral PNP transistor that eliminates collector current loss.

本発明の特徴は、P型半導体基板と、このP型子導体基
板上に形成された高不純物濃度のN型半導体第1領域と
、このN型半導体第1領域およびP型半導体基板に接す
るように形成されたN型半導体第2領域と、このN型半
導体第2@域内に互いに分離されるように形成されたP
型半導体第1領域およびP型半導体第2領域とを含み、
そのN型半導体第2領域をベース、P型半導体第1領域
をエミッタ、P型半導体第2領域tコレクタとしf横f
JIPNPトランジスタにおいて、N型半導体第2領域
内に、P型半導体第1および第2fjl域ケとり囲み、
しかもN型半導体第1領域に接するように高不純物濃度
のN型半導体第3領域を形成した横型PNP トランジ
スタにある。
The present invention is characterized by a P-type semiconductor substrate, a highly impurity-concentrated N-type semiconductor first region formed on the P-type child conductor substrate, and a region in contact with the N-type semiconductor first region and the P-type semiconductor substrate. A second N-type semiconductor region formed in the N-type semiconductor second region, and a P-type semiconductor region formed in the second N-type semiconductor region so as to be separated from each other.
a P-type semiconductor first region and a P-type semiconductor second region;
The second N-type semiconductor region is the base, the first P-type semiconductor region is the emitter, the second P-type semiconductor region is the collector, and the width is f.
In the JIPNP transistor, in the N-type semiconductor second region, surrounding the P-type semiconductor first and second fjl regions,
Moreover, the present invention is a lateral PNP transistor in which a third N-type semiconductor region with a high impurity concentration is formed so as to be in contact with the first N-type semiconductor region.

以下、実施例によりこの発明を具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to Examples.

第2図(atは本発明の実施例を示す横型PNP トラ
ンジスタの断面図であり、第2図(b)はその平面図で
ある。
FIG. 2(at) is a sectional view of a lateral PNP transistor showing an embodiment of the present invention, and FIG. 2(b) is a plan view thereof.

第2図(a)において101,102,103は本発明
における横型PNP)?ンジスタのエミッタ、ベース、
コレクタを示し、 104はベース領域、105はN十
型埋込層、 106けP型絶縁分離領域、107FiP
型基板會示す。また106には負のバイアス10Bが印
加されている。従来のPNP トランジスタとの異なる
点は、エミッタlotコレクタ103を取り囲む形でN
+型不純物109がN+型埋込層105に達するように
拡散さhていることであZ0このN+型不純物109は
横型PNP )ランジスタの動作においてN+型埋込層
と同様の働き管する。
In FIG. 2(a), 101, 102, and 103 are horizontal PNPs in the present invention)? emitter, base,
It shows a collector, 104 is a base region, 105 is an N-type buried layer, 106 is a P-type isolation region, 107 is a FiP
Type board meeting is shown. Further, a negative bias 10B is applied to 106. The difference from the conventional PNP transistor is that the N
Since the +-type impurity 109 is diffused to reach the N+-type buried layer 105, the N+-type impurity 109 functions similarly to the N+-type buried layer in the operation of a lateral PNP transistor.

すなわち、ベース領域104とN十不純物109との電
界にはN+型不純物からベースへ向かうBuilt−i
n電界が存在するので、正孔はこの電界に妨けらh正孔
の基板107、絶縁分離領域106への無効注入tit
とんど無くすることができる。
That is, the electric field between the base region 104 and the N+ impurity 109 has a built-in electric field directed from the N+ type impurity toward the base.
Since the electric field exists, the holes are prevented from being ineffectively injected into the substrate 107 and the isolation region 106 by the electric field.
It can be completely eliminated.

したがってベース電流のhFE倍すべてをコレクタ電流
として取り出すことが可能となり、コレクタ103には
所望の出力を得ることができる。
Therefore, it is possible to extract all hFE times the base current as a collector current, and a desired output can be obtained from the collector 103.

また109のようなN+型不純物を、通常のPNPトラ
ンジスタのコレクタ抵抗管減少させる目的で導入してい
るプロセスにおいては、本発明の横型PNPト9ンジス
タ會プロセスの工程数を増加することなく形成すること
ができる。
Furthermore, in a process in which an N+ type impurity such as 109 is introduced for the purpose of reducing the collector resistance of a normal PNP transistor, the lateral PNP transistor of the present invention can be formed without increasing the number of process steps. be able to.

以上の説明の如く、本発明の横型PNP )7ンジスタ
によれは、安定したPNP トランジスタ動作を得られ
る。また、NPN )ランジスタ等と混用することKよ
り、PNP )ランジスタの機能を最大限に利用するこ
とが可能となり、その効果は大きい。
As explained above, the lateral PNP transistor of the present invention provides stable PNP transistor operation. In addition, since it is mixed with NPN) transistors, etc., it becomes possible to utilize the functions of PNP) transistors to the maximum extent, which has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の横型PNPトランジスタを集積化した場
合の断面図、第2図(a)および第2図(b)は各々本
発明の横型PNP トランジスタの実施例管示す断面図
および平面図である。 なお図において、  l 、 101 、101’・・
団・エミッタ、2,102・・・・・・ベース、3,1
03,103’・・ヤ・・・コレクタ、4,104・・
団N Wエピタキシャル層(ベース領域)、5,105
・・・・・・N+型埋込層、6゜106・・・・・パP
型絶鍬分離領域、7,107・・・・・・P型基板、8
,108・・・・・・負のバイアス電圧、109゜10
9′・・・・・・N生型不純物、である。 第2図(t))
FIG. 1 is a sectional view of a conventional lateral PNP transistor integrated, and FIGS. 2(a) and 2(b) are a sectional view and a plan view showing an embodiment of the lateral PNP transistor of the present invention, respectively. be. In the figure, l, 101, 101'...
Group/emitter, 2,102...Base, 3,1
03,103'...Ya...Collector, 4,104...
Group NW epitaxial layer (base region), 5,105
...N+ type buried layer, 6゜106...PaP
Type separation area, 7,107...P type substrate, 8
, 108... Negative bias voltage, 109°10
9'...N native impurity. Figure 2 (t))

Claims (1)

【特許請求の範囲】 P型半導体基板と、該P型半導体基板土に形成きれた高
不純物@IのN型半導体第1領域と、該N型半導体第1
領域および前記P型半導体基板に接するように形成され
た・N型半導体第2領域と。 該N型半導体第2領域内に互いに分離されるように形成
されたP型半導体第1領域およびP型半導体第2領域と
を含み、前記N型半導体第2領域をベース、P型半導体
第1領域をエミッタ、P型半導体第2領域をコレクタと
した横型PNP トランジスタにおいて、前記N型半導
体@2領域内に。 前記P型半導体第1および第2領域をとり囲み。 しかも前記N型半導体第1領域に接するように高不紳物
隋良のN型半導体第3領域を形成したことを特徴とする
横a!!PNP)シンジスタ。
[Claims] A P-type semiconductor substrate, a highly impurity @I N-type semiconductor first region completely formed in the P-type semiconductor substrate, and a first N-type semiconductor region formed in the P-type semiconductor substrate soil.
and an N-type semiconductor second region formed so as to be in contact with the P-type semiconductor substrate. The second N-type semiconductor region includes a first P-type semiconductor region and a second P-type semiconductor region formed to be separated from each other, and the second N-type semiconductor region is used as a base, and the first P-type semiconductor region is formed as a base. In a lateral PNP transistor in which the region is an emitter and the P-type semiconductor second region is a collector, the N-type semiconductor @2 region is used. surrounding the P-type semiconductor first and second regions; Moreover, the horizontal a! ! PNP) syndista.
JP18580281A 1981-11-19 1981-11-19 Lateral p-n-p type transistor Pending JPS5886769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18580281A JPS5886769A (en) 1981-11-19 1981-11-19 Lateral p-n-p type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18580281A JPS5886769A (en) 1981-11-19 1981-11-19 Lateral p-n-p type transistor

Publications (1)

Publication Number Publication Date
JPS5886769A true JPS5886769A (en) 1983-05-24

Family

ID=16177137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18580281A Pending JPS5886769A (en) 1981-11-19 1981-11-19 Lateral p-n-p type transistor

Country Status (1)

Country Link
JP (1) JPS5886769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373663A (en) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd Lateral transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373663A (en) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd Lateral transistor

Similar Documents

Publication Publication Date Title
US3955210A (en) Elimination of SCR structure
US3590345A (en) Double wall pn junction isolation for monolithic integrated circuit components
GB1533156A (en) Semiconductor integrated circuits
US4345166A (en) Current source having saturation protection
JPS62229967A (en) Equivalent npn structure with breadown voltage higher than specific breakdown voltage of npn transistor
JPS5886769A (en) Lateral p-n-p type transistor
JPH0244759A (en) Semiconductor integrated circuit device
JP2587424B2 (en) Method for manufacturing semiconductor integrated circuit device
US4249192A (en) Monolithic integrated semiconductor diode arrangement
JPS59181058A (en) Semiconductor device
JPS63107162A (en) Vertical type pnp transistor
KR870009476A (en) Programmable Transistors and Manufacturing Method Thereof
JP2648027B2 (en) IIL type semiconductor device
JPS59188160A (en) Semiconductor integrated circuit device
JPS6083361A (en) Semiconductor device
JPS5533007A (en) Semiconductor intergated circuit
JPS6116569A (en) Semiconductor integrated circuit device
JPS60249363A (en) Semiconductor ic device
JPH10135345A (en) Semiconductor integrated circuit
JPH04262569A (en) Semiconductor device
JPS59231918A (en) Semiconductor integrated circuit
JPS61276340A (en) Semiconductor integrated circuit device
JPS60119770A (en) Semiconductor device
JPH03256332A (en) Vertical bipolar transistor element and bi-cmos inverter using the same element
JPH0442829B2 (en)