JPS588557B2 - Positive electrode grid for lead-acid batteries - Google Patents

Positive electrode grid for lead-acid batteries

Info

Publication number
JPS588557B2
JPS588557B2 JP53002509A JP250978A JPS588557B2 JP S588557 B2 JPS588557 B2 JP S588557B2 JP 53002509 A JP53002509 A JP 53002509A JP 250978 A JP250978 A JP 250978A JP S588557 B2 JPS588557 B2 JP S588557B2
Authority
JP
Japan
Prior art keywords
alloy
positive electrode
lead
lattice
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53002509A
Other languages
Japanese (ja)
Other versions
JPS5495323A (en
Inventor
熊野泰之
福永秀美
福田貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53002509A priority Critical patent/JPS588557B2/en
Publication of JPS5495323A publication Critical patent/JPS5495323A/en
Publication of JPS588557B2 publication Critical patent/JPS588557B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、鉛蓄電池の正極用格子に関するもので、格子
合金を改良することにより、正極の寿命の一原因である
活物質の軟化、脱落を防止することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grid for the positive electrode of a lead-acid battery, and aims to prevent the active material from softening and falling off, which is one of the causes of the lifespan of the positive electrode, by improving the grid alloy. do.

従来、鉛蓄電池の正極の寿命は、格子の腐食あるいは活
物質の軟化、脱落に起因する例がほとんどであった。
In the past, the life of the positive electrode of a lead-acid battery was mostly due to corrosion of the lattice or softening or falling off of the active material.

多年の間、鉛蓄電池の格子には鉛主体合金が使用されて
きた。
For many years, lead-based alloys have been used in the grids of lead-acid batteries.

それは、鉛の電気化学的性質及びコストが格子材料とし
ての適正を有していることによる。
This is because the electrochemical properties and cost of lead make it suitable as a grid material.

鉛はそれ自体機械的強度が小さいため合金にして使用す
るのが普通である。
Since lead itself has low mechanical strength, it is usually used in the form of an alloy.

例えば、3〜5重量%(以下単に%で表す)のアンチモ
ンSbを含むPb−Sb合金は、鋳造性がよく、物理的
強度が大きいことから、従来最も多く使用されているも
のの一つである。
For example, a Pb-Sb alloy containing 3 to 5% by weight (hereinafter simply expressed as %) of antimony Sb is one of the most commonly used alloys because it has good castability and high physical strength. .

しかし、この合金を用いると、電池の充電時に格子中の
Sbが溶出して負極に電着して負極の水素過電圧を下げ
、充電時の負極からの水素ガス発生や自己放電が大きく
なり、また電解液中の水分が減少して保守が困難になる
などの欠点が生じた。
However, when this alloy is used, Sb in the lattice is eluted and electrodeposited on the negative electrode during charging of the battery, lowering the hydrogen overvoltage of the negative electrode, increasing hydrogen gas generation from the negative electrode during charging, and self-discharge. This resulted in drawbacks such as a decrease in water content in the electrolyte, making maintenance difficult.

その他Sbの代わりにカルシウムCaを加えたPb−C
a合金が、主に小形密閉電池に用いられている。
Other Pb-C with calcium Ca added instead of Sb
A-alloys are mainly used in small sealed batteries.

この合金は、自己放電や充電中の水分の減少が少ない特
徴を有するが、充放電の使用条件によっては、格子と活
物質との間に絶縁性被覆層が生成して充電ができなくな
るという欠点を有している。
This alloy has the characteristic of low self-discharge and low moisture loss during charging, but has the disadvantage that depending on the usage conditions for charging and discharging, an insulating coating layer is formed between the lattice and the active material, making charging impossible. have.

これらの欠点を改良するものとして、Pb−Ca−スズ
(Sn)合金、Pb−ストロンチウム(Sr)一アルミ
ニウム(Al)−Sn合金あるいはPb−Sr−Al−
銀(Ag)合金などが提案されている。
To improve these drawbacks, Pb-Ca-tin (Sn) alloy, Pb-strontium (Sr)-aluminum (Al)-Sn alloy, or Pb-Sr-Al-
Silver (Ag) alloys and the like have been proposed.

これらはその添加元素の含量を調整することにより、機
械的強度が大きく負極への影響も少なく、またPb−C
a合金のように充電ができなくなるということもないな
ど正極格子として優れた特徴を有する。
By adjusting the content of additive elements, these can have high mechanical strength, have little effect on the negative electrode, and can be made from Pb-C.
It has excellent characteristics as a positive electrode lattice, such as not being unable to be charged unlike a-alloy.

しかし、充放電サイクルの進行に伴って生じる正極活物
質の軟化、脱落に対しては効果が小さい。
However, it has little effect on softening and falling off of the positive electrode active material as the charge/discharge cycle progresses.

正極活物質の軟化、脱落は、充放電サイクルの進行に伴
って活物質が微細化して活物質間の密着性が悪くなるこ
と、特に充放電に伴う活物質の膨張と収縮によって密着
が悪くなることによって起こる。
Softening and falling off of the positive electrode active material occurs when the active material becomes finer as the charge/discharge cycle progresses and the adhesion between the active materials deteriorates, especially when the active material expands and contracts during charging and discharging. It happens because of something.

そして、格子と活物質との界面近傍で活物質の微細化が
進行し、未反応のPb02が極板内に残った状態で電圧
が降下することにより容量の低下となって表れる。
Then, the active material becomes finer near the interface between the lattice and the active material, and the voltage drops with unreacted Pb02 remaining in the electrode plate, resulting in a decrease in capacity.

本発明は、Pb −Sr−At−Agに、セリウムCe
を加えた合金を用いることによって上記のような不都合
を解決するものである。
In the present invention, cerium Ce is added to Pb-Sr-At-Ag.
The above-mentioned disadvantages are solved by using an alloy with added .

本発明の正極格子を用いることにより電極の寿命が延び
るのは次のように考えられる。
The reason why the life of the electrode is extended by using the positive electrode grid of the present invention is considered as follows.

第1図は正極格子と活物質の界面のモデルを示すもので
、1は格子、2はこれに塗着された活物質、3は格子が
酸化された層である。
FIG. 1 shows a model of the interface between the positive electrode lattice and the active material, where 1 is the lattice, 2 is the active material coated on this, and 3 is the layer in which the lattice is oxidized.

4は格子に添加されたCeが活物質中に溶出し、これが
作用して形成された鉛の酸化物層である。
4 is a lead oxide layer formed by Ce added to the lattice being eluted into the active material.

正極活物質の二酸化鉛は、放電により硫酸鉛となり充電
により再び元に戻る。
Lead dioxide, which is the positive electrode active material, becomes lead sulfate during discharge and returns to its original state when charged.

このような充放電の繰り返しにより活物質粒子間の密着
性が悪くなると、硫酸イオンが容易に格子界面に到達し
、放電反応が極板表面よりも格子界面で早く進行するこ
ととなる。
When the adhesion between the active material particles deteriorates due to such repeated charging and discharging, sulfate ions easily reach the lattice interface, and the discharge reaction proceeds faster at the lattice interface than at the electrode plate surface.

その結果、格子表面の活物質粒子の微細化が生じ、脱落
などにより容量が低下することになる。
As a result, the active material particles on the lattice surface become finer, and the capacity decreases due to falling off and the like.

これに対して、上記のようにして形成される層4の鉛の
酸化物は、充電により形成される化学量論比より若干酸
素量の少ない活性な二酸化鉛と異なり、充放電反応に関
与しない不活性なPbO2であり、しかも電子伝導性を
有するものである。
On the other hand, the lead oxide of layer 4 formed as described above does not participate in charge/discharge reactions, unlike the active lead dioxide formed by charging, which has a slightly lower oxygen content than the stoichiometric ratio. It is inert PbO2 and has electronic conductivity.

このため、放電反応を極板表面から内部へ進行させ、格
子界面での反応による活物質の微細化を抑制できるもの
と考えられる。
Therefore, it is considered that the discharge reaction can proceed from the surface of the electrode plate to the inside, and that it is possible to suppress the miniaturization of the active material due to the reaction at the lattice interface.

本発明で用いるベース合金Pb−Sr−Al−Ag合金
の組成は、既に提案されているように、Sr0.07〜
0.3%、Al0.05〜0.1%、Ag0.05〜0
.3%が適当である。
As already proposed, the composition of the base alloy Pb-Sr-Al-Ag used in the present invention is Sr0.07~
0.3%, Al0.05-0.1%, Ag0.05-0
.. 3% is appropriate.

Srが0.07%より少ないと充分な機械的強度が得ら
ず、また0.5%以上になると強度はさらに増加するが
腐食が大きくなり実用に適さない。
If the Sr content is less than 0.07%, sufficient mechanical strength cannot be obtained, and if the Sr content is more than 0.5%, the strength will further increase, but corrosion will increase, making it unsuitable for practical use.

コストの面からも0.3%以下が好ましく、約0.1%
近付が最も適している。
In terms of cost, it is preferably 0.3% or less, and about 0.1%.
Close quarters are best.

Alは0.05%より少ないとSrが適量であっても機
械的強度が小さく、また添加量が多くなるとAlが偏析
し易くなる。
If the amount of Al is less than 0.05%, the mechanical strength will be low even if the amount of Sr is appropriate, and if the amount added is large, Al will be likely to segregate.

0.1%近付が最も適切である。A value near 0.1% is most appropriate.

Agは合金の耐食性を向上させるのに効果がある。Ag is effective in improving the corrosion resistance of the alloy.

しかし多量に加えると電池の充電時にAgが溶出して負
極に析出し、負極の電位が貴な方向に移動するため、電
池を定電圧充電すると正極から酸素ガスが発生し易くな
り、電解液の減少が早くなる等の不都合が生じる。
However, if a large amount is added, Ag will be eluted and deposited on the negative electrode when the battery is charged, and the potential of the negative electrode will move in the positive direction. Therefore, when the battery is charged at a constant voltage, oxygen gas will be easily generated from the positive electrode, and the electrolyte will be Inconveniences such as rapid decrease occur.

また0.05%以下であると耐食性を向上させる効果が
小さくなる。
Moreover, if it is 0.05% or less, the effect of improving corrosion resistance becomes small.

またPb−Ca合金のように、電池を過放電状態で放置
すると、正極格子表面に絶縁性の被覆層が生成し、充電
ができなくなる。
In addition, when a battery is left in an over-discharged state like a Pb-Ca alloy, an insulating coating layer is formed on the surface of the positive electrode grid, making it impossible to charge the battery.

コストの点からも0.1%程度がよく、この量で耐食性
も充分である。
From the point of view of cost, about 0.1% is preferable, and this amount also provides sufficient corrosion resistance.

上記のベース合金に加えるCeは0.02〜0.2%が
適切であり、これより多いと腐食が大きくなる。
The appropriate amount of Ce added to the above base alloy is 0.02 to 0.2%, and if the amount is more than this, corrosion will increase.

以下本発明を実施例により説明する。The present invention will be explained below with reference to Examples.

まずSrO.1%、Al0.1%、Ag0.1へ残部P
bよりなる合金をアルゴン気流中のるつぼで溶解し、こ
れにCeを種々の割合で添加して5元合金を作り、第2
〜3図のような中骨5と外骨6からなる格子を鋳造した
First, SrO. 1%, Al0.1%, Ag0.1 to balance P
The alloy consisting of B was melted in a crucible in an argon stream, and Ce was added in various proportions to make a quinary alloy.
A lattice consisting of a middle rib 5 and an outer rib 6 as shown in Figure 3 was cast.

この格子に常法によりペーストを充填し、化成して正極
板とする。
This grid is filled with paste by a conventional method and chemically converted to form a positive electrode plate.

一方Pb−0.1%Ca合金格子を用いて同様に負極板
とする。
On the other hand, a negative electrode plate was similarly prepared using a Pb-0.1%Ca alloy lattice.

上記の正極板2板と負極板3枚を用いて10時間率の放
電容量が3Ahの電池を構成し、20℃において、2.
5V/セルで8時間充電し、3Ω/セルで1.8Vまで
放電する充放電サイクルを繰り返した。
A battery with a discharge capacity of 3 Ah at a 10 hour rate was constructed using the above two positive electrode plates and three negative electrode plates, and at 20°C.
A charge/discharge cycle of charging at 5V/cell for 8 hours and discharging to 1.8V at 3Ω/cell was repeated.

なお充電電流は最大1Aとした。第4図に充放電に伴う
容量維持率の変化を示す。
Note that the maximum charging current was 1A. Figure 4 shows the change in capacity retention rate with charging and discharging.

図中曲線aは正極格子にPb−0.1%Sr−0.1%
Al−0.1%Ag合金を用いた電池の特性を示し、b
,c,d,e,f,gは前記合金に各々Ceを0.01
%、0.02%、0.1%、0.2%、0.3%、0.
5%含有させた合金を用いた電池の特性を示す。
Curve a in the figure shows Pb-0.1%Sr-0.1% in the positive electrode grid.
The characteristics of a battery using Al-0.1%Ag alloy are shown, b
, c, d, e, f, g each contain 0.01 Ce in the alloy.
%, 0.02%, 0.1%, 0.2%, 0.3%, 0.
The characteristics of a battery using an alloy containing 5% are shown.

次に前記と同様の構成の電池を50Ω/セルで7日間放
電して過放電状態にした後、40℃において15日間保
存し、さらに室温で2.5Vの定電圧で24時間充電し
た後の初期容量の回復率を比較した。
Next, a battery with the same configuration as above was discharged at 50Ω/cell for 7 days to reach an overdischarged state, then stored at 40°C for 15 days, and then charged at room temperature for 24 hours at a constant voltage of 2.5V. The initial capacity recovery rates were compared.

その結果、正極格子にPb−0.1%Ca合金を用いた
電池は4%、Pb−0. 1%Sr−0.1%Al−0
.1%Ag合金を用いたものは98%、Pb−0.1%
Sr−0.1%Al−0.1%Ag−0.1%Ce合金
を用いたものは92%であった。
As a result, a battery using a Pb-0.1%Ca alloy for the positive electrode grid had a Pb-0.1% Ca alloy of 4% Pb-0.1%. 1%Sr-0.1%Al-0
.. 98% using 1%Ag alloy, Pb-0.1%
The percentage using the Sr-0.1%Al-0.1%Ag-0.1%Ce alloy was 92%.

次表に各合金の抗折力を測定した結果を示す。The following table shows the results of measuring the transverse rupture strength of each alloy.

第3図から明らかなように、本発明のPb Sr−AL
−Ag−Ce合金を正極格子に用いた電池は、400サ
イクルでも60〜73%の容量維持率を有するが、Pb
−Sr−Al−Ag合金の場合は約240サイクルで容
量維持率が50%まで劣化している。
As is clear from FIG. 3, the Pb Sr-AL of the present invention
-Batteries using Ag-Ce alloy for the positive electrode grid have a capacity retention rate of 60-73% even after 400 cycles, but Pb
In the case of -Sr-Al-Ag alloy, the capacity retention rate deteriorates to 50% after about 240 cycles.

この電池を分解したところ、正極活物質の軟化が観察さ
れた。
When this battery was disassembled, softening of the positive electrode active material was observed.

また過放電に対する試験では、Pb−Sr−Al−Ag
合金よりやや劣る傾向はあるが、Pb−Ca合金のよう
に大きく劣化しないことが確認された。
In addition, in the test for overdischarge, Pb-Sr-Al-Ag
Although it tends to be slightly inferior to alloys, it was confirmed that it does not deteriorate significantly like Pb-Ca alloys.

さらに抗折力もPb−Sr−Al−Ag合金と大差なく
、実用上使用可能な値を有している。
Further, the transverse rupture strength is not much different from that of the Pb-Sr-Al-Ag alloy, and has a value that can be used practically.

なおCe含量が0.2%を超えると格子の腐食が大きく
、早期に寿命がつき、また0.02%より少ないとPb
−S r−Al−Ag合金に対する優位性がなくなる
If the Ce content exceeds 0.2%, the corrosion of the lattice will be large and the service life will be shortened, and if the Ce content is less than 0.02%, the Pb
-S The superiority over the r-Al-Ag alloy is lost.

また上記実施例ではベース合金としてPb−0.1%S
r−0.1%Al−0.1%Ag合金を用いたが、Sr
0.07〜0.3%、Al0.05 〜0.1%、Ag
0.05〜0.3%の範囲では上記とほぼ同様の結果が
得られた。
In addition, in the above example, the base alloy was Pb-0.1%S.
r-0.1%Al-0.1%Ag alloy was used, but Sr
0.07-0.3%, Al0.05-0.1%, Ag
Almost the same results as above were obtained in the range of 0.05 to 0.3%.

以上のように、本発明によれば、Pb−Sr−Al−A
g合金の特徴を損うことなく、充放電サイクル寿命を大
巾に向上することができる。
As described above, according to the present invention, Pb-Sr-Al-A
The charge/discharge cycle life can be greatly improved without impairing the characteristics of the g-alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における正極格子と活物質との
界面近傍のモデル図、第2図は格子の要部を示す正面図
、第3図は第2図■−■線断面図、第4図は各種合金を
正極格子に用いた電池の充放電に伴う容量維持率の変化
を示す。
FIG. 1 is a model diagram of the vicinity of the interface between the positive electrode lattice and the active material in an example of the present invention, FIG. 2 is a front view showing the main parts of the lattice, and FIG. 3 is a sectional view taken along the line FIG. 4 shows changes in capacity retention rate during charging and discharging of batteries using various alloys in the positive electrode grid.

Claims (1)

【特許請求の範囲】[Claims] 1 0.07〜0.3重量%のSr、0.0 5 〜0
.1重量%のAl、0.05〜0.3重量%のAg,0
.02〜0.2重量%のCe、残部Pbよりなる合金に
より構成したことを特徴とする鉛蓄電池用正極格子
1 0.07-0.3% by weight Sr, 0.05-0
.. 1% by weight Al, 0.05-0.3% by weight Ag, 0
.. A positive electrode grid for a lead-acid battery characterized by being made of an alloy consisting of 02 to 0.2% by weight of Ce and the balance Pb.
JP53002509A 1978-01-12 1978-01-12 Positive electrode grid for lead-acid batteries Expired JPS588557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53002509A JPS588557B2 (en) 1978-01-12 1978-01-12 Positive electrode grid for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53002509A JPS588557B2 (en) 1978-01-12 1978-01-12 Positive electrode grid for lead-acid batteries

Publications (2)

Publication Number Publication Date
JPS5495323A JPS5495323A (en) 1979-07-27
JPS588557B2 true JPS588557B2 (en) 1983-02-16

Family

ID=11531331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53002509A Expired JPS588557B2 (en) 1978-01-12 1978-01-12 Positive electrode grid for lead-acid batteries

Country Status (1)

Country Link
JP (1) JPS588557B2 (en)

Also Published As

Publication number Publication date
JPS5495323A (en) 1979-07-27

Similar Documents

Publication Publication Date Title
US4086392A (en) Method for reducing the float current of maintenance-free battery
JPH10188963A (en) Sealed lead-acid battery
JPS588558B2 (en) Positive electrode grid for lead-acid batteries
JPS588557B2 (en) Positive electrode grid for lead-acid batteries
JPH11176438A (en) Lead-acid battery, and manufacture of material lead powder for lead-acid battery
JPH0750616B2 (en) Lead acid battery
JP2000200598A (en) Sealed lead-acid battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP2518090B2 (en) Lead acid battery
JP3102000B2 (en) Lead storage battery
JPH10199562A (en) Sealed lead-acid battery
JPS61198574A (en) Lead storage battery
JPH0770321B2 (en) Sealed lead acid battery
JP2553598B2 (en) Sealed lead acid battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH01117279A (en) Lead-acid battery
JPS5889781A (en) Sealed lead-acid battery
JPH01143147A (en) Lead storage battery
JPH07118320B2 (en) Lead acid battery grid
JPH01117272A (en) Lead-acid battery
JPH10188964A (en) Sealed lead-acid battery
JPH01117273A (en) Lead-acid battery
JPS6129100B2 (en)
JPS63213263A (en) Lead storage battery
GB2238159A (en) Lead accumulator