JPS63213263A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS63213263A
JPS63213263A JP62044802A JP4480287A JPS63213263A JP S63213263 A JPS63213263 A JP S63213263A JP 62044802 A JP62044802 A JP 62044802A JP 4480287 A JP4480287 A JP 4480287A JP S63213263 A JPS63213263 A JP S63213263A
Authority
JP
Japan
Prior art keywords
alloy
overdischarge
compound
electrolyte
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62044802A
Other languages
Japanese (ja)
Inventor
Shinji Saito
慎治 斉藤
Masayuki Terada
正幸 寺田
Takumi Hayakawa
早川 他く美
Asahiko Miura
三浦 朝比古
Akio Komaki
小牧 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62044802A priority Critical patent/JPS63213263A/en
Publication of JPS63213263A publication Critical patent/JPS63213263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the overdischarge leaving property by using electrode plate base bodies which consist of a Pb-Ca-Sn alloy and either a Pb-Ca alloy or a Pb-Ca-Sn-Sb-Al alloy, while an alkaline earth metal ion is present in the electrolyte. CONSTITUTION:When CaSn2 or PbxCaySnz which is an intermetal compound is produced in a Pb matrix, and an electrode base body is anode-oxidized, it is considered that such a product is scattered in the oxide membrane to maintain the conductivity, or the Sn is oxidized to produce a compound such as SnO or SnO2 to improve the charging property because such a compound is semiconductive. The Sb has a function to suppress the rise of the inner resistance when the battery is being left in an overdischarge condition. Furthermore, where Al is present, the Ca is prevented from making a dross but fixed in the alloy, and the addition of Al is effective. On the other hand, as an additive to the electrolyte, an alkaline earth metal is considered to be preferable, in consideration of the influence to the other properties (cycle life and capacity) of the battery. In such a composition, the overdischarge leaving property can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄t′池の自己放電性能、長期保存性能や過
放電放置性向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in the self-discharge performance, long-term storage performance, and overdischarge resistance of lead-acid T' batteries.

従来の技術 鉛蓄電池は、長期間放置されたり、また過放電の状態で
放置されたりすると自己放電により、充電不可能な状態
になり、早期に寿命となる場合か極めて多い。そこで従
来このような状態に陥らないようにするために、鉛蓄電
池の格子合金に関して工夫かなされており1例えば格子
体のアンチモン含有量を減らして自己放電を減少させた
り、アンチそンを含有しない合金としてPb−0a系合
金を使用して自己放電を減少させている。また、過放電
放置性能を低下させる原因である格子−活物質界面のP
bOxや硫酸鉛生成を防止するために格子表面に導電体
をコーティングしたり、上記の高抵抗体か生成しても導
通が維持されるように活物質中にペロブスカイト系の化
合物や銀粉を分散せしめた導電性樹脂を添加したり、電
解液液中にリン酸やアルカリ金属イオンを添加させたり
している。
If conventional lead-acid batteries are left unused for a long period of time or left in an over-discharged state, they will self-discharge and become unrechargeable, resulting in premature end of their service life. In order to avoid this situation, conventional methods have been devised regarding the lattice alloy of lead-acid batteries.1 For example, the antimony content of the lattice is reduced to reduce self-discharge, or the lattice alloy does not contain antimony. A Pb-0a alloy is used as the alloy to reduce self-discharge. In addition, P at the lattice-active material interface, which is the cause of deteriorating overdischarge performance.
In order to prevent the formation of bOx and lead sulfate, the lattice surface is coated with a conductor, and a perovskite compound or silver powder is dispersed in the active material so that conductivity is maintained even if the above-mentioned high-resistance substances are formed. In some cases, conductive resin is added, or phosphoric acid or alkali metal ions are added to the electrolyte solution.

発明か解決しようとする問題点 現在実用化されている格子合金はpb−sb系とPb−
0a系であるが、sb系はsbの水素発生電位が責なた
め自己放電が大きく、また充電中に水電解電圧が小さい
ので水の減少量が多くなる欠点がある。一方、Pb−O
a合金では深い充放電サイクル使用においては寿命が短
かくなり、過放電防止のための特別な負荷回路が必要と
なり、電池以外の回路システムがコスト面で実用性を乏
しくしている。また、Sb含有ヱを減少させても3.5
重f14以下ではSbを含有しない合金と同様の欠点を
有する。したがってPb−0a、pb−sbの2元素格
子合金組成だけでは問題点を解決しに(い。そこで、近
年、このような点からPb−8n−As、Pb−0a−
8nの3元系合金が提案されている。
Problems to be solved by the invention The lattice alloys currently in practical use are pb-sb and Pb-
Although it is a 0a type, the sb type has a drawback that self-discharge is large due to the hydrogen generation potential of sb, and the amount of water lost is large because the water electrolysis voltage is low during charging. On the other hand, Pb-O
A-alloys have short lifespans when used in deep charge/discharge cycles, and a special load circuit is required to prevent overdischarge, making circuit systems other than batteries impractical in terms of cost. Moreover, even if the Sb content is reduced, 3.5
If the weight is less than f14, it has the same drawbacks as alloys that do not contain Sb. Therefore, it is difficult to solve the problem with only the two-element lattice alloy composition of Pb-0a and pb-sb.
A ternary alloy of 8n has been proposed.

これらの合金は自己放電か小さく、水分解もpb−aa
合金並であり、Snを含有しているので適数t”放置特
性も良好である。しかし、過放電されると電解液である
硫酸濃度が著しく低下してその結果、液の伝導度も著し
く低下するためやはり、充電不可能となる。したかって
These alloys have low self-discharge and water decomposition is pb-aa
It is comparable to alloys and contains Sn, so it has good storage properties for a suitable number of hours. However, when over-discharged, the concentration of sulfuric acid, which is the electrolytic solution, decreases significantly, and as a result, the conductivity of the solution also decreases significantly. As expected, it becomes impossible to charge.

格子合金だけでなく、電解液の伝導性維持が問題点とし
て上げられる。従来この点について、H,PO,を電解
液中に添加することやアルカリ金属イオンの添加が考え
られてきたが、HlPO,は過放電時の充電性は改養さ
れるものの。
In addition to the lattice alloy, maintaining the conductivity of the electrolyte is a problem. Conventionally, in this regard, it has been considered to add H, PO, or alkali metal ions to the electrolytic solution, but although HlPO improves the charging performance during overdischarge.

寿命初期時の放電容量が低下し、また自己放電はむしろ
太き(なる。また、アルカリ金属はコスト面で高(なる
(特に硫酸塩)。
The discharge capacity at the beginning of life decreases, and the self-discharge becomes rather thick.Also, alkali metals are expensive (especially sulfates).

問題点を解決するための手段 そこで、上記の欠点をすべて解決するために、本発明者
らは、減液性が小さく、自己放電の小さくかつ過放電放
置特性のよいPb−0a−8a合金およびPb−0a−
8n−sb金合金Pb−0a−8n−8b−A、、g合
金ノイずれカッ合金からなる極板基体を用い、一方、電
解液の伝導度維持については、アルカリ土類金属イオン
を存在させ、これらの組合せから構成される鉛蓄電池に
おいてはその相乗効果によって過放電放置特性か良好に
なることを見い出した。
Means for Solving the Problems Therefore, in order to solve all of the above-mentioned drawbacks, the present inventors developed a Pb-0a-8a alloy and a Pb-0a-8a alloy that have low liquid-reducing properties, low self-discharge, and good overdischarge characteristics. Pb-0a-
An electrode plate base made of 8n-sb gold alloy Pb-0a-8n-8b-A, and g alloy Noisekat alloy was used, and on the other hand, to maintain the conductivity of the electrolyte, alkaline earth metal ions were present, It has been found that a lead-acid battery composed of a combination of these has good overdischarge characteristics due to the synergistic effect.

作用 鉛蓄電池は充電せずに長期間放置すると自己放電により
充電不能な状態になり、また深い放電後放置されると同
様に充電不能な状態となる。
If a lead-acid battery is left uncharged for a long period of time, it will become unrechargeable due to self-discharge, and if it is left uncharged after deep discharge, it will also become unrechargeable.

この原因としては、正極板の内部抵抗か著しく上昇する
ためであり、その上昇させる要因は恐らく次の様に考え
られる。鉛蓄電池か過放電されると電解液比重か低下し
、極板内部の基体近傍では表面に比べてさらに低下して
いる この場合基体のpbの溶解度が上昇し、Pb  
か生成すると正極基体近傍の活物質であるpbotはP
Hか高くなると不安定になり1局部電池反応を形成し、
 P b Ot + P b + 2 Ht S Oa
→2PbSO,+2H,OとなってPb80.を生成す
る。同時にPb5O,はPHか高いと溶解析出をくり返
して結晶が成長し、非還元性のpbso、が基体界面を
被覆するようになる。
The reason for this is that the internal resistance of the positive electrode plate increases significantly, and the factors that cause this increase are probably as follows. When a lead-acid battery is over-discharged, the specific gravity of the electrolyte decreases, and it decreases even further near the substrate inside the electrode plate compared to the surface.In this case, the solubility of PB in the substrate increases, and Pb
When generated, pbot, which is an active material near the positive electrode substrate, becomes P
When H becomes high, it becomes unstable and forms a local cell reaction,
P b Ot + P b + 2 Ht S Oa
→2PbSO, +2H, O becomes Pb80. generate. At the same time, when the pH is high, Pb5O repeats dissolution precipitation and crystals grow, so that non-reducible PbSO coats the substrate interface.

さらには、上記局部電池反応でH,80,が消費される
と正極電位が低下して−400〜−200mV (VS
、HP/Hy、804 )ぐらいまで卑になる。この電
位では、さらにPbO。
Furthermore, when H,80, is consumed in the above local battery reaction, the positive electrode potential decreases to -400 to -200 mV (VS
, HP/Hy, 804). At this potential, additional PbO.

(活物質) +H,0+ 2 e−+P b O(P 
b Ox)+20H−とpb(極板基体)+SO番ト→
Pb5O*+2eの局部電池反応が相乗して生ずるよう
になり (E* −−370mv  vs、H7/Hp
l 80.”) 、Pb5O,の成長とPbOxの生成
によって高抵抗皮膜が形成され、つまるところ充電不能
に陥いる。そこで、これらの高抵抗皮膜か形成しにくい
。または形成してもb(極板基体)とpbOt(活物質
)とが導通させる化合物か存在すればよい。8nはこの
ような過放電放置に対して効果のあることが従来指上げ
た。この効果については明確にされていないか、Pbマ
トリックス中にCa1n、 、または、PbxOayS
nzなる金属間化合物か生成し、極板基体かアノード酸
化されるとこれが酸化皮膜中に分散して導電性が保持さ
れているか、またはSnが酸化されて、8nOや8nO
(Active material) +H,0+ 2 e-+P b O(P
b Ox) + 20H- and pb (electrode plate base) + SO number →
The local cell reaction of Pb5O*+2e started to occur synergistically (E* −-370mv vs, H7/Hp
l 80. ”), Pb5O, and the formation of PbOx, a high-resistance film is formed, which ultimately leads to the inability to charge.Therefore, it is difficult to form these high-resistance films.Or, even if they are formed, the b (electrode plate substrate) It is only necessary that there is a compound that allows conduction with pbOt (active material). It has been suggested that 8n is effective against such overdischarge.This effect has not been clarified, or the Pb matrix Ca1n, or PbxOayS in
An intermetallic compound called nz is generated, and when the electrode plate substrate is anodically oxidized, this is dispersed in the oxide film and conductivity is maintained, or Sn is oxidized and becomes 8nO or 8nO.
.

のような化合物となり、これが半導体的性質(n型半導
体)を有することにより充電性がよ化皮膜中に存在する
とsbo、となって存在したり、アンチモン酸イオンと
なって溶出して高抵抗体皮膜をやぶつ、多孔質なものに
する性質A4についてはPb−0a−Sb系合金ではC
aとsbの重[4が増大するとCaとsbかOat S
bsとなるドロス化合物を生成させて固溶化しない。こ
の場合A4が存在するとOaはドロス化せず合金中に固
定されるため、pb−Oa−Sb系合金においてA影の
添加は効果かある。
This compound has semiconducting properties (n-type semiconductor), so if it exists in a cured film, it will exist as sbo, or it will elute as antimonate ions, forming a high-resistance material. Regarding property A4 that makes the film coarse and porous, in Pb-0a-Sb alloy, C
When the weight of a and sb [4 increases, Ca and sb or Oat S
A dross compound that becomes bs is not generated and converted into a solid solution. In this case, when A4 is present, Oa does not turn into dross and is fixed in the alloy, so the addition of A shadow is effective in pb-Oa-Sb alloys.

一方、電解液中の添加物については、充電では、正極側
で酸化反応が生じ、電子が負荷側へ流れ、を解液中では
、H+、80F−によって負極から電荷を担ってくる。
On the other hand, regarding the additives in the electrolytic solution, during charging, an oxidation reaction occurs on the positive electrode side, and electrons flow to the load side, and in the electrolytic solution, charges are carried from the negative electrode by H+ and 80F-.

しかし、過放電後はPHが7近傍になるのでH,Oが増
加し、so、’−もH”4少なくなる。したがって電荷
の担手としてSOニー塩のカチオンが必要となること、
またアニオンはハロゲンイオンやNO1!−のようにp
bと反応してしまうものが多いので、カチオンの中から
選択しなければならない。なかでも電池の他の性能(寿
命、容量)への影響を考慮し、硫酸塩をつくるものの中
で選ぶべきである。
However, after overdischarge, the pH becomes around 7, so H and O increase, and so,'- also decreases by H''4. Therefore, the cation of the SO knee salt is required as a charge carrier.
Also, anions are halogen ions and NO1! - as in p
Since many react with b, it must be selected from among cations. Among these, you should choose one among those that produce sulfates, taking into consideration the effect on other battery performance (life, capacity).

第1表は種々の硫酸塩の25°Cにおけるイオン伝導度
を示している力ζその中でアルカリ土類金属が良好と考
えられるのでこれを選択した。
Table 1 shows the ionic conductivities of various sulfates at 25°C.Among them, alkaline earth metals were selected because they are considered to be good.

またアルカリ金属よりもアルカリ土類金属はコスト面で
安価である。
Furthermore, alkaline earth metals are cheaper than alkali metals.

第  1  表 実施例 本発明の一実施例について説明する。Table 1 Example An embodiment of the present invention will be described.

Pb−0a合金にSnを含有させ、さらにsbやA4を
含有させた格子を作製し、電解液中にアルカリ土類金属
としてM7SO,を所定し、24時間後開路状態にして
、1ケ月放置後(25°C)、充電回復(2,45V/
セル定電圧充電)シて初期5時間率容量と回復容量との
比率を測定した。比較のためにPb−0a合金と無添加
の電解液の場合を示した第1図から、Pb−0a、Pb
−0a−8n、Pb−0a−8n−8b、Pb−0a−
8n−8b −A4合金の電解液中無添加のものは容量
回復率が下回ることかわかる。これは本発明において、
S n+sbの効果とM7SO,の効果か相乗的に現わ
れ、過放電放置による高抵抗体の生成を抑制したためと
考えられる。
A lattice made of Pb-0a alloy containing Sn and further containing sb and A4 was prepared, and M7SO was predetermined as an alkaline earth metal in the electrolyte. After 24 hours, the circuit was opened, and after being left for one month. (25°C), charge recovery (2,45V/
The ratio between the initial 5-hour rate capacity and the recovery capacity was measured by cell constant voltage charging. For comparison, from Figure 1, which shows the case of Pb-0a alloy and additive-free electrolyte, Pb-0a, Pb
-0a-8n, Pb-0a-8n-8b, Pb-0a-
It can be seen that the capacity recovery rate of the 8n-8b-A4 alloy with no additives in the electrolyte is lower. In the present invention, this
This is thought to be because the effect of S n + sb and the effect of M7SO appeared synergistically, suppressing the formation of a high resistance object due to overdischarge.

発明の効果 上述したように、本発明によれば、過放電放置特性か改
善され、実用に供し得る鉛蓄電池を提供することができ
る点工業的価値甚だ大なるものである。
Effects of the Invention As described above, the present invention has great industrial value in that it can provide a lead-acid battery which has improved over-discharge characteristics and can be put to practical use.

4 M面の節■か忙凹 第1図は本発明の一実施例における容量回復率を示す比
較図である。
Figure 1 is a comparative diagram showing the capacity recovery rate in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 CaとSnまたはCa、Sn、Sbまたは Ca、Sn、Sb、Alを含む鉛合金からなる極板基体
を用いかつ、電解液中にアルカリ土類金属イオンが存在
する鉛蓄電池。
[Claims] A lead-acid battery using an electrode plate base made of Ca and Sn or a lead alloy containing Ca, Sn, Sb, or Ca, Sn, Sb, and Al, and in which alkaline earth metal ions are present in the electrolyte. .
JP62044802A 1987-02-27 1987-02-27 Lead storage battery Pending JPS63213263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044802A JPS63213263A (en) 1987-02-27 1987-02-27 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044802A JPS63213263A (en) 1987-02-27 1987-02-27 Lead storage battery

Publications (1)

Publication Number Publication Date
JPS63213263A true JPS63213263A (en) 1988-09-06

Family

ID=12701555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044802A Pending JPS63213263A (en) 1987-02-27 1987-02-27 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS63213263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346768A (en) * 1989-07-13 1991-02-28 Matsushita Electric Ind Co Ltd Lead storage battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117658A (en) * 1981-12-29 1983-07-13 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPS5929383A (en) * 1982-08-12 1984-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPS609065A (en) * 1983-06-28 1985-01-18 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117658A (en) * 1981-12-29 1983-07-13 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPS5929383A (en) * 1982-08-12 1984-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPS609065A (en) * 1983-06-28 1985-01-18 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346768A (en) * 1989-07-13 1991-02-28 Matsushita Electric Ind Co Ltd Lead storage battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery

Similar Documents

Publication Publication Date Title
US6833216B2 (en) Method of manufacturing a sulfated paste for use in a lead acid cell
EP0127301A1 (en) Improved positive battery plate
De Rossi et al. A Reversible Solid‐State Battery with RbAg4 I 5 as Electrolyte
JPS63213264A (en) Lead storage battery
JPS63213263A (en) Lead storage battery
US20140023917A1 (en) High Performance Lead Acid Battery with Advanced Electrolyte System
GB2077029A (en) Lead-acid storage batteries and lead oxide compositions for use therein
CA1323397C (en) Lead accumulators
JPS58117658A (en) Sealed lead-acid battery
JPS63244568A (en) Lead-acid battery
GB2238160A (en) Lead accumulator
JP2518090B2 (en) Lead acid battery
JPS6048867B2 (en) lead acid battery
JPS588558B2 (en) Positive electrode grid for lead-acid batteries
JP2808685B2 (en) Lead storage battery
JPH01140557A (en) Lead-acid battery
JPH01117279A (en) Lead-acid battery
JPS63207057A (en) Lead storage battery
GB2247344A (en) Lead accumulators having improved charging properties after standing in over discharged state
JPH0548586B2 (en)
JPH0252386B2 (en)
JPH01117272A (en) Lead-acid battery
JPS63211574A (en) Sealed lead-acid battery
JPH079804B2 (en) Zinc pole
JPH01117273A (en) Lead-acid battery