JPS5882532A - Element separation method - Google Patents

Element separation method

Info

Publication number
JPS5882532A
JPS5882532A JP18061881A JP18061881A JPS5882532A JP S5882532 A JPS5882532 A JP S5882532A JP 18061881 A JP18061881 A JP 18061881A JP 18061881 A JP18061881 A JP 18061881A JP S5882532 A JPS5882532 A JP S5882532A
Authority
JP
Japan
Prior art keywords
film
substrate
poly
polycrystalline silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18061881A
Other languages
Japanese (ja)
Inventor
Naotake Tadama
田玉 尚武
Kazuyoshi Shinada
品田 一義
Hiroshi Iwai
洋 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP18061881A priority Critical patent/JPS5882532A/en
Publication of JPS5882532A publication Critical patent/JPS5882532A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To separate a flat substrate surface by a buried layer by providing vertical grooves on the Si substrate, depositing therein a poly Si film through an insulation film and removing said insulation film and poly Si on the surface by the anisotropic etching. CONSTITUTION:Vertical grooves 4 are provided on a Si substrate 5 by the reactive ion etching using a resist mask 6 and the boron B ion is then implanted. The resist is removed, the surface is covered with the SiO27 film and an inversion preventing layer 8 is formed. A poly Si layer 3 is deposited, the phosphorus P is diffused, a film 3 is anisotropically processed by the reactive ion etching, thereby the SiO27 becomes a stopper and the poly Si 3' is left within the grooves 4 and the poly Si3 is removed from the surface. This film 7 is removed and the surface is newly covered with the SiO2 film 7. Thus, a separation region 9 is completed and the surface becomes flat. According to this method, an element separation region is obtained at a low temperature, the separation region and separation interface become flat allowing multi-layer wirings and not generating fault due to stress. Thereby a microminiaturized device can be completed.

Description

【発明の詳細な説明】 本発明は異方性加工を利用した半導体の素子分離方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device isolation method using anisotropic processing.

半導体集積回路の素子分離方法として、窒化シリコンを
用いた局部酸化法が一般に知られている。しかしながら
、この方法では素子分離に厚い熱酸化膜を形成する次め
次のような問題がある。
A local oxidation method using silicon nitride is generally known as a device isolation method for semiconductor integrated circuits. However, this method has the following problem of forming a thick thermal oxide film for element isolation.

■高温熱処理中に厘込み層や表面反転防止層の不純物O
再分布を生じること、■分離界面外側部分に1A−オヘ
、ド1 と呼ばれる急峻な凸部が発生し、配線O断線り
起き異く、多層配線構造を採bK<いこと、Φ分離外内
面に1バーズ・V−り1と呼ばれる薄い酸化膜の領域が
できる良め、素子の微細化に限界があること、■窒化シ
リコンを用いゐ良め半導体基板との間にスFレスが発生
し、欠陥OJ[因となるなど種々の欠点があった。
■Impurity O in the embedding layer and surface inversion prevention layer during high-temperature heat treatment
redistribution occurs; ■ a steep convex portion called 1A-ohe, do1 occurs on the outer part of the separation interface, leading to disconnection of the wiring; a multilayer wiring structure is adopted; There is a limit to the miniaturization of devices due to the formation of thin oxide film regions called 1-birds-V-ri 1, and the fact that silicon nitride is used to prevent scratches from forming between the silicon nitride and the semiconductor substrate. There were various drawbacks such as causing defective OJ.

シリコン膜をRIE (R@agtlv* Ion E
tching )法で異方性加工したときに、段差部に
多結晶シリコン膜がエツチングされずに残留する現象を
見い出した。
RIE the silicon film (R@agtlv* Ion E
We have discovered a phenomenon in which the polycrystalline silicon film remains on the stepped portion without being etched when anisotropically etched using the etching method.

この現象を第1図乃至第3図で説明すると、先ず第1図
に示すように半導体基板10表面に段差1ift形成し
た後、全面に厚さtの多結晶シリコン膜3を減圧法で堆
積する。次に工、チングtスとしてCCt4を用いてR
IE法で表面から工、チングすると第2図に示すように
段差部2において厚さがtで、高さが段差部2とほぼ等
しい幅で多結晶シリコン膜3′が残留する。
To explain this phenomenon with reference to FIGS. 1 to 3, first, as shown in FIG. 1, a 1ft step is formed on the surface of the semiconductor substrate 10, and then a polycrystalline silicon film 3 with a thickness t is deposited on the entire surface by a reduced pressure method. . Next, use CCt4 as a starting point and R
When etched from the surface using the IE method, a polycrystalline silicon film 3' remains at the stepped portion 2 with a thickness of t and a height approximately equal to the width of the stepped portion 2, as shown in FIG.

この理由は、段差部2が垂直であり、多結晶シリコン膜
3が等方向に堆積し、しかもエツチングが上面方向から
のみ進行するなどの条件の組合せによって一部残留する
ものと考えられる。
The reason for this is thought to be that some portion remains due to a combination of conditions, such as step portion 2 being vertical, polycrystalline silicon film 3 being deposited in the same direction, and etching proceeding only from the top surface.

更に上記現象を利用して、第3図に示すように半導体基
板1に、内壁が基板表面に対して垂直な幅W1深さdの
溝部4t−形成し、これに厚さtがt>W/2になるよ
うに多結晶シリコン膜3を全面に堆積すると、溝部4内
にも多結晶シリコン膜3が埋込まれる。次にRIE法に
より異方性加工を行なうと溝部4以外の基板表面に堆積
した多結晶シリコン膜Jが″除去され、表面が平坦な分
離領域が基板中に形成される。
Further, by utilizing the above phenomenon, as shown in FIG. 3, a groove 4t is formed in the semiconductor substrate 1, the inner wall of which is perpendicular to the substrate surface, has a width W1 and a depth d, and has a thickness t such that t>W. When the polycrystalline silicon film 3 is deposited on the entire surface so as to have a thickness of /2, the polycrystalline silicon film 3 is also buried in the trench 4. Next, when anisotropic processing is performed using the RIE method, the polycrystalline silicon film J deposited on the substrate surface other than the groove portion 4 is removed, and an isolation region with a flat surface is formed in the substrate.

本発明は、上記知見に基づいてなされたもので、異方性
加工によシ溝部内の堆積物を残留させで、低温で素子分
離領域を形成できると共に、素子分離領域の表面および
分離界面を平坦化して、多層配線を可能にすると共に素
子の微細化を可能にして高密度集積化を図)、シかもス
トレスによる欠陥の発生を防止して装置の信頼性を高め
ることができる素子分離方法を提供するものである。
The present invention has been made based on the above findings, and it is possible to form an element isolation region at a low temperature by leaving deposits in the groove portion by anisotropic processing, and also to form an isolation region on the surface of the element isolation region and the isolation interface. An element isolation method that enables multi-layer interconnection by flattening the wiring (which enables high-density integration by making it possible to miniaturize elements), and also prevents defects due to stress and improves device reliability. It provides:

即ち本発明方法は、半導体基板の素子分離領域が形成さ
れる部分に、内壁が基板表面に対してはは喬直な溝部を
形成する工程と、基板全面に絶縁属を介して多結晶シリ
コン膜または直接絶縁属を堆積する工程と、異方性加工
して前記溝部内KJIIめ込まれた以外の基板表面に堆
積した多結晶シリコン膜を良は絶縁膜を除去して基板1
M!面を平滑化し、麿め込みmo1g子分離子分全領域
する工程とからなることt−特徴とするものである。
That is, the method of the present invention includes the steps of forming a groove portion whose inner wall is perpendicular to the substrate surface in a portion of a semiconductor substrate where an element isolation region is to be formed, and forming a polycrystalline silicon film over the entire surface of the substrate via an insulating material. Alternatively, the polycrystalline silicon film deposited on the surface of the substrate other than the one injected into the groove by anisotropic processing and the step of directly depositing an insulating material may be removed.
M! The method is characterized by comprising the steps of smoothing the surface and injecting mo1g and separating the moieties over the entire area.

以下本発明方法を詳細に説明する。The method of the present invention will be explained in detail below.

本発明において、一部を形成した半導体基板の全面に堆
積する被膜として鉱、多結晶シリコン膜または絶縁膜を
用いる。多結晶シリコン膜を用いた場合に鉱、導電性が
あるため絶縁膜を介して堆積する必要がある。また多結
晶シリコ/膜には熱酸化速度を速めるために、隣などの
不純物を熱拡散するか、若しくは隣添加多結晶シリコン
膜を用いても良い。
In the present invention, an ore, a polycrystalline silicon film, or an insulating film is used as a film deposited over the entire surface of a partially formed semiconductor substrate. When a polycrystalline silicon film is used, it must be deposited through an insulating film because it is conductive. Further, in order to increase the rate of thermal oxidation in the polycrystalline silicon/film, adjacent impurities may be thermally diffused, or an adjacently doped polycrystalline silicon film may be used.

また堆積させる絶縁膜としては酸化シリコン膜、窃化シ
リコン膜、あるいはアルミナ膜など何れでも良い、また
酸化シリコン膜はCVD法で堆積させても良く、また熱
酸化にょシ成長堆積しても良い。これら絶縁膜を用いる
場合には、基板表面に直接堆積することができる。
The insulating film to be deposited may be a silicon oxide film, a silicon oxide film, or an alumina film, and the silicon oxide film may be deposited by CVD or by thermal oxidation growth. When these insulating films are used, they can be deposited directly on the substrate surface.

ま九素子分離領域の下部に形成する反転防止層は、溝部
を形成後、イオン注入にょ多形成する方法に限らず、予
め不純物領域を形成して埋め込み層としたものでも良い
The anti-inversion layer formed under the element isolation region is not limited to the method of forming the trench by ion implantation after forming the trench, but may also be formed by forming an impurity region in advance and using it as a buried layer.

なお本発明方法はバイポーラ屋に限らずMOa型の半導
体装置の素子分離にも適用することができる。
Note that the method of the present invention can be applied not only to bipolar devices but also to element isolation of MOa type semiconductor devices.

次に本発明をパイf−ラWNPN)ランゾスタのm5最
適用した場合の実施例について説明する。
Next, an embodiment will be described in which the present invention is used to optimize the m5 of Pyra WNPN) Lanzosta.

第4■乃至第91Iは本発明の一実施例を順次工11K
I!りて示すものである。
Sections 4 to 91I are 11K in which one embodiment of the present invention is sequentially constructed.
I! This is what is shown.

先ず第411に示すよ51C”、シリ:Iノ基板5をホ
トレジスト−で−タ一二ンダした後、活性領域をと〉囲
むように素子分離領域が形成される部分に、RImCv
&によ〕幅W 2 fim s深1d1.5〜2、OA
m ()内壁が基板表面に対して垂直な溝部4を形成す
る・次にパターニングされた前記ホトレゾスト#をマス
タとして、溝部4の下部にがロンをイオン注入する。こ
のときのイオン注入条件は、加速電圧1110 K@T
 、  ドーズ量lXl0”/dで行り良。
First, as shown in No. 411, the silicon:I substrate 5 is coated with a photoresist, and then RImCv is applied to the portion where the element isolation region will be formed so as to surround the active region.
Width W 2 fims Depth 1d 1.5-2, OA
() Form a groove 4 whose inner wall is perpendicular to the substrate surface.Next, using the patterned photoresist # as a master, ion implantation is performed into the lower part of the groove 4. The ion implantation conditions at this time are an acceleration voltage of 1110 K@T
, The dose was 1X10''/d.

次にホトレジストCを剥離し友後、シリコン基板IOI
!l!面を酸化して第5図に示すように厚14000〜
5oooloシリーン酸化膜yl形成する・このとき、
先に注入した一藁ンは同時に活性化され、壽1140T
IIK反転防止層Iが形成される。
Next, remove the photoresist C, and then remove the silicon substrate IOI.
! l! The surface is oxidized to a thickness of 14,000~ as shown in Figure 5.
5ooolo silicone oxide film yl is formed・At this time,
The first injected straw is activated at the same time, and Hisashi 1140T
A IIK anti-inversion layer I is formed.

次いで第6図に示すように減圧法によって厚さtが1μ
mの多結晶シリコン膜Jt−全面に堆積させる。この場
合溝部40幅Wが2μmであるので、多結晶シリコン膜
Sは溝部4f:完全に填め念状態となる。次に後工程で
行なう多結晶シリコン膜Sの熱酸化速度を高めるため、
多結晶シリコン膜3にPOCjgを用いて隣の熱拡散を
行なう。
Next, as shown in Fig. 6, the thickness t was reduced to 1μ by a vacuum method.
A polycrystalline silicon film Jt of m is deposited on the entire surface. In this case, since the width W of the groove 40 is 2 μm, the polycrystalline silicon film S is completely filled with the groove 4f. Next, in order to increase the rate of thermal oxidation of the polycrystalline silicon film S in the subsequent process,
Adjacent thermal diffusion is performed on the polycrystalline silicon film 3 using POCjg.

次に基板表面よう多結晶シリコン膜1をRIE法で工、
チングして第7図に示すように異方性加工を行なう。こ
の結果、基板表面に形成したシリコン酸化膜rがエツチ
ングのストツノ量−として働き、溝部4内に埋め込まれ
た多結晶シリコン膜3′はそのまま残留し、これ以外の
基板表面の多結晶シリコン膜3は除去される0次に表面
に露出したシリコン酸化膜rを除去する6次いで再び熱
酸化して第8図に示すように1溝部4内に埋め込まれた
残存多結晶シリコン膜S′の表面の厚さ約50001.
シリコン基板SO表面に厚さ約2000Xのシリコ/酸
化膜1を同時に形成する。ζO結果、溝s4内に埋込ま
れ友残存多結晶シリプンIII’の周囲はシリコン酸化
膜rて覆われて絶縁され、表面および分離界面が平坦化
した埋め込みllO素子分離領域9が形成される。
Next, a polycrystalline silicon film 1 is formed on the substrate surface using the RIE method.
Then, as shown in FIG. 7, anisotropic processing is performed. As a result, the silicon oxide film r formed on the substrate surface acts as an etching stopper, the polycrystalline silicon film 3' buried in the groove 4 remains as it is, and the other polycrystalline silicon film 3 on the substrate surface 0 Next, the silicon oxide film r exposed on the surface is removed. 6 Next, the surface of the remaining polycrystalline silicon film S' buried in the first trench 4 is thermally oxidized again as shown in FIG. Thickness approximately 50001.
A silicon/oxide film 1 with a thickness of approximately 2000× is simultaneously formed on the surface of the silicon substrate SO. As a result, the periphery of the remaining polycrystalline silicon III' buried in the trench s4 is covered and insulated with a silicon oxide film r, and a buried 11O element isolation region 9 whose surface and isolation interface are flattened is formed.

以下、通常Oflセスに従うて、素子分離領域りによつ
てaすれ要滑性領域10に、ti、;埋め込み層11、
鰺臘工Cタキシャル層12、♀型ベース領域11.およ
びN+型工1.夕領域14、プレタ!取出し領域15f
:形成して第9図に示すようにパイ4−ラfiNPN)
フンジスタを製造する。
Hereinafter, according to the usual Ofl process, the a-sliding required area 10 is formed by the element isolation region, ti,; buried layer 11,
Amarinori C taxial layer 12, ♀ type base region 11. and N+ mold work 1. Evening area 14, Preta! Removal area 15f
: Formed as shown in FIG.
Manufacture Funjista.

従って上記方法によれば窒化シリコンを用いた従来0局
部酸化による素子分離法に比べて、高温熱処理工程が少
ないので、不純物の再分布を防止することがで龜る。t
た1/電−ズヘッド1が発生せず、素子分離領域90表
面はシリコン基板50表面と同じレベルで平坦化されて
いるため、配線の断線がなく、多層配線が容易であり、
しかも分離界面も平坦化され1バーズビーク”の発生も
ないので素子を微細化することができる。更に従来の如
く窒化シリコンを用いていないので、シリコン基板5と
の間に欠陥発生の原因となるストレスが発生せず信頼性
にも優れたものが得られる。
Accordingly, the above method requires fewer high-temperature heat treatment steps than the conventional device isolation method using silicon nitride by zero local oxidation, making it easier to prevent impurity redistribution. t
1/ Since the electrode head 1 does not occur and the surface of the element isolation region 90 is flattened to the same level as the surface of the silicon substrate 50, there is no disconnection of wiring and multilayer wiring is easy.
Moreover, the isolation interface is also flattened and no "1 bird's beak" occurs, allowing the device to be miniaturized.Furthermore, unlike conventional silicon nitride, silicon nitride is not used, so there is stress between the separation interface and the silicon substrate 5, which can cause defects. It is possible to obtain a product with excellent reliability without the occurrence of.

なお上記実施例では多結晶シリコン膜3の厚さtと、溝
部4の幅Wとの関係がt′2−W/2 の場合について
示したが、これとは逆にt <W/2の場合について説
明する。
In the above embodiment, the relationship between the thickness t of the polycrystalline silicon film 3 and the width W of the groove portion 4 is t'2-W/2, but on the contrary, the relationship t<W/2 is shown. Let me explain the case.

この場合、第1θ図に示すように幅WO4部4を形成し
友シリコン基板5の全面に、厚畜t1但しt(W/2 
 で多結晶シリーン膜3を堆積すると、溝部4内は完全
に多結晶シリコン膜3が埋め込まれず中空の状態となる
In this case, as shown in FIG.
When the polycrystalline silicon film 3 is deposited in this manner, the inside of the trench 4 is not completely filled with the polycrystalline silicon film 3 and becomes hollow.

この後、RIE法によシ溝部4以外の多結晶シリコン膜
3をエツチングして異方性加工を行なった後、再酸化し
て、多結晶シリコン膜Jの表面に厚くシリコン酸化膜1
を形成するととによ)、第11図に示すようtc11部
4内は完全KJIめ込まれて、表面が平坦な素子分離領
域9が形成されゐ。
After this, the polycrystalline silicon film 3 other than the groove portion 4 is etched by RIE method to perform anisotropic processing, and then reoxidized to form a thick silicon oxide film 1 on the surface of the polycrystalline silicon film J.
11), the inside of the tc11 portion 4 is completely KJI-filled, forming an element isolation region 9 with a flat surface.

また上記実施例では多結晶シリコン膜3を堆積して素子
分離する場合にりいて示し友が、絶縁膜である8≦0□
膜を堆積して素子分離する場合について次に説明する。
In addition, in the above embodiment, when the polycrystalline silicon film 3 is deposited to separate elements, the problem is that 8≦0□ is an insulating film.
Next, the case of device isolation by depositing a film will be described.

第12図に示すように溝部4の幅Wを、例えば1411
1と狭く形成し、深さdi−2μmとする。
As shown in FIG. 12, the width W of the groove 4 is set to 1411, for example.
1, and the depth is di-2 μm.

シリコン基gmop面を熱酸化して810.膜ICを厚
さt m 11kynで成長させて、堆積すると溝部4
は三方向から酸化が進行して完全に8102膜IIで埋
め込まれて、表面が平坦化した素子分離領域pを形成す
るヒとができる。
The silicon-based gmop surface is thermally oxidized to 810. When the film IC is grown and deposited to a thickness t m 11kyn, the trench 4
Oxidation proceeds from three directions and is completely buried with the 8102 film II, creating a hole for forming an element isolation region p with a flat surface.

従うて、この方法で拡更に素子分離領域90幅を狭く形
成することができ、高密度集積化を図ることができる。
Therefore, with this method, the width of the element isolation region 90 can be further narrowed, and high-density integration can be achieved.

以上説明した如く本発明に係わる素子分離方法によれば
、異方性加工によシ溝部内の堆積物を残留させて、低温
で素子分離領域を形成できると共に、素子分離領域の表
面および分離界面を平坦化して多層配線を可能にすると
共に素子′i微細化を可能にして高密度降積化を図〕、
シかもストレスによる欠陥の発生を防止して装置の信頼
性を高めることができるなど顕著な効果を有するもので
ある。
As explained above, according to the device isolation method according to the present invention, the device isolation region can be formed at a low temperature by leaving the deposits in the groove portion by anisotropic processing, and the surface of the device isolation region and the isolation interface can be formed. This enables multi-layer interconnection by flattening the metal layer, and enables miniaturization of the elements to achieve high-density deposition.
This has remarkable effects such as being able to prevent the occurrence of defects due to stress and improve the reliability of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は異方性加工による堆積物の残留現象
を説明する断面図、第4図乃至第9図は本発明をパイI
−ラ屋トランジスタの製造を示す断面図、第12図B 
5so2膜によシ素子分離領域を形成する場合の断面図
である。 1・・・半導体基板、2・・・段差部、J−・・多結晶
シリコン膜、3′・・・残存多結晶シリフン膜、4−・
・溝部、5・・・シリコン基板、6・・・ホトレジスト
、7・・・どリーン酸化膜、8−・反転防止層、9・−
素子分離領域、10・・・活性領域、16・・・8tO
fi膜出願人代理人  弁理士 鈴 江 武 彦8 8  11  12  8
FIGS. 1 to 3 are cross-sectional views explaining the phenomenon of deposits remaining due to anisotropic processing, and FIGS. 4 to 9 are cross-sectional views explaining the present invention.
- Cross-sectional view showing the manufacture of a Laya transistor, Figure 12B
FIG. 3 is a cross-sectional view of the case where a silicon element isolation region is formed using a 5so2 film. DESCRIPTION OF SYMBOLS 1...Semiconductor substrate, 2...Step part, J-...Polycrystalline silicon film, 3'...Remaining polycrystalline silicon film, 4-...
-Groove portion, 5...Silicon substrate, 6...Photoresist, 7...Lean oxide film, 8--Inversion prevention layer, 9--
Element isolation region, 10...active region, 16...8tO
fi membrane applicant patent attorney Suzue Takehiko 8 8 11 12 8

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の素子分離領域が形成される部分に、内壁が
基板表面に対してほぼ垂直な溝部を形成する工程と、基
板全面に絶縁膜を介して多結晶シリコン膜または直接絶
縁膜を堆積する工程と、異方性加工して前記溝部内に埋
め込まれた以外の基板表面に堆積した多結晶シリコン膜
または絶縁膜を除去して基板表面を平坦化し、埋め込み
型の素子分離領域を形成する工程とからなること′@:
特徴とする素子分離方法。
A process of forming a groove portion whose inner wall is almost perpendicular to the substrate surface in a portion of a semiconductor substrate where an element isolation region is to be formed, and a process of depositing a polycrystalline silicon film or a direct insulating film over the entire surface of the substrate via an insulating film. and a step of flattening the substrate surface by removing the polycrystalline silicon film or insulating film deposited on the substrate surface other than that buried in the groove by anisotropic processing, and forming a buried element isolation region. Consisting of′@:
Characteristic element isolation method.
JP18061881A 1981-11-11 1981-11-11 Element separation method Pending JPS5882532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18061881A JPS5882532A (en) 1981-11-11 1981-11-11 Element separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18061881A JPS5882532A (en) 1981-11-11 1981-11-11 Element separation method

Publications (1)

Publication Number Publication Date
JPS5882532A true JPS5882532A (en) 1983-05-18

Family

ID=16086365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18061881A Pending JPS5882532A (en) 1981-11-11 1981-11-11 Element separation method

Country Status (1)

Country Link
JP (1) JPS5882532A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124840A (en) * 1983-12-09 1985-07-03 Fujitsu Ltd Manufacture of semiconductor device
JPS60149150A (en) * 1983-08-12 1985-08-06 テクトロニツクス・インコ−ポレイテツド Integrated circuit and method of producing same
JPS61133659A (en) * 1984-12-03 1986-06-20 Res Dev Corp Of Japan Forming method for semiconductor element isolating region
JPS61182242A (en) * 1985-02-08 1986-08-14 Toshiba Corp Manufacture of semiconductor device
US4766090A (en) * 1986-04-21 1988-08-23 American Telephone And Telegraph Company, At&T Bell Laboratories Methods for fabricating latchup-preventing CMOS device
US4866004A (en) * 1985-10-05 1989-09-12 Fujitsu Limited Method of forming groove isolation filled with dielectric for semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654049A (en) * 1979-10-09 1981-05-13 Mitsubishi Electric Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654049A (en) * 1979-10-09 1981-05-13 Mitsubishi Electric Corp Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149150A (en) * 1983-08-12 1985-08-06 テクトロニツクス・インコ−ポレイテツド Integrated circuit and method of producing same
JPS60124840A (en) * 1983-12-09 1985-07-03 Fujitsu Ltd Manufacture of semiconductor device
JPH0340948B2 (en) * 1983-12-09 1991-06-20
JPS61133659A (en) * 1984-12-03 1986-06-20 Res Dev Corp Of Japan Forming method for semiconductor element isolating region
JPS61182242A (en) * 1985-02-08 1986-08-14 Toshiba Corp Manufacture of semiconductor device
US4866004A (en) * 1985-10-05 1989-09-12 Fujitsu Limited Method of forming groove isolation filled with dielectric for semiconductor device
US4766090A (en) * 1986-04-21 1988-08-23 American Telephone And Telegraph Company, At&T Bell Laboratories Methods for fabricating latchup-preventing CMOS device

Similar Documents

Publication Publication Date Title
US5640041A (en) Stress relaxation in dielectric before metallization
JP3079011B2 (en) Method of forming separation member
JPH0513566A (en) Manufacture of semiconductor device
JPS6340337A (en) Method of isolating integrated circuit
JPH03245553A (en) Formation of element isolating region
US11961740B2 (en) Manufacturing method for integrating gate dielectric layers of different thicknesses
JP3539483B2 (en) Method for manufacturing semiconductor device
JPH0427702B2 (en)
JPS5882532A (en) Element separation method
JPS5898943A (en) Manufacture of semiconductor device
US4504333A (en) Method of making field oxide regions
JPH05849B2 (en)
JPS59165434A (en) Manufacture of semiconductor device
JPS6038831A (en) Semiconductor device and manufacture thereof
JPS59135743A (en) Semiconductor device and manufacture thereof
JPS5992547A (en) Isolation process
JPS60132341A (en) Semiconductor device
KR0140734B1 (en) Method of semiconductor device
JPS58190040A (en) Preparation of semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPS6025247A (en) Manufacture of semiconductor device
JPS6322065B2 (en)
JPH0680726B2 (en) Method for manufacturing semiconductor device
JPH0278247A (en) Manufacture of semiconductor device
JPS59177940A (en) Manufacture of element isolation region