JP3539483B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP3539483B2
JP3539483B2 JP27391199A JP27391199A JP3539483B2 JP 3539483 B2 JP3539483 B2 JP 3539483B2 JP 27391199 A JP27391199 A JP 27391199A JP 27391199 A JP27391199 A JP 27391199A JP 3539483 B2 JP3539483 B2 JP 3539483B2
Authority
JP
Japan
Prior art keywords
film
insulating film
etching
polishing stopper
lto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27391199A
Other languages
Japanese (ja)
Other versions
JP2001102439A (en
Inventor
裕行 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP27391199A priority Critical patent/JP3539483B2/en
Priority to US09/588,760 priority patent/US6346457B1/en
Priority to TW089111141A priority patent/TW558792B/en
Priority to KR1020000032468A priority patent/KR100361103B1/en
Publication of JP2001102439A publication Critical patent/JP2001102439A/en
Application granted granted Critical
Publication of JP3539483B2 publication Critical patent/JP3539483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は半導体装置の製造方法、更に詳しくは、シャロウトレンチ素子分離(Shallow Trench Isoration、以下、「STI」と略す)法を用いた、素子分離方法に関するものである。
【0002】
【従来の技術】
従来、半導体装置の製造において、素子分離法としては、LOCOS(Local Oxdation of Silicon)法が広く用いられてきた。しかしながら、加工寸法の微細化に伴い、熱酸化を用いたLOCOS法では、バーズビークなどの問題が生じてきた。
【0003】
そこで、LOCOS法の問題点を解決するための手段として、STI法が提案された。STI法は、シリコン基板にトレンチと呼ばれる溝を形成し、絶縁膜を埋め込んだ後に、CMP法を用いて、トレンチに埋め込まれた絶縁膜以外の絶縁膜を除去することで、素子分離領域を形成する。LOCOS法と比較して、絶縁膜をプラズマCVD法などにより形成できるため、熱工程を低減することができるので、バーズビークなどの問題は大幅に改善できる。
【0004】
【発明が解決しようとする課題】
しかし、STI法特有の課題もある。LOCOS法では、熱酸化を利用するため、素子分離形成後の表面の凹凸は比較的なだらかな形状になるのに対して、STI法では、絶縁膜のCMP法による研磨の後の素子分離の端部は、ほぼ基板に対して垂直な形状となる。これにより、後工程のゲート電極形成において、図4に示すように、フォトリソグラフィでのパターンのくびれやゲート電極エッチング時のポリシリコン残り25などの問題が生じる。図4は従来技術の課題の説明に供する図であり、符号21はシリコン基板、22はシャロウトレンチ素子分離(STI)領域、23はゲート絶縁膜、24はゲート電極を示す。
【0005】
この問題に対して、例えば、特開平10−144781号公報のように、STI領域形成時にSiN膜をCMPストッパーとして用いてSTI領域の段差を防ぐ方法や、STI領域における突起領域をエッチバックで除去する方法などがある。
【0006】
以下、図5を用いて上記方法を説明する。尚、図5は従来のシャロウトレンチ素子分離領域の形成工程図である。
【0007】
まず、図5(a)に示すように、シリコン基板11上に、CVD法により、第1のシリコン窒化膜12、第1のシリコン酸化膜13、第2のシリコン窒化膜14及び第2のシリコン酸化膜15を順次形成する。次に、リソグラフィ技術を用いて、トレンチ形成予定領域に開口を有するレジスト膜(図示せず)を形成する。次に、図5(b)に示すように、RIE法により、レジスト膜(図示せず)をマスクに用いて、第2のシリコン酸化膜15の表面から、シリコン基板11内に達する異方性エッチングを行なって、トレンチ部11Aを形成する。
【0008】
次に、図5(c)に示すように、レジスト膜(図示せず)を除去した後、CVD法により、埋め込み酸化膜(第3のシリコン酸化膜16)及びCMP法を行なった際の凹所生成抑制膜(第3のシリコン窒化膜17)を形成する。
【0009】
次に、図5(d)に示すように、CMP法を用いて、第3のシリコン窒化膜17から研磨して、第2のシリコン窒化膜14表面が露出した時点で研磨を停止する。次に、図5(e)に示すように、ウエットエッチングで、第3のシリコン窒化膜17及び第2のシリコン窒化膜14を除去する。次に、図5(f)に示すように、RIE法により、第1のシリコン酸化膜13を除去すると共に、第3のシリコン酸化膜16からなる凸部16Aの高さを低減する。その後、図5(g)に示すように、第1のシリコン窒化膜12をウエットエッチングに除去し、シリコン基板11表面を露出させる。
【0010】
しかしながら、CMP及びエッチバック工程のストッパー膜を多層に積層し、更にそれぞれの膜種毎の除去工程が必要となるなど、非常に工程数が増加する、即ち、コストが増加する問題を抱えている。
【0011】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、半導体基板に、研磨ストッパー膜を堆積した後、該研磨ストッパー膜上にフォトレジストを塗布し、該フォトレジストの素子分離領域となる領域を開口する工程と、
前記フォトレジストをエッチングマスクに用いて、ドライエッチングにより、前記研磨ストッパー膜を除去し、更に、所定の深さの溝を前記半導体基板に形成する工程と、
前記フォトレジストを除去した後、前記溝を埋設するように、溝の深さに相当する膜厚の第1の絶縁膜及び該第1の絶縁膜と同一エッチング工程でエッチング可能で且つエッチングレートの高い第2の絶縁膜を順次堆積する工程と、
前記研磨ストッパー膜表面が露出するまで、前記第1絶縁膜及び第2絶縁膜をCMP法を用いて研磨する工程と、
前記研磨ストッパー膜を除去した後、同一のエッチング剤を用いて、前記第1の絶縁膜及び第2の絶縁膜をエッチング除去することにより、素子分離領域を形成する工程とを有することを特徴とするものである。
【0012】
また、本発明の半導体装置の製造方法は、前記第1の絶縁膜はUSG膜であり、前記第2の絶縁膜がLTO膜であり、且つ、前記エッチング剤にフッ酸を用いることが望ましい。
【0013】
また、本発明の半導体装置の製造方法は、前記LTO膜のウエットエッチングレートを前記LTO膜をアニールする際のアニール温度を制御することによって行なうことが望ましい。
【0014】
また、前記第1の絶縁膜及び第2の絶縁膜のエッチングは、研磨ストッパー膜をリン酸で除去した後、フッ酸で行うことが望ましい。
【0015】
また、上記研磨ストッパー膜にシリコン窒化膜を用い、該シリコン窒化膜と前記半導体基板との間にシリコン酸化膜を形成することが望ましい。
【0016】
【発明の実施の形態】
以下、一実施例に基づいて、本発明を詳細に説明する。
【0017】
図1は本発明の一実施形態の半導体装置の製造工程図、図2はゲート電極形成後の本発明を用いた場合のシャロウトレンチ素子分離領域の断面図、図3はLTOのアニール温度とエッチングレートとの関係を示す図である。図において、1はシリコン基板、2はパッド酸化膜、3はシリコン窒化膜、4はレジストパターン、5は溝、6はシリコン酸化膜、7はUSG膜、8はLTO膜、9はゲート酸化膜、10はゲート電極である。
【0018】
以下、図1及び図2を用いて、本発明の一実施例の半導体装置の製造工程を説明する。
【0019】
まず、図1(a)に示すように、シリコン基板1上にパッド酸化膜2及びシリコン窒化膜3をそれぞれ熱酸化法及びCVD法により、14nm及び160nm形成する。
【0020】
次に、図1(b)に示すように、素子分離パターンをフォトリソグラフィ技術を用いたレジストパターン4をマスクにドライエッチング技術により、パッド酸化膜2及びシリコン窒化膜3をエッチングするとともに、シリコン基板に所定の深さの溝5を形成する。ここで、溝5の深さは350nmとする。尚、絶縁膜の埋め込み特性を考慮し、ある程度テーパ形状に加工するのが望ましい。
【0021】
次に、図1(c)に示すように、レジストパターン4を除去した後、溝5への埋め込み酸化膜からのシリコン基板1への応力欠陥発生の防止のため、熱酸化法により、膜厚が30nm程度のシリコン酸化膜6を形成する。
【0022】
次に、図1(d)に示すように、不純物を含まないUSG(Undoped Silicate Glass)膜7を溝5に埋め込む。素子分離において、不純物を含んだ絶縁膜ではトランジスタ特性が劣化するため、不純物の含まない絶縁膜を用いるのが望ましい。USG膜7は例えば、高密度プラズマ(High Density Plasma、以下、「HDP」とする。)装置を用いたCVD法により形成する。このときのUSG膜7の堆積膜厚は、溝深さ相当に設定する。本実施例の場合は、350nmとなる。尚、このUSG膜7を形成後、USG膜7の緻密化のために、1000℃前後のアニールを行なってもよい。次に、LTO(Low Temperature Oxcide)膜8を形成する。LTO膜8は、プラズマCVD法により形成し、膜厚は、次工程のCMP工程により、適正値はさまざまであるが、本実施例では、250nmとしている。また、以降の工程での洗浄による絶縁膜の膜減りを考慮して、LTO膜8形成後に、LTO膜8のウエットエッチングレートの制御を目的としたアニールを行なうことも有効であり、本実施例では、750℃で1時間のアニールを実施している。ゲート電極形成までに、USG膜に換算して200〜500Å相当のウエットエッチング(洗浄工程)が施されている。この時にLTO膜8が完全に除去され、且つ、USG膜7よりエッチングレートが早いために生じるSTI領域の突起部が除去されるにはエッチングレート差の制御が必要となってくる。本実施例では、この積層した埋め込み膜(USG膜7及びLTO膜8)のエッチングレートの差は、下層絶縁膜(USG膜7)に対し、上層絶縁膜(LTO膜8)が3〜10倍程度に成ることが望ましい。但し、後述のCMP工程後の埋め込み部の残膜により、適度のエッチングレート差は異なるため、積層した埋め込み膜のエッチングレートの差は、本発明を拘束するものではない。
【0023】
次に、図1(e)に示すように、CMP工程により、シリコン窒化膜3をストッパーとして用い、溝埋め込み部以外のLTO膜8及びUSG膜7を除去する。この時の溝内部の絶縁膜の残膜は、USG膜7が350nm、LTO膜8が20〜150nmとなる。尚、溝内の埋め込み膜をUSG膜単層で行なった場合、残膜は370〜500nmとなり、このばらつきがSTI領域の段差の低減を困難にしている。
【0024】
次に、図1(f)に示すように、シリコン窒化膜3及びパッド酸化膜2をウエットエッチングにより順次除去する。シリコン窒化膜3の除去には、150℃程度に温調したリン酸、酸化膜除去には常温のフッ酸を用いる。次に、同一のエッチング液、フッ酸でウエットエッチングを行なうことにより、シリコン基板表面まで、USG膜6及びLTO膜7の除去を単一工程で行なう。
【0025】
次に、図1(g)に示すように、シリコン基板1へのイオン注入、洗浄などの工程を経て、ゲート酸化膜9及びゲート電極10を形成したときのSTI形状を示す。本実施例では、ゲート酸化膜9を熱酸化により32nm、ゲート電極10として、LP−CVD法により、ポリシリコンを200nm形成している。STI領域の膜厚は、HF処理などの洗浄工程により、STI−CMP工程後に対して、ゲート電極形成工程までに膜減りする。ここでは、STI領域をLTO膜7及びUSG膜の積層膜としているため、フッ酸でのエッチングレートがLTO膜の方が早く膜減りし、完全に除去された後、即ち、USG膜7の表面が露出したところで、エッチングレートが低下するため、上述のSTI−CMP工程後の溝内部の絶縁膜の残膜ばらつきは緩和されることになり、より平坦な、且つSTI領域の段差を小さく制御することが可能となる。これにより、図2に示すように、従来技術で問題となっていたSTI領域の段差によるゲート電極加工時のエッチング残りなどの問題が解消される。
【0026】
また、図1に示す工程で、STI−CMP工程後からゲート酸化膜形成までの工程で、フッ酸洗浄などの量は様々であるが、例えば、図3に示すような、LTO膜8におけるアニール温度とエッチングレートとの関係を用いて、LTO膜8の形成後、熱処理の温度制御を行なうことにより、所望のエッチングレートを得ることができる。
【0027】
【発明の効果】
以上、詳細に説明したように、本発明の、半導体基板に、研磨ストッパー膜を堆積した後、該研磨ストッパー膜上にフォトレジストを塗布し、該フォトレジストの素子分離領域となる領域を開口する工程と、前記フォトレジストをエッチングマスクに用いて、ドライエッチングにより、前記研磨ストッパー膜を除去し、更に、所定の深さの溝を前記半導体基板に形成する工程と、前記フォトレジストを除去した後、前記溝を埋設するように、第1の絶縁膜及び該第1の絶縁膜と同一エッチング工程でエッチング可能で且つエッチングレートの高い第2の絶縁膜を順次堆積する工程と、前記研磨ストッパー膜表面が露出するまで、前記第1絶縁膜及び第2絶縁膜をCMP法を用いて研磨する工程と、前記研磨ストッパー膜を除去した後、同一のエッチング剤を用いて、前記第1の絶縁膜及び第2の絶縁膜をエッチング除去することにより、素子分離領域を形成する工程とを有することを特徴とする、半導体装置の製造方法を用いることにより、CMP工程をSTI領域形式において、従来法で問題となっていた、STI領域の段差が及ぼすゲート電極の加工の難易性を、これまでのSTI領域形成工程を大幅に変更せずに解消することができ、特に工程数の増加はほとんど不要となり、半導体装置の歩留り向上、即ち、コスト低減のみならず、素子分離のさらなる微細化に対応することができ、半導体装置の高集積化も可能となる。
【0028】
また、本発明の、上記構成に加えて、前記第1の絶縁膜はUSG膜であり、前記第2の絶縁膜がLTO膜であり、且つ、前記エッチング剤にフッ酸を用いることを特徴とする、半導体装置の製造方法を用いることにより、一度のウエットエッチング工程で、第1の絶縁膜及び第2の絶縁膜を適度なエッチングレート差を保ちながらエッチングでき、STI領域の段差を低減することができる。
【0029】
また、本発明の、上記構成に加えて、前記LTO膜のウエットエッチングレートを前記LTO膜をアニールする際のアニール温度を制御することによって行なうことを特徴とする、半導体装置の製造方法を用いることにより、より半導体基板表面に対してSTI領域の段差を低減することができる。
【0030】
また、本発明の、上記構成に加えて、前記ウエットエッチングを、前記半導体基板に形成された素子の洗浄と同時に行なうことを特徴とする、半導体装置の製造方法を用いることにより、工程を簡略化することができる。
【0031】
更に、本発明の、上記構成に加えて、上記研磨ストッパー膜にシリコン窒化膜を用い、該シリコン窒化膜と前記半導体基板との間にシリコン酸化膜を形成することを特徴とする、半導体装置の製造方法を用いることにより、より確実に研磨を停止することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の半導体装置の製造工程図である。
【図2】ゲート電極形成後の本発明を用いた場合のシャロウトレンチ素子分離領域の断面図である。
【図3】LTOのアニール温度とエッチングレートとの関係を示す図である。
【図4】従来のシャロウトレンチ素子分離領域形成の課題の説明に供する図である。
【図5】従来のシャロウトレンチ素子分離領域の形成工程図である。
【符号の説明】
1 シリコン基板
2 パッド酸化膜
3 シリコン窒化膜
4 レジストパターン
5 溝
6 シリコン酸化膜
7 USG膜
8 LTO膜
9 ゲート酸化膜
10 ゲート電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to an element isolation method using a shallow trench isolation (hereinafter, abbreviated as “STI”) method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in manufacturing a semiconductor device, a LOCOS (Local Oxidation of Silicon) method has been widely used as an element isolation method. However, with the miniaturization of the processing dimensions, problems such as bird's beak have arisen in the LOCOS method using thermal oxidation.
[0003]
Then, as a means for solving the problem of the LOCOS method, the STI method has been proposed. In the STI method, an element isolation region is formed by forming a groove called a trench in a silicon substrate, embedding an insulating film, and then removing an insulating film other than the insulating film embedded in the trench by using a CMP method. I do. Since the insulating film can be formed by a plasma CVD method or the like as compared with the LOCOS method, the number of heat steps can be reduced, so that problems such as a bird's beak can be greatly improved.
[0004]
[Problems to be solved by the invention]
However, there is a problem unique to the STI method. In the LOCOS method, thermal oxidation is used, so that the surface irregularities after element isolation formation have a relatively gentle shape, whereas in the STI method, the end of element isolation after polishing of the insulating film by the CMP method. The portion has a shape substantially perpendicular to the substrate. As a result, in forming the gate electrode in a later step, as shown in FIG. 4, problems such as constriction of the pattern in photolithography and remaining polysilicon 25 in etching the gate electrode occur. FIG. 4 is a view for explaining the problem of the prior art, in which reference numeral 21 denotes a silicon substrate, 22 denotes a shallow trench isolation (STI) region, 23 denotes a gate insulating film, and 24 denotes a gate electrode.
[0005]
To cope with this problem, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 10-144781, a method of preventing a step in the STI region by using an SiN film as a CMP stopper at the time of forming the STI region, or removing a protrusion region in the STI region by etch-back. There are ways to do that.
[0006]
Hereinafter, the above method will be described with reference to FIG. FIG. 5 is a process chart for forming a conventional shallow trench isolation region.
[0007]
First, as shown in FIG. 5A, a first silicon nitride film 12, a first silicon oxide film 13, a second silicon nitride film 14, and a second silicon nitride film 12 are formed on a silicon substrate 11 by a CVD method. An oxide film 15 is formed sequentially. Next, a resist film (not shown) having an opening in a region where a trench is to be formed is formed by using a lithography technique. Next, as shown in FIG. 5B, anisotropic reaching from the surface of the second silicon oxide film 15 to the inside of the silicon substrate 11 by RIE using a resist film (not shown) as a mask. Etching is performed to form trench portion 11A.
[0008]
Next, as shown in FIG. 5C, after removing the resist film (not shown), a buried oxide film (third silicon oxide film 16) and a recess formed when the CMP method is performed by the CVD method. A formation suppression film (third silicon nitride film 17) is formed.
[0009]
Next, as shown in FIG. 5D, the third silicon nitride film 17 is polished by the CMP method, and the polishing is stopped when the surface of the second silicon nitride film 14 is exposed. Next, as shown in FIG. 5E, the third silicon nitride film 17 and the second silicon nitride film 14 are removed by wet etching. Next, as shown in FIG. 5F, the first silicon oxide film 13 is removed by RIE, and the height of the projection 16A made of the third silicon oxide film 16 is reduced. Thereafter, as shown in FIG. 5G, the first silicon nitride film 12 is removed by wet etching, and the surface of the silicon substrate 11 is exposed.
[0010]
However, there is a problem that the number of steps is extremely increased, that is, the cost is increased, for example, a stopper film of a CMP and an etch-back step is laminated in multiple layers, and further a removal step for each film type is required. .
[0011]
[Means for Solving the Problems]
Method of manufacturing a semi-conductor device of the present invention, the semiconductor substrate, after depositing a polishing stopper film, a photoresist is applied to the polishing stopper film, a step for exposing the region where the element isolation region of the photoresist ,
Using the photoresist as an etching mask, removing the polishing stopper film by dry etching, and further forming a groove of a predetermined depth in the semiconductor substrate;
After removing the photoresist, the first insulating film having a thickness corresponding to the depth of the groove and an etching rate of the first insulating film that can be etched in the same etching step as the first insulating film so as to fill the groove . Sequentially depositing a high second insulating film;
Polishing the first insulating film and the second insulating film using a CMP method until the surface of the polishing stopper film is exposed;
Forming a device isolation region by etching and removing the first insulating film and the second insulating film using the same etching agent after removing the polishing stopper film. Is what you do.
[0012]
Further, in the method of manufacturing a semiconductor device according to the present invention, it is preferable that the first insulating film is a USG film, the second insulating film is an LTO film, and hydrofluoric acid is used as the etching agent.
[0013]
Further, it is preferable that the method of manufacturing a semiconductor device according to the present invention is performed by controlling a wet etching rate of the LTO film by controlling an annealing temperature at the time of annealing the LTO film.
[0014]
Further, it is preferable that the etching of the first insulating film and the second insulating film is performed with hydrofluoric acid after removing the polishing stopper film with phosphoric acid .
[0015]
It is preferable that a silicon nitride film is used as the polishing stopper film, and a silicon oxide film is formed between the silicon nitride film and the semiconductor substrate.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an embodiment.
[0017]
FIG. 1 is a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a shallow trench element isolation region when the present invention is used after forming a gate electrode, and FIG. 3 is an LTO annealing temperature and etching. It is a figure showing the relation with a rate. In the figure, 1 is a silicon substrate, 2 is a pad oxide film, 3 is a silicon nitride film, 4 is a resist pattern, 5 is a groove, 6 is a silicon oxide film, 7 is a USG film, 8 is an LTO film, 9 is a gate oxide film. Reference numeral 10 denotes a gate electrode.
[0018]
Hereinafter, a manufacturing process of a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.
[0019]
First, as shown in FIG. 1A, a pad oxide film 2 and a silicon nitride film 3 are formed on a silicon substrate 1 by a thermal oxidation method and a CVD method to a thickness of 14 nm and 160 nm, respectively.
[0020]
Next, as shown in FIG. 1B, the pad oxide film 2 and the silicon nitride film 3 are etched by a dry etching technique using a resist pattern 4 as a mask using a photolithography technique as an element isolation pattern. Then, a groove 5 having a predetermined depth is formed. Here, the depth of the groove 5 is 350 nm. Note that it is desirable to process the tapered shape to some extent in consideration of the burying characteristics of the insulating film.
[0021]
Next, as shown in FIG. 1 (c), after removing the resist pattern 4, in order to prevent the occurrence of stress defects in the silicon substrate 1 from the buried oxide film in the trench 5, the film thickness is reduced by a thermal oxidation method. Forms a silicon oxide film 6 of about 30 nm.
[0022]
Next, as shown in FIG. 1D, a USG (Undoped Silicate Glass) film 7 containing no impurity is buried in the groove 5. In element isolation, an insulating film containing impurities deteriorates transistor characteristics. Therefore, it is preferable to use an insulating film containing no impurities. The USG film 7 is formed by, for example, a CVD method using a high-density plasma (hereinafter, referred to as “HDP”) device. At this time, the deposited film thickness of the USG film 7 is set to be equivalent to the groove depth. In the case of the present embodiment, it is 350 nm. After the formation of the USG film 7, annealing at about 1000 ° C. may be performed to densify the USG film 7. Next, an LTO (Low Temperature Oxide) film 8 is formed. The LTO film 8 is formed by a plasma CVD method, and the film thickness is set to 250 nm in the present embodiment although the appropriate value varies depending on the next CMP process. It is also effective to perform annealing for the purpose of controlling the wet etching rate of the LTO film 8 after the formation of the LTO film 8 in consideration of the film loss of the insulating film due to cleaning in the subsequent steps. Performs annealing at 750 ° C. for 1 hour. Until the gate electrode is formed, wet etching (cleaning step) equivalent to 200 to 500 ° in terms of a USG film is performed. At this time, it is necessary to control an etching rate difference in order to completely remove the LTO film 8 and to remove a protrusion in the STI region caused by an etching rate higher than that of the USG film 7. In this embodiment, the difference between the etching rates of the stacked buried films (USG film 7 and LTO film 8) is 3 to 10 times that of the lower insulating film (USG film 7) in the upper insulating film (LTO film 8). Is desirable. However, an appropriate difference in the etching rate is different depending on the remaining film in the buried portion after the later-described CMP process. Therefore, the difference in the etching rate between the stacked buried films does not restrict the present invention.
[0023]
Next, as shown in FIG. 1E, the LTO film 8 and the USG film 7 other than the groove buried portion are removed by a CMP process using the silicon nitride film 3 as a stopper. At this time, the remaining insulating film inside the trench has a thickness of 350 nm for the USG film 7 and 20 to 150 nm for the LTO film 8. When the buried film in the trench is formed by a single layer of the USG film, the remaining film becomes 370 to 500 nm, and this variation makes it difficult to reduce the step in the STI region.
[0024]
Next, as shown in FIG. 1F, the silicon nitride film 3 and the pad oxide film 2 are sequentially removed by wet etching. Phosphoric acid whose temperature is controlled to about 150 ° C. is used for removing the silicon nitride film 3, and hydrofluoric acid at room temperature is used for removing the oxide film. Next, the USG film 6 and the LTO film 7 are removed in a single step up to the silicon substrate surface by performing wet etching with the same etchant and hydrofluoric acid.
[0025]
Next, as shown in FIG. 1G, the STI shape when the gate oxide film 9 and the gate electrode 10 are formed through steps such as ion implantation into the silicon substrate 1 and cleaning is shown. In this embodiment, the gate oxide film 9 is formed to have a thickness of 32 nm by thermal oxidation, and the gate electrode 10 is formed to have a thickness of 200 nm of polysilicon by the LP-CVD method. The thickness of the STI region is reduced by the cleaning process such as the HF process after the STI-CMP process until the gate electrode forming process. Here, since the STI region is a laminated film of the LTO film 7 and the USG film, the etching rate with hydrofluoric acid is reduced faster in the LTO film, and after the LTO film is completely removed, that is, the surface of the USG film 7 Is exposed, the etching rate decreases, so that the remaining film variation of the insulating film inside the trench after the above-described STI-CMP process is reduced, and the step in the STI region is controlled to be flatter and smaller. It becomes possible. As a result, as shown in FIG. 2, the problem of the prior art, such as the residual etching at the time of processing the gate electrode due to the step in the STI region, is solved.
[0026]
Further, in the process shown in FIG. 1, the amount of hydrofluoric acid cleaning and the like in the process from the STI-CMP process to the formation of the gate oxide film varies, but for example, the annealing in the LTO film 8 as shown in FIG. A desired etching rate can be obtained by controlling the temperature of the heat treatment after the formation of the LTO film 8 using the relationship between the temperature and the etching rate.
[0027]
【The invention's effect】
As described in detail above, after depositing a polishing stopper film on a semiconductor substrate of the present invention, a photoresist is applied on the polishing stopper film, and a region to be an element isolation region of the photoresist is opened. Removing the polishing stopper film by dry etching using the photoresist as an etching mask, further forming a groove having a predetermined depth in the semiconductor substrate, and removing the photoresist. Sequentially depositing a first insulating film and a second insulating film which can be etched in the same etching step as the first insulating film and has a high etching rate so as to bury the groove, and the polishing stopper film Polishing the first insulating film and the second insulating film using a CMP method until the surface is exposed; and removing the polishing stopper film, Forming a device isolation region by etching and removing the first insulating film and the second insulating film using a etching agent. In order to eliminate the difficulty of processing the gate electrode caused by the step in the STI region, which has been a problem in the conventional method in the STI region type in the CMP process, without significantly changing the existing STI region forming process. In particular, an increase in the number of steps becomes almost unnecessary, and it is possible to not only improve the yield of the semiconductor device, that is, not only reduce the cost, but also cope with further miniaturization of element isolation, and it is also possible to achieve high integration of the semiconductor device. .
[0028]
Further, in addition to the above configuration of the present invention, the first insulating film is a USG film, the second insulating film is an LTO film, and hydrofluoric acid is used as the etching agent. By using the method for manufacturing a semiconductor device, the first insulating film and the second insulating film can be etched while maintaining an appropriate etching rate difference in a single wet etching step, and the step in the STI region is reduced. Can be.
[0029]
Further, in addition to the above structure, the present invention provides a method for manufacturing a semiconductor device, wherein the wet etching rate of the LTO film is controlled by controlling an annealing temperature when annealing the LTO film. Thereby, the step in the STI region with respect to the surface of the semiconductor substrate can be further reduced.
[0030]
Further, in addition to the above structure of the present invention, the steps are simplified by using a method of manufacturing a semiconductor device, wherein the wet etching is performed simultaneously with cleaning of an element formed on the semiconductor substrate. can do.
[0031]
Further, in the semiconductor device according to the present invention, in addition to the above configuration, a silicon nitride film is used as the polishing stopper film, and a silicon oxide film is formed between the silicon nitride film and the semiconductor substrate. By using the manufacturing method, polishing can be stopped more reliably.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a shallow trench element isolation region when the present invention is used after forming a gate electrode.
FIG. 3 is a diagram showing a relationship between an annealing temperature of LTO and an etching rate.
FIG. 4 is a diagram for explaining a problem of forming a conventional shallow trench element isolation region.
FIG. 5 is a process chart of forming a conventional shallow trench element isolation region.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 silicon substrate 2 pad oxide film 3 silicon nitride film 4 resist pattern 5 groove 6 silicon oxide film 7 USG film 8 LTO film 9 gate oxide film 10 gate electrode

Claims (5)

半導体基板に、研磨ストッパー膜を堆積した後、該研磨ストッパー膜上にフォトレジストを塗布し、該フォトレジストの素子分離領域となる領域を開口する工程と、
前記フォトレジストをエッチングマスクに用いて、ドライエッチングにより、前記研磨ストッパー膜を除去し、更に、所定の深さの溝を前記半導体基板に形成する工程と、
前記フォトレジストを除去した後、前記溝を埋設するように、溝の深さに相当する膜厚の第1の絶縁膜及び該第1の絶縁膜と同一エッチング工程でエッチング可能で且つエッチングレートの高い第2の絶縁膜を順次堆積する工程と、
前記研磨ストッパー膜表面が露出するまで、前記第1絶縁膜及び第2絶縁膜をCMP法を用いて研磨する工程と、
前記研磨ストッパー膜を除去した後、同一のエッチング剤を用いて、前記第1の絶縁膜及び第2の絶縁膜をエッチング除去することにより、素子分離領域を形成する工程とを有することを特徴とする、半導体装置の製造方法。
After depositing a polishing stopper film on the semiconductor substrate, applying a photoresist on the polishing stopper film, opening a region to be an element isolation region of the photoresist,
Using the photoresist as an etching mask, removing the polishing stopper film by dry etching, and further forming a groove of a predetermined depth in the semiconductor substrate;
After removing the photoresist, the first insulating film having a thickness corresponding to the depth of the groove and an etching rate of the first insulating film that can be etched in the same etching step as the first insulating film so as to fill the groove . Sequentially depositing a high second insulating film;
Polishing the first insulating film and the second insulating film using a CMP method until the surface of the polishing stopper film is exposed;
Forming a device isolation region by etching and removing the first insulating film and the second insulating film using the same etching agent after removing the polishing stopper film. To manufacture a semiconductor device.
前記第1の絶縁膜はUSG膜であり、前記第2の絶縁膜がLTO膜であり、且つ、前記エッチング剤にフッ酸を用いることを特徴とする、請求項1に記載の半導体装置の製造方法。2. The semiconductor device according to claim 1, wherein the first insulating film is a USG film, the second insulating film is an LTO film, and hydrofluoric acid is used as the etching agent. 3. Method. 前記LTO膜のウエットエッチングレートを前記LTO膜をアニールする際のアニール温度を制御することによって行なうことを特徴とする、請求項2に記載の半導体装置の製造方法。3. The method according to claim 2, wherein the wet etching rate of the LTO film is controlled by controlling an annealing temperature when the LTO film is annealed. 前記第1の絶縁膜及び第2の絶縁膜のエッチングは、研磨ストッパー膜をリン酸で除去した後、フッ酸で行うことを特徴とする、請求項1乃至請求項4に記載の半導体装置の製造方法。5. The semiconductor device according to claim 1, wherein the etching of the first insulating film and the second insulating film is performed with hydrofluoric acid after removing the polishing stopper film with phosphoric acid . Production method. 上記研磨ストッパー膜にシリコン窒化膜を用い、該シリコン窒化膜と前記半導体基板との間にシリコン酸化膜を形成することを特徴とする、請求項1乃至請求項4のいずれかに記載の半導体装置の製造方法。5. The semiconductor device according to claim 1, wherein a silicon nitride film is used as said polishing stopper film, and a silicon oxide film is formed between said silicon nitride film and said semiconductor substrate. Manufacturing method.
JP27391199A 1999-09-28 1999-09-28 Method for manufacturing semiconductor device Expired - Fee Related JP3539483B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27391199A JP3539483B2 (en) 1999-09-28 1999-09-28 Method for manufacturing semiconductor device
US09/588,760 US6346457B1 (en) 1999-09-28 2000-06-06 Process for manufacturing semiconductor device
TW089111141A TW558792B (en) 1999-09-28 2000-06-08 Process for manufacturing semiconductor device
KR1020000032468A KR100361103B1 (en) 1999-09-28 2000-06-13 Process for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27391199A JP3539483B2 (en) 1999-09-28 1999-09-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2001102439A JP2001102439A (en) 2001-04-13
JP3539483B2 true JP3539483B2 (en) 2004-07-07

Family

ID=17534300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27391199A Expired - Fee Related JP3539483B2 (en) 1999-09-28 1999-09-28 Method for manufacturing semiconductor device

Country Status (4)

Country Link
US (1) US6346457B1 (en)
JP (1) JP3539483B2 (en)
KR (1) KR100361103B1 (en)
TW (1) TW558792B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712983B1 (en) * 2001-06-27 2007-05-02 주식회사 하이닉스반도체 method for passvation of semiconductor device
US6531377B2 (en) * 2001-07-13 2003-03-11 Infineon Technologies Ag Method for high aspect ratio gap fill using sequential HDP-CVD
KR20030049354A (en) * 2001-12-14 2003-06-25 주식회사 하이닉스반도체 Method of forming an isolation film in semiconductor device
KR100473736B1 (en) * 2002-10-28 2005-03-10 매그나칩 반도체 유한회사 Method of forming a isolation layer in a semiconductor device
KR100478496B1 (en) * 2002-12-05 2005-03-29 동부아남반도체 주식회사 Formation method of trench oxide in semiconductor device
US7144775B2 (en) * 2004-05-18 2006-12-05 Atmel Corporation Low-voltage single-layer polysilicon eeprom memory cell
JP4756926B2 (en) * 2005-06-17 2011-08-24 Okiセミコンダクタ株式会社 Method for manufacturing element isolation structure
KR100824139B1 (en) 2006-09-06 2008-04-21 주식회사 하이닉스반도체 Method for forming the isolation layer of semiconductor memory device
KR100822672B1 (en) * 2007-06-27 2008-04-17 (주)실리콘화일 Diagnosis device using image sensor and method of manufacturing the diagnosis device
US7973413B2 (en) * 2007-08-24 2011-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Through-substrate via for semiconductor device
JP5602340B2 (en) 2007-10-30 2014-10-08 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and manufacturing method thereof
JP5525127B2 (en) 2007-11-12 2014-06-18 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and manufacturing method thereof
US8329578B2 (en) * 2009-03-27 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure and via etching process of forming the same
CN101944483A (en) * 2010-08-11 2011-01-12 上海集成电路研发中心有限公司 Method for enhancing anti-etching capacity of photoresist
CN113464871B (en) * 2021-06-30 2023-08-15 江西新菲新材料有限公司 Lamp film, preparation method thereof and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144781A (en) 1996-11-12 1998-05-29 Fujitsu Ltd Manufacture of semiconductor device
KR19990025197A (en) * 1997-09-11 1999-04-06 윤종용 Trench element isolation
KR100253079B1 (en) * 1997-12-01 2000-04-15 윤종용 Semiconductor element trench isolation method
US6048775A (en) * 1999-05-24 2000-04-11 Vanguard International Semiconductor Corporation Method to make shallow trench isolation structure by HDP-CVD and chemical mechanical polish processes

Also Published As

Publication number Publication date
TW558792B (en) 2003-10-21
US6346457B1 (en) 2002-02-12
KR100361103B1 (en) 2002-11-18
JP2001102439A (en) 2001-04-13
KR20010029799A (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US6228727B1 (en) Method to form shallow trench isolations with rounded corners and reduced trench oxide recess
JP3539483B2 (en) Method for manufacturing semiconductor device
US6306723B1 (en) Method to form shallow trench isolations without a chemical mechanical polish
JPH11233612A (en) Method of isolating and forming trench of semiconductor device
JP2000012676A (en) Method of isolating elements through trenches of semiconductor device
JP4417882B2 (en) Manufacturing method of semiconductor device
US7361571B2 (en) Method for fabricating a trench isolation with spacers
JP3974286B2 (en) Shallow trench isolation method
JP3715480B2 (en) Method for forming element isolation film of semiconductor device
JPS63288043A (en) Method of isolating side surface isolated element
US6180492B1 (en) Method of forming a liner for shallow trench isolation
JP2002373935A (en) Trench element separation method
JPH10289946A (en) Manufacture of semiconductor device
US6303467B1 (en) Method for manufacturing trench isolation
KR20060078440A (en) Method for preventing divot pattern during the shallow trench isolation process
JPH07302791A (en) Formation of field oxidized film of semiconductor element
US6087233A (en) Forming trench isolators in semiconductor devices
JPH11317443A (en) Manufacture of semiconductor device
JPH08264634A (en) Separate formation in semiconductor device
KR100595858B1 (en) Fabricating method of semiconductor device
KR100478266B1 (en) Isolation method in a semiconductor manufacturing device
JP2002100670A (en) Semiconductor device and its manufacturing method
US7129149B1 (en) Method for forming shallow trench isolation structure with anti-reflective liner
KR100561974B1 (en) A Manufacturing Method of Semiconductor Element
KR100419873B1 (en) method for isolating semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees