JPH0340948B2 - - Google Patents

Info

Publication number
JPH0340948B2
JPH0340948B2 JP58233125A JP23312583A JPH0340948B2 JP H0340948 B2 JPH0340948 B2 JP H0340948B2 JP 58233125 A JP58233125 A JP 58233125A JP 23312583 A JP23312583 A JP 23312583A JP H0340948 B2 JPH0340948 B2 JP H0340948B2
Authority
JP
Japan
Prior art keywords
groove
polycrystalline silicon
forming
film
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58233125A
Other languages
Japanese (ja)
Other versions
JPS60124840A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23312583A priority Critical patent/JPS60124840A/en
Publication of JPS60124840A publication Critical patent/JPS60124840A/en
Publication of JPH0340948B2 publication Critical patent/JPH0340948B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は半導体装置の製造方法、詳しくは半導
体基板に断面U字形の溝(以下U溝と記す)を形
成してこの溝に絶縁物を埋め込んでなす絶縁分離
層の形成方法に関する。
[Detailed Description of the Invention] (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, a method for manufacturing a semiconductor device, and more specifically, a method for forming a groove having a U-shaped cross section (hereinafter referred to as a U-groove) in a semiconductor substrate and filling the groove with an insulating material. The present invention relates to a method of forming an insulating separation layer by burying it.

(2) 技術の背景 U溝を用いた絶縁分離層形成方法は、半導体基
板に形成したU溝に絶縁物として多結晶シリコン
(ポリシリコン)を充填する方法であり、高集積
化に適している。以下第1図を参照して絶縁分離
層形成工程を説明すると、先ず同図aに示す如く
シリコン(Si)基板1上に二酸化シリコン
(SiO2)膜2を形成し、次いで窒化シリコン
(Si3N4)膜3を形成する。しかる後マスクパタ
ーンを形成してリアクテイブイオンエツチング
(RIE)によりU溝4を掘り、次いで例えば熱酸
化法によりU溝4の壁面にSiO2膜5を形成する。
(2) Background of the technology The method of forming an insulating separation layer using a U-groove is a method of filling a U-groove formed in a semiconductor substrate with polycrystalline silicon (polysilicon) as an insulator, and is suitable for high integration. . The step of forming an insulating separation layer will be explained below with reference to FIG. 1. First, as shown in FIG . N 4 ) Form a film 3. Thereafter, a mask pattern is formed, a U-groove 4 is dug by reactive ion etching (RIE), and then a SiO 2 film 5 is formed on the wall surface of the U-groove 4 by, for example, thermal oxidation.

次いで化学気相成長(CVD)法によりポリシ
リコン6を成長して上記U溝4を埋没させ(同図
b)、最後にポリツシユにより窒化膜3上のポリ
シリコン6を除去して平坦化する(同図c)。
Next, polysilicon 6 is grown by chemical vapor deposition (CVD) to fill the U-groove 4 (see figure b), and finally the polysilicon 6 on the nitride film 3 is removed and planarized by polishing ( Figure c).

ところで上述した絶縁分離層の形成方法におい
てはU溝4をポリシリコン6により完全に埋没
し、ポリツシユした後の表面が平坦であることが
要望されている。
By the way, in the above-described method of forming an insulating separation layer, it is desired that the U-groove 4 be completely buried in the polysilicon 6 and that the surface after polishing be flat.

(3) 従来技術と問題点 上述した従来の絶縁分離層形成方法においては
U溝内に埋め込まれたポリシリコン中に化学的に
不安定な部分ができ、水酸化カリウム(KOH)
の如きアルカリ溶液を用いるポリツシユで表面に
す(空隙の存在する部分)ができ平坦化が達成さ
れない問題があつた。これを第2図を参照して更
に詳しく説明すると、U溝4を形成した後の
CVD法によるポリシリコン6の成長は、同図a
に符号7,8および9を付した破線で示す如く、
U溝4の壁面すなわちSiO2膜5および表面の窒
化膜3上のすべての場所において等速度で膜成長
が進行し、破線7、破線8、次いで破線9の順に
ポリシリコン膜6が徐々に形成される。そして上
記破線7,8および9で示す膜成長過程では、グ
レイン(Grain)が成長方向に化学的に安定な結
合をなして形成されていく。
(3) Prior art and problems In the conventional method for forming an insulating separation layer described above, a chemically unstable portion is created in the polysilicon buried in the U-groove, and potassium hydroxide (KOH)
When polishing using an alkaline solution such as the above, there was a problem in that the surface was left with voids (areas where voids existed) and flattening was not achieved. To explain this in more detail with reference to FIG. 2, after forming the U groove 4,
The growth of polysilicon 6 by the CVD method is shown in Figure a.
As shown by the broken lines with symbols 7, 8 and 9,
Film growth progresses at the same speed at all locations on the wall surface of the U-groove 4, that is, on the SiO 2 film 5 and the surface nitride film 3, and the polysilicon film 6 is gradually formed in the order of broken line 7, broken line 8, and then broken line 9. be done. In the film growth process indicated by the broken lines 7, 8, and 9, grains are formed with chemically stable bonds in the growth direction.

他方、膜成長に進むにつれてU溝4内の空洞は
壁面から成長したポリシリコン膜により徐々に狭
められ、ついには壁面から成長してきた膜表面が
破線10の位置で出合つてU溝4が埋められる。
On the other hand, as the film growth progresses, the cavity in the U-groove 4 is gradually narrowed by the polysilicon film grown from the wall surface, and finally the film surface grown from the wall surface meets at the position of the broken line 10 and the U-groove 4 is filled. .

ところが上記破線10付近における膜成長過程
では、成長してきた膜表面の間に新たに成長する
グレインはこの間にはめ込まれるため結合の自由
度がなくなり化学的に不安定な界面が形成され
る。この結果ポリツシユにおいて上記界面がアル
カリ溶液でエツチングされてこの部分に亀裂が生
じ、同図bに示す如く平坦化後表面にす11がで
きる。当該す11は配線工程において断線などの
原因となり、半導体装置の製造における歩留り低
下をまねく問題を生じる。
However, in the film growth process near the broken line 10, the newly grown grains are fitted between the surfaces of the previously grown film, so the degree of freedom of bonding is lost and a chemically unstable interface is formed. As a result, the above-mentioned interface is etched with an alkaline solution during polishing, and cracks are generated in this area, resulting in the formation of slits 11 on the surface after flattening, as shown in FIG. This step 11 causes wire breakage in the wiring process, resulting in a problem of lowering the yield in the manufacture of semiconductor devices.

他方、RIEでU溝を形成する場合、理想的には
同図aに示す角度θが90度で壁面が垂直に掘れる
ことが望まれるが、しばしばθが90度以下で開口
部より底の方が広いU溝ができることが経験され
ている。このような場合は前記界面部分の化学的
結合が更に弱くなつたり、場合によつては空洞が
残ることがあるため平坦化が一層困難となる問題
がある。以上のような状況により、従来技術にお
いてU溝の埋込みおよび平坦化が達成される比率
が低められるという問題もあつた。
On the other hand, when forming a U-groove using RIE, it is ideal that the angle θ shown in Figure a is 90 degrees and the wall surface is vertical. It has been experienced that a wide U-groove can be formed. In such a case, the chemical bond at the interface becomes even weaker, and in some cases, cavities may remain, making planarization more difficult. Due to the above-mentioned situation, there was also a problem in that the rate at which U-groove filling and planarization were achieved in the prior art was reduced.

(4) 発明の目的 本発明は上記従来の欠点に鑑み、U溝を用いた
絶縁分離層形成方法において当該U溝の形状にか
かわりなくポリシリコンで埋めたU溝の開口部を
平坦化することができる半導体装置の製造方法の
提供を目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides a method for forming an insulating separation layer using a U-groove, in which the opening of the U-groove filled with polysilicon is flattened regardless of the shape of the U-groove. The purpose of the present invention is to provide a method for manufacturing a semiconductor device that can perform the following steps.

(5) 発明の構成 そしてこの目的は本発明によれば、半導体基板
に断面U字形の溝を形成し、該溝の表面に酸化膜
を形成した後該溝を多結晶シリコンで埋めてなす
絶縁分離層の形成方法にして、該多結晶シリコン
を該溝を埋没させ該半導体基板表面を全面覆う厚
さに成長し、該半導体基板の融点以下の温度で不
活性雰囲気中でアニールを行ない、該溝部の多結
晶シリコンに生じた化学的に不安定な界面におけ
る多結晶シリコンのグレインの再整合を行ない耐
化学エツチング性をもつ界面を形成し、該溝部上
を含む全面の多結晶シリコンをアルカリ溶液を含
むポリツシユにより除去して該溝部に多結晶をシ
リコンを残すことを特徴とする半導体装置の製造
方法を提供することによつて達成される。
(5) Structure of the Invention According to the present invention, the purpose is to form an insulating film by forming a groove having a U-shaped cross section in a semiconductor substrate, forming an oxide film on the surface of the groove, and then filling the groove with polycrystalline silicon. The separation layer is formed by growing the polycrystalline silicon to a thickness that fills the trench and covering the entire surface of the semiconductor substrate, and annealing the polycrystalline silicon in an inert atmosphere at a temperature below the melting point of the semiconductor substrate. The grains of the polycrystalline silicon at the chemically unstable interface that occurs in the polycrystalline silicon in the groove are realigned to form an interface that is resistant to chemical etching, and the entire surface of the polycrystalline silicon, including the top of the groove, is removed with an alkaline solution. This is achieved by providing a method for manufacturing a semiconductor device, characterized in that polycrystalline silicon is removed by a polish containing polycrystalline silicon, leaving polycrystalline silicon in the trench.

(6) 発明の実施例 以下本発明実施例を図面によつて詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

上記構成で述べた如く本発明はポリシリコン成
長後従来化学的に弱いものであつた界面をアニー
ルによつて整合させて化学的強度をもたせるもの
である。以下その工程を詳しく説明する。
As described in the above structure, the present invention provides chemical strength by aligning the interface, which has conventionally been chemically weak, by annealing after polysilicon growth. The process will be explained in detail below.

先ず従来技術におけると同様に第1図aに示す
如くシリコン基板1上にSiO2膜2およびSi3N4
3を形成した後エツチングマスクを形成してRIE
によりU溝4を掘り、次いで壁面にSiO2膜5を
形成する。かかる工程において、U溝の開口幅W
は例えば3μm〜7μmであり、また壁面のSiO2
5の形成は熱酸化法によつて行い、その温度は
900℃〜1000℃、形成される膜厚は500〜3000Åで
ある。
First, as in the prior art, as shown in FIG. 1a, a SiO 2 film 2 and a Si 3 N 4 film 3 are formed on a silicon substrate 1, and then an etching mask is formed and RIE is performed.
A U-groove 4 is dug, and then a SiO 2 film 5 is formed on the wall surface. In this process, the opening width W of the U groove
is, for example, 3 μm to 7 μm, and the SiO 2 film 5 on the wall surface is formed by a thermal oxidation method, and the temperature is
The temperature is 900°C to 1000°C, and the film thickness formed is 500 to 3000 Å.

次いで第3図に示す如くポリシリコン6を減圧
CVD法によつて2μm〜3μmの厚さに成長しU溝
4を埋没させる。このときポリシリコン6内に化
学的結合の弱い界面12ができる。次いで窒素
(N2)雰囲気中700℃〜1200℃の温度で適宜時間
を定めてアニールを行う。例えば本願の発明者に
よれば、温度を900℃以上、時間を30分以上とす
ると十分な効果が得られることが確認された。か
かるアニールにより界面12においてグレインの
再整合が行われて化学的に強い界面となり、アル
カリ溶液に侵されることがない。また当該アニー
ルを行えば、界面12のところに空洞があつたと
してもこの空洞を消滅させることができることが
確認された。
Next, the pressure of polysilicon 6 is reduced as shown in Figure 3.
It grows to a thickness of 2 μm to 3 μm by CVD method and buries the U groove 4. At this time, an interface 12 having a weak chemical bond is formed within the polysilicon 6. Next, annealing is performed in a nitrogen (N 2 ) atmosphere at a temperature of 700° C. to 1200° C. for an appropriately determined time. For example, according to the inventor of the present application, it has been confirmed that sufficient effects can be obtained when the temperature is set at 900° C. or higher and the time is set at 30 minutes or longer. Such annealing causes the grains to realign at the interface 12, resulting in a chemically strong interface that will not be attacked by an alkaline solution. It has also been confirmed that by performing the annealing, even if a cavity exists at the interface 12, this cavity can be eliminated.

他方上記アニールはその処理温度として基板シ
リコンの融点(約1320℃)以上の高温を必要とし
ないため、基板を溶解することなくグレインの整
合、界面の化学的結合の強化ができる利点をも
つ。
On the other hand, since the above-mentioned annealing does not require a processing temperature higher than the melting point of the silicon substrate (approximately 1320° C.), it has the advantage of aligning grains and strengthening chemical bonds at the interface without melting the substrate.

上記アニールの後は従来と同様にしてポリツシ
ユにより平坦化を行う。この場合ポリシリコン内
の界面はすでに化学的に強化されているので第2
図bに符号11で示すすの発生がなく第1図cに
示す如き平坦化が達成される。また本発明は第2
図aに示す角度θが90度以下でポリシリコン内に
空洞が残つていても平坦化を達成できるため、U
溝形状にかかわりなく実施できるものである。
After the above-mentioned annealing, planarization is performed by polishing as in the conventional method. In this case, the interface within the polysilicon has already been chemically strengthened, so the second
Flattening as shown in FIG. 1c is achieved without the occurrence of the spots indicated by reference numeral 11 in FIG. 1b. The present invention also provides a second
If the angle θ shown in Figure a is 90 degrees or less, flattening can be achieved even if a cavity remains in the polysilicon, so U
This can be carried out regardless of the shape of the groove.

なおアニールにおける温度および時間は上記実
施例に限るものではなく、シリコン基板の溶融温
度以下で適宜設定するものとする。
Note that the temperature and time for annealing are not limited to those in the above embodiments, but are appropriately set at a temperature below the melting temperature of the silicon substrate.

(7) 発明の効果 以上詳細に説明したように本発明によれば、U
溝に用いた絶縁分離層形成方法において当該U溝
の形状にかかわりなくポリシリコンによる埋込み
および表面の平坦化が達成できるため基板に形成
される半導体素子の絶縁分離が確実にでき、また
表面が平坦であるため配線工程における断線防止
もでき、半導体装置の高集積化および信頼性の向
上、また半導体装置の製造における歩留り向上に
効果大である。
(7) Effects of the invention As explained in detail above, according to the present invention, U
In the method of forming an insulating separation layer used in a trench, embedding with polysilicon and flattening of the surface can be achieved regardless of the shape of the U-groove, so that the insulation separation of semiconductor elements formed on the substrate can be ensured, and the surface can be flattened. Therefore, disconnection in the wiring process can be prevented, which is highly effective in increasing the integration and reliability of semiconductor devices and improving the yield in manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はU溝による絶縁
分離層形成工程を示す半導体装置要部の断面図で
ある。 1……シリコン基板、2,5……SiO2膜、3
……Si3N4膜、4……U溝、6……ポリシリコ
ン、11……す、12……界面。
FIGS. 1, 2, and 3 are cross-sectional views of essential parts of a semiconductor device showing the step of forming an insulating isolation layer using a U-groove. 1... Silicon substrate, 2, 5... SiO 2 film, 3
... Si3N4 film, 4...U groove, 6...polysilicon, 11...su , 12...interface.

Claims (1)

【特許請求の範囲】 1 半導体基板に断面U字形の溝を形成し、該溝
の表面に酸化膜を形成した後該溝を多結晶シリコ
ンで埋めてなす絶縁分離層の形成方法にして、 該多結晶シリコンを該溝を埋没させ該半導体基
板表面を全面覆う厚さに成長し、 該半導体基板の融点以下の温度で不活性雰囲気
中でアニールを行ない、該溝部の多結晶シリコン
に生じた化学的に不安定な界面における多結晶シ
リコンのグレインの再整合を行ない耐化学エツチ
ング性をもつ界面を形成し、 該溝部上を含む全面の多結晶シリコンをアルカ
リ溶液を含むポリツシユにより除去して該溝部に
多結晶をシリコンを残すことを特徴とする半導体
装置の製造方法。
[Claims] 1. A method for forming an insulating isolation layer by forming a groove having a U-shaped cross section in a semiconductor substrate, forming an oxide film on the surface of the groove, and then filling the groove with polycrystalline silicon, Polycrystalline silicon is grown to a thickness that fills the trench and covers the entire surface of the semiconductor substrate, and is annealed in an inert atmosphere at a temperature below the melting point of the semiconductor substrate to remove the chemical produced in the polycrystalline silicon in the trench. The grains of the polycrystalline silicon are realigned at the physically unstable interface to form an interface that is resistant to chemical etching. A method for manufacturing a semiconductor device, characterized in that polycrystalline silicon is left behind.
JP23312583A 1983-12-09 1983-12-09 Manufacture of semiconductor device Granted JPS60124840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23312583A JPS60124840A (en) 1983-12-09 1983-12-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23312583A JPS60124840A (en) 1983-12-09 1983-12-09 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60124840A JPS60124840A (en) 1985-07-03
JPH0340948B2 true JPH0340948B2 (en) 1991-06-20

Family

ID=16950142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23312583A Granted JPS60124840A (en) 1983-12-09 1983-12-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60124840A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583065A (en) * 1994-11-23 1996-12-10 Sony Corporation Method of making a MOS semiconductor device
JPH113936A (en) 1997-06-13 1999-01-06 Nec Corp Manufacture of semiconductor device
US6221735B1 (en) * 2000-02-15 2001-04-24 Philips Semiconductors, Inc. Method for eliminating stress induced dislocations in CMOS devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882532A (en) * 1981-11-11 1983-05-18 Toshiba Corp Element separation method
JPS58168259A (en) * 1982-03-30 1983-10-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882532A (en) * 1981-11-11 1983-05-18 Toshiba Corp Element separation method
JPS58168259A (en) * 1982-03-30 1983-10-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS60124840A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
US5763315A (en) Shallow trench isolation with oxide-nitride/oxynitride liner
US6747333B1 (en) Method and apparatus for STI using passivation material for trench bottom liner
US5989978A (en) Shallow trench isolation of MOSFETS with reduced corner parasitic currents
JPH0834242B2 (en) Semiconductor device and manufacturing method thereof
US6475865B1 (en) Method of fabricating semiconductor device
US6127244A (en) Method of manufacturing semiconductor device
JPS6231116A (en) Manufacture of semiconductor device
JPS62106644A (en) Formation of semiconductor structure
US5114875A (en) Planar dielectric isolated wafer
US6096622A (en) Method of forming shallow trench isolation of semiconductor device
JPH04303942A (en) Manufacture of semiconductor device
JPH0340948B2 (en)
KR100428526B1 (en) Method of forming an isolation oxide for silicon-on-insulator technology
JP3153632B2 (en) Manufacturing method of SOI structure
JP2552936B2 (en) Dielectric isolation substrate and semiconductor integrated circuit device using the same
JPS6020530A (en) Forming method of element isolation region
US6500729B1 (en) Method for reducing dishing related issues during the formation of shallow trench isolation structures
JP2000183150A (en) Manufacture of semiconductor device
JP2000100926A (en) Semiconductor device and manufacture thereof
JPS60124839A (en) Manufacture of semiconductor device
KR950009888B1 (en) Manufacturing method of semiconductor device
US6261966B1 (en) Method for improving trench isolation
JP2669724B2 (en) Method for manufacturing semiconductor device
JPS6021540A (en) Manufacture of semiconductor device
JPH0654768B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees