JPH04303942A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04303942A
JPH04303942A JP6749591A JP6749591A JPH04303942A JP H04303942 A JPH04303942 A JP H04303942A JP 6749591 A JP6749591 A JP 6749591A JP 6749591 A JP6749591 A JP 6749591A JP H04303942 A JPH04303942 A JP H04303942A
Authority
JP
Japan
Prior art keywords
film
oxide film
groove
silicon
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6749591A
Other languages
Japanese (ja)
Other versions
JP3003250B2 (en
Inventor
Motomori Miyajima
基守 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3067495A priority Critical patent/JP3003250B2/en
Publication of JPH04303942A publication Critical patent/JPH04303942A/en
Application granted granted Critical
Publication of JP3003250B2 publication Critical patent/JP3003250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To form an element isolation film whose reliability is high by a method wherein before an insulator is filled into a groove, a silicon substrate is thermally oxidized, a second thermal oxide film is formed, an undercut part in a first thermal oxide film is buried by the expansion of a volume due to a thermal oxidation operation, and a dent is eliminated. CONSTITUTION:An Si substrate 1 is thermally oxidized; an oxide film 2 is formed on the surface; and a silicon nitride film 3 and a PSG film 4 are deposited on it. An element-isolation pattern is exposed to light and developed; a resist film 5 having an opening 5a is former. The PSG film 4, the silicon nitride film 3 and the thermal oxide film 2 are etched from the opening 5a by making use of the resist film 5 as a mask; the Si substrate 1 is revealed. The resist film 5 is stripped; after that, the Si substrate 1 is etched by making use of the PSG film 4 as a mask; and a groove 6 is formed. The remaining PSG film 4 is removed. The surface of the Si substrate 1 which has been revealed inside the groove 6 is thermally oxidized; a thermal oxide film 8 is formed. After that, a silicon oxide film 9 is deposited; the groove 6 is buried. The silicon oxide film 9 is polished.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法に
係り,特に,シリコン基板に形成される素子の素子分離
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for separating elements formed on a silicon substrate.

【0002】半導体素子の素子分離は,通常,LOCO
S法により行われているが,この方法はシリコン酸化に
伴う体積膨張により段差が必然的に生じ,また,マスク
下にバーズビークが生じるため,このことが素子の微細
化,高集積化を進める上での障害となっている。
[0002] Device isolation of semiconductor devices is usually performed using LOCO
This method is carried out using the S method, but this method inevitably creates a step due to the volume expansion associated with silicon oxidation, and also creates a bird's beak under the mask. This has become an obstacle.

【0003】そのため,シリコン基板に溝を堀り,そこ
に絶縁物を埋め込んだ後,表面を平らにして素子分離を
行うことが試みられている。しかし,この方法もまだ確
立されたものではなく,種々の問題点がある。
[0003] Therefore, an attempt has been made to dig a trench in a silicon substrate, fill the trench with an insulator, and then flatten the surface to isolate the devices. However, this method has not yet been established and has various problems.

【0004】0004

【従来の技術】図3(a) 〜(e) は従来の問題点
を説明するための工程順断面図であり, 以下,これら
の図を参照しながら従来の問題点について説明する。
2. Description of the Related Art FIGS. 3(a) to 3(e) are step-by-step sectional views for explaining the problems of the conventional method.The problems of the conventional method will be explained below with reference to these figures.

【0005】図3(a) 参照 Si基板1を熱酸化して熱酸化膜2を形成し,その上に
,シリコン窒素膜3とPSG膜4を堆積する。その上に
レジストを塗布し,フォトリソグラフィー技術により素
子分離パターンを露光・現像して,開孔5aを有するレ
ジストマスク5を形成する。
Referring to FIG. 3A, a Si substrate 1 is thermally oxidized to form a thermal oxide film 2, and a silicon nitrogen film 3 and a PSG film 4 are deposited thereon. A resist is applied thereon, and an element isolation pattern is exposed and developed using photolithography to form a resist mask 5 having openings 5a.

【0006】レジストマスク5をマスクとして,反応性
イオンエッチング(RIE)によりPSG膜4とシリコ
ン窒素膜3と熱酸化膜2をエッチングし,Si基板1を
露出する。
Using the resist mask 5 as a mask, the PSG film 4, silicon nitrogen film 3, and thermal oxide film 2 are etched by reactive ion etching (RIE) to expose the Si substrate 1.

【0007】図3(b) 参照 レジストマスク5を除去した後,PSG膜4をマスクに
してRIEによりSi基板1をエッチングし,溝6を形
成する。
FIG. 3(b) After removing the reference resist mask 5, the Si substrate 1 is etched by RIE using the PSG film 4 as a mask to form a groove 6.

【0008】図3(c) 参照 PGS膜4を希フッ酸によりエッチングし除去する。こ
の時,シリコン窒化膜3下の熱酸化膜2もエッチングさ
れてアンダーカット7を生じる。
FIG. 3(c) The reference PGS film 4 is removed by etching with dilute hydrofluoric acid. At this time, the thermal oxide film 2 under the silicon nitride film 3 is also etched, creating an undercut 7.

【0009】図3(d) 参照 全面にCVD法によりシリコン酸化膜9を堆積し,溝6
を埋め込む。 図3(e) 参照 シリコン酸化膜9を研摩することにより除去し,溝6に
のみシリコン酸化膜9を残し,素子分離膜10を形成す
る。研摩の際,シリコン窒素膜3はストッパとして作用
する。
FIG. 3(d) A silicon oxide film 9 is deposited on the entire surface of the reference surface by the CVD method, and grooves 6 are formed.
Embed. FIG. 3(e) The reference silicon oxide film 9 is removed by polishing, leaving the silicon oxide film 9 only in the groove 6, and forming an element isolation film 10. During polishing, the silicon nitrogen film 3 acts as a stopper.

【0010】ところが,アンダーカット7の部分はシリ
コン酸化膜9の堆積の際カバレッジが悪く,空洞12が
生じる。この空洞12は研摩後も素子分離膜10上部端
に残り, そのため,その後の素子形成の工程において
悪影響を及ぼす。
However, coverage of the undercut 7 portion is poor during deposition of the silicon oxide film 9, and a cavity 12 is formed. This cavity 12 remains at the upper end of the element isolation film 10 even after polishing, and therefore has an adverse effect on the subsequent element formation process.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の問題に
鑑み,シリコン酸化膜9堆積の際の素子分離膜10上部
端のカバレッジ不良をなくし,信頼性の高い素子分離膜
を形成する方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a method for eliminating poor coverage at the upper end of an element isolation film 10 during deposition of a silicon oxide film 9 and forming a highly reliable element isolation film. The purpose is to provide.

【0012】0012

【課題を解決するための手段】図1(a) 〜(e) 
は第1の実施例を示す工程順断面図であり,図2(a)
 〜(e) は第2の実施例を示す工程順断面図である
[Means for solving the problem] Figures 1(a) to (e)
FIG. 2(a) is a process-order cross-sectional view showing the first embodiment.
-(e) are step-by-step sectional views showing the second embodiment.

【0013】上記課題は,シリコン基板1を熱酸化して
第1の熱酸化膜2を形成した後,窒化膜3とガラス膜4
をこの順に堆積する工程と,素子分離パターンを有する
マスク5を用いて異方性エッチングにより該ガラス膜4
と該窒化膜3と該第1の熱酸化膜2をエッチングする工
程と,該ガラス膜4をマスクにして異方性エッチングに
より該シリコン基板1をエッチングし溝6を形成する工
程と, 該ガラス膜4を湿式エッチングにより除去する
工程と,該シリコン基板1を熱酸化して,該湿式エッチ
ングにより該窒化膜3下の該第1の熱酸化膜2に生じた
アンダーカット7を埋め込む第2の熱酸化膜8を形成す
る工程と, 全面に絶縁物9を堆積して該溝6を埋め込
む工程と, 該窒化膜3上の該絶縁物9を除去して該溝
6に該絶縁物9を残す工程とを有し,該シリコン基板1
に素子分離膜10を形成する半導体装置の製造方法によ
って解決される。
The above problem is solved by thermally oxidizing the silicon substrate 1 to form the first thermal oxide film 2, and then removing the nitride film 3 and the glass film 4.
The glass film 4 is deposited in this order and anisotropically etched using a mask 5 having an element isolation pattern.
a step of etching the nitride film 3 and the first thermal oxide film 2; a step of etching the silicon substrate 1 by anisotropic etching using the glass film 4 as a mask to form a groove 6; a step of removing the film 4 by wet etching, and a second step of thermally oxidizing the silicon substrate 1 and burying the undercut 7 generated in the first thermal oxide film 2 under the nitride film 3 by the wet etching. A step of forming a thermal oxide film 8, a step of depositing an insulator 9 on the entire surface to fill the trench 6, and a step of removing the insulator 9 on the nitride film 3 and filling the trench 6 with the insulator 9. and a step of leaving the silicon substrate 1
The problem is solved by a method of manufacturing a semiconductor device in which an element isolation film 10 is formed.

【0014】また,シリコン基板1を熱酸化して熱酸化
膜2を形成した後,窒化膜3とシリコン酸化膜11とガ
ラス膜4をこの順に堆積する工程と,素子分離パターン
を有するマスク5を用いて異方性エッチングにより該ガ
ラス膜4と該シリコン酸化膜11と該窒化膜3と該熱酸
化膜2をエッチングする工程と,該ガラス膜4をマスク
にして異方性エッチングにより該シリコン基板1をエッ
チングし溝6を形成する工程と, 該ガラス膜4を湿式
エッチングにより除去する工程と,該湿式エッチングに
より生じた該熱酸化膜2と該シリコン酸化膜11のアン
ダーカットにより該溝6上部に突き出た該窒化膜3のひ
さし部3aを,残ったシリコン酸化膜11をマスクにし
てエッチングし除去する工程と, 全面に絶縁物9を堆
積して該溝6を埋め込む工程と, 該窒化膜3上の該絶
縁物9及び該シリコン酸化膜11を除去して該溝6に該
絶縁物9を残す工程とを有し,該シリコン基板1に素子
分離膜10を形成する半導体装置の製造方法によって解
決される。
Further, after thermally oxidizing the silicon substrate 1 to form a thermal oxide film 2, a step of depositing a nitride film 3, a silicon oxide film 11, and a glass film 4 in this order, and a mask 5 having an element isolation pattern are performed. a step of etching the glass film 4, the silicon oxide film 11, the nitride film 3, and the thermal oxide film 2 by anisotropic etching using the glass film 4 as a mask; and etching the silicon substrate by anisotropic etching using the glass film 4 as a mask. 1 to form a groove 6, a step of removing the glass film 4 by wet etching, and an undercut of the thermal oxide film 2 and the silicon oxide film 11 caused by the wet etching to form a groove 6 in the upper part of the groove 6. a step of etching and removing the eaves portion 3a of the nitride film 3 protruding from the nitride film 3 using the remaining silicon oxide film 11 as a mask; a step of depositing an insulator 9 on the entire surface to fill the groove 6; a step of removing the insulator 9 and the silicon oxide film 11 on the silicon substrate 3 and leaving the insulator 9 in the groove 6, and forming an element isolation film 10 on the silicon substrate 1. solved by.

【0015】[0015]

【作用】本発明では,絶縁物9を溝6に埋め込む前に,
シリコン基板1を熱酸化して第2の熱酸化膜8を形成し
,熱酸化に伴う体積膨張により第1の熱酸化膜のアンダ
ーカット部分を埋め込み,凹みを無くすようにしている
から,絶縁物9を溝6に埋め込む時,カバレッジ不良を
引き起こすことがない。
[Operation] In the present invention, before embedding the insulator 9 in the groove 6,
The second thermal oxide film 8 is formed by thermally oxidizing the silicon substrate 1, and the undercut portion of the first thermal oxide film is buried due to the volume expansion caused by the thermal oxidation, thereby eliminating the depression. 9 is embedded in the groove 6, no poor coverage is caused.

【0016】また,絶縁物9を溝6に埋め込む前に,熱
酸化膜2のアンダーカット部分にかぶさる窒化膜3のひ
さし部3aをエッチングして除去することにより凹みを
解消しているから,絶縁物9を溝6に埋め込む時,カバ
レッジ不良を引き起こすことがない。
Furthermore, before burying the insulator 9 in the groove 6, the eaves 3a of the nitride film 3 covering the undercut portion of the thermal oxide film 2 are removed by etching to eliminate the depression. When the object 9 is embedded in the groove 6, poor coverage is not caused.

【0017】それゆえ,信頼性の高い素子分離膜を形成
できる。
Therefore, a highly reliable device isolation film can be formed.

【0018】[0018]

【実施例】図1(a) 〜(e) は第1の実施例を示
す工程順断面図であり,以下これらの図を参照しながら
第1の実施例について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1(a) to 1(e) are step-by-step cross-sectional views showing a first embodiment, and the first embodiment will be described below with reference to these figures.

【0019】図1(a) 参照 Si基板1を熱酸化し,表面に厚さが例えば100 Å
の熱酸化膜2を形成し,その上にCVD法により,厚さ
が例えば1500Åのシリコン窒化膜3と8%Pを含む
厚さ約5000ÅのPSG膜4を順次堆積する。
FIG. 1(a) A reference Si substrate 1 is thermally oxidized to have a surface thickness of, for example, 100 Å.
A thermal oxide film 2 is formed thereon, and a silicon nitride film 3 having a thickness of, for example, 1500 Å and a PSG film 4 having a thickness of about 5000 Å containing 8% P are sequentially deposited thereon by the CVD method.

【0020】全面にレジストを塗布し,通常のフォトリ
ソグラフィー技術により素子分離パターンを露光・現像
して,開孔5aを有するレジストマスク5を形成する。 レジストマスク5をマスクとして,フッ化炭素系のエッ
チングガスを用いる反応性イオンエッチング(RIE)
により,開孔5aからPSG膜4とシリコン窒素膜3と
熱酸化膜2をエッチングし,Si基板1を露出する。
A resist is applied to the entire surface, and an element isolation pattern is exposed and developed using a conventional photolithography technique to form a resist mask 5 having openings 5a. Reactive ion etching (RIE) using a fluorocarbon-based etching gas using the resist mask 5 as a mask
As a result, the PSG film 4, silicon nitrogen film 3, and thermal oxide film 2 are etched through the opening 5a, and the Si substrate 1 is exposed.

【0021】図1(b) 参照 レジストマスク5を剥離した後,PSG膜4をマスクに
して塩化炭素系のエッチングガスを用いるRIEにより
Si基板1をエッチングし,深さ約0.6 μmの溝6
を形成する。
FIG. 1(b) After peeling off the reference resist mask 5, the Si substrate 1 is etched by RIE using a carbon chloride-based etching gas using the PSG film 4 as a mask to form a groove with a depth of approximately 0.6 μm. 6
form.

【0022】図1(c) 参照 残ったPGS膜4を希フッ酸によりエッチングし除去す
る。エッチング時間は0.5 〜2分であるが,この時
,シリコン窒化膜3下の熱酸化膜2もエッチングされて
横方向に500 〜1000Åのアンダーカット7を生
じる。
Referring to FIG. 1(c), the remaining PGS film 4 is removed by etching with dilute hydrofluoric acid. The etching time is 0.5 to 2 minutes, and at this time, the thermal oxide film 2 under the silicon nitride film 3 is also etched, creating an undercut 7 of 500 to 1000 Å in the lateral direction.

【0023】図1(d) 参照 溝6内に露出するSi基板1表面を熱酸化し,アンダー
カット7を完全にふさぐような熱酸化膜8を形成する。 300 〜500 Åの厚さの部分を熱酸化することに
より,アンダーカット7を完全にふさぐことができた。
FIG. 1(d) The surface of the Si substrate 1 exposed within the reference groove 6 is thermally oxidized to form a thermal oxide film 8 that completely covers the undercut 7. By thermally oxidizing a portion with a thickness of 300 to 500 Å, the undercut 7 could be completely closed.

【0024】その後,全面にCVD法によりシリコン酸
化膜9を約1μmの厚さに堆積し,溝6を埋め込む。 図1(e) 参照 シリコン酸化膜9を研摩することにより除去し,溝6に
のみシリコン酸化膜9を残し,素子分離膜10を形成す
る。研摩の際,シリコン窒素膜3はストッパとして作用
する。
Thereafter, a silicon oxide film 9 is deposited to a thickness of about 1 μm over the entire surface by CVD to fill the trenches 6. FIG. 1(e) The reference silicon oxide film 9 is removed by polishing, leaving the silicon oxide film 9 only in the groove 6, and forming an element isolation film 10. During polishing, the silicon nitrogen film 3 acts as a stopper.

【0025】このようにして,絶縁物を完全に埋め込ん
だ信頼性の高い素子分離膜を形成することができた。次
に,第2の実施例について説明する。
In this manner, a highly reliable device isolation film completely filled with an insulator could be formed. Next, a second embodiment will be described.

【0026】図2(a) 参照 Si基板1を熱酸化し,表面に厚さが例えば300 Å
の熱酸化膜2を形成し,その上にCVD法により,厚さ
が例えば1500Åのシリコン窒化膜3と厚さが例えば
3000Åのシリコン酸化膜11を順次堆積する。この
後,窒素雰囲気中900 ℃, 30分の熱処理を行う
。この熱処理は,シリコン酸化膜11のエッチング速度
を熱酸化膜2のそれに近づけるために行うものである。
FIG. 2(a) A reference Si substrate 1 is thermally oxidized to have a thickness of, for example, 300 Å on the surface.
A thermal oxide film 2 is formed thereon, and a silicon nitride film 3 having a thickness of, for example, 1500 Å and a silicon oxide film 11 having a thickness of 3000 Å, for example, are sequentially deposited thereon by the CVD method. Thereafter, heat treatment is performed at 900° C. for 30 minutes in a nitrogen atmosphere. This heat treatment is performed to bring the etching rate of the silicon oxide film 11 closer to that of the thermal oxide film 2.

【0027】この後,シリコン酸化膜11の上に,8%
Pを含む厚さ約8000ÅのPSG膜4を堆積する。全
面にレジストを塗布し,通常のフォトリソグラフィー技
術により素子分離パターンを露光・現像して,開孔5a
を有するレジストマスク5を形成する。レジストマスク
5をマスクとして,フッ化炭素系のエッチングガスを用
いるRIEにより,開孔5aからPSG膜4とシリコン
酸化膜11とシリコン窒素膜3と熱酸化膜2をエッチン
グし,Si基板1を露出する。
After this, an 8% film is applied on the silicon oxide film 11.
A PSG film 4 containing P and having a thickness of about 8000 Å is deposited. A resist is applied to the entire surface, and an element isolation pattern is exposed and developed using normal photolithography technology to form the opening 5a.
A resist mask 5 is formed. Using the resist mask 5 as a mask, the PSG film 4, silicon oxide film 11, silicon nitrogen film 3, and thermal oxide film 2 are etched through the opening 5a by RIE using a fluorocarbon-based etching gas, and the Si substrate 1 is exposed. do.

【0028】図2(b) 参照 レジストマスク5を剥離した後,PSG膜4をマスクに
して塩化炭素系のエッチングガスを用いるRIEにより
Si基板1をエッチングし,深さ約0.6 μmの溝6
を形成する。
FIG. 2(b) After peeling off the reference resist mask 5, the Si substrate 1 is etched by RIE using a carbon chloride-based etching gas using the PSG film 4 as a mask to form a groove with a depth of approximately 0.6 μm. 6
form.

【0029】図2(c) 参照 残ったPGS膜4を希フッ酸によりエッチングし除去す
る。エッチング時間は0.5 〜2分である。この時,
シリコン窒化膜3上下のシリコン酸化膜11と熱酸化膜
2も横方向にエッチングされ,横方向に500 〜10
00Åのアンダーカット7を生じる。シリコン酸化膜1
1は熱酸化膜2よりも若干多めにエッチングされ,その
結果,シリコン窒素膜3には溝6上部に突き出るひさし
部3aが生じる。
Referring to FIG. 2(c), the remaining PGS film 4 is removed by etching with dilute hydrofluoric acid. Etching time is 0.5 to 2 minutes. At this time,
The silicon oxide film 11 and the thermal oxide film 2 above and below the silicon nitride film 3 are also etched in the lateral direction, with a thickness of 500 to 10 mm etched in the lateral direction.
This results in an undercut 7 of 00 Å. Silicon oxide film 1
1 is etched slightly more than the thermal oxide film 2, and as a result, an eaves portion 3a protruding above the groove 6 is formed in the silicon nitrogen film 3.

【0030】図2(d) 参照 塩化炭素系のエッチングガスを用いるRIEにより,溝
6上部に突き出るシリコン窒化膜のひさし部3aを除去
する。
Referring to FIG. 2(d), the silicon nitride film eaves 3a protruding above the grooves 6 are removed by RIE using a carbon chloride-based etching gas.

【0031】その後,全面にCVD法によりシリコン酸
化膜9を約1μmの厚さに堆積し,溝6を埋め込む。シ
リコン酸化膜9を堆積する前に,溝6内のSi基板1表
面を薄く熱酸化する工程を加えてもよい。
Thereafter, a silicon oxide film 9 is deposited on the entire surface by CVD to a thickness of about 1 μm, and the trenches 6 are filled. Before depositing the silicon oxide film 9, a step of thinly thermally oxidizing the surface of the Si substrate 1 within the groove 6 may be added.

【0032】図2(e) 参照 シリコン酸化膜9を研摩することにより除去し,溝6に
のみシリコン酸化膜9を残し,素子分離膜10を形成す
る。研摩の際,シリコン窒素膜3はストッパとして作用
する。
FIG. 2E: The reference silicon oxide film 9 is removed by polishing, leaving the silicon oxide film 9 only in the groove 6, and forming an element isolation film 10. During polishing, the silicon nitrogen film 3 acts as a stopper.

【0033】このようにして,絶縁物を完全に埋め込ん
だ信頼性の高い素子分離膜を形成することができた。な
お,第1の実施例,第2の実施例におけるPSG膜は,
Si基板をエッチングする際のマスクとなるもので,必
ずしもPSG膜に限るものではなく,これに対してSi
基板のエッチング選択比が高いものであれば,PSG膜
以外のガラス膜でも使用することができる。
In this way, a highly reliable element isolation film completely filled with an insulator could be formed. In addition, the PSG film in the first example and the second example is as follows:
It serves as a mask when etching a Si substrate, and is not necessarily limited to PSG films;
A glass film other than the PSG film can be used as long as the etching selectivity of the substrate is high.

【0034】また,全面に堆積したシリコン酸化膜9を
,上記の実施例では研摩により溝6に残したが,RIE
を用いたエッチバックにより,溝6に残すこともできる
Furthermore, although the silicon oxide film 9 deposited on the entire surface was left in the groove 6 by polishing in the above embodiment, RIE
It can also be left in the groove 6 by etching back using.

【0035】[0035]

【発明の効果】以上説明したように,本発明によれば,
カバレッジ不良を引き起こすことがなく絶縁物をシリコ
ン基板1に完全に埋め込み,素子分離膜10を形成する
ことができる。
[Effect of the invention] As explained above, according to the present invention,
The insulator can be completely buried in the silicon substrate 1 and the element isolation film 10 can be formed without causing poor coverage.

【0036】本発明は,信頼性の高い素子分離膜の形成
により,素子の微細化,高集積化に寄与するものである
The present invention contributes to miniaturization and high integration of devices by forming highly reliable device isolation films.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a) 〜(e) は第1の実施例を示す工程
順断面図である。
FIGS. 1(a) to 1(e) are step-by-step cross-sectional views showing a first embodiment.

【図2】(a) 〜(e) は第2の実施例を示す工程
順断面図である。
FIGS. 2(a) to 2(e) are step-by-step cross-sectional views showing a second embodiment.

【図3】(a) 〜(e) は従来の問題点を説明する
ための工程順断面図である。
FIGS. 3(a) to 3(e) are cross-sectional views in the order of steps for explaining conventional problems.

【符号の説明】[Explanation of symbols]

1はSi基板 2は熱酸化膜であって第1の熱酸化膜 3は窒化膜であってシリコン窒化膜 3aはひさし部 4はガラス膜であってPSG膜 5はマスクであってレジストマスク 5aは開孔 6は溝 7はアンダーカット 8は熱酸化膜であって第2の熱酸化膜 9は絶縁物でありシリコン酸化膜であってCVD酸化膜
10は素子分離膜
1, the Si substrate 2 is a thermal oxide film, the first thermal oxide film 3 is a nitride film, the silicon nitride film 3a is a glass film, and the PSG film 5 is a mask, and a resist mask 5a. The opening 6, the groove 7, the undercut 8 are thermal oxide films, the second thermal oxide film 9 is an insulator, and is a silicon oxide film, and the CVD oxide film 10 is an element isolation film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  シリコン基板(1) を熱酸化して第
1の熱酸化膜(2)を形成した後,窒化膜(3) とガ
ラス膜(4) をこの順に堆積する工程と,素子分離パ
ターンを有するマスク(5) を用いて異方性エッチン
グにより該ガラス膜(4) と該窒化膜(3) と該第
1の熱酸化膜(2) をエッチングする工程と,該ガラ
ス膜(4) をマスクにして異方性エッチングにより該
シリコン基板(1) をエッチングし溝(6)を形成す
る工程と,該ガラス膜(4) を湿式エッチングにより
除去する工程と,該シリコン基板(1) を熱酸化して
,該湿式エッチングにより該窒化膜(3) 下の該第1
の熱酸化膜(2) に生じたアンダーカット(7) を
埋め込む第2の熱酸化膜(8) を形成する工程と,全
面に絶縁物(9) を堆積して該溝(6) を埋め込む
工程と,該窒化膜(3) 上の該絶縁物(9) を除去
して該溝(6) に該絶縁物(9) を残す工程とを有
し,該シリコン基板(1)に素子分離膜(10)を形成
することを特徴とする半導体装置の製造方法。
Claim 1: A step of thermally oxidizing a silicon substrate (1) to form a first thermal oxide film (2), and then depositing a nitride film (3) and a glass film (4) in this order, and device isolation. etching the glass film (4), the nitride film (3), and the first thermal oxide film (2) by anisotropic etching using a patterned mask (5); ) to form a groove (6) by anisotropic etching using the silicon substrate (1) as a mask, a step of removing the glass film (4) by wet etching, and a step of removing the glass film (4) by wet etching. The first layer under the nitride film (3) is thermally oxidized and wet etched.
A process of forming a second thermal oxide film (8) to fill in the undercut (7) that has occurred in the thermal oxide film (2), and filling the trench (6) by depositing an insulator (9) on the entire surface. and a step of removing the insulator (9) on the nitride film (3) and leaving the insulator (9) in the groove (6), and forming an element isolation layer on the silicon substrate (1). A method for manufacturing a semiconductor device, comprising forming a film (10).
【請求項2】  シリコン基板(1) を熱酸化して熱
酸化膜(2) を形成した後,窒化膜(3) とシリコ
ン酸化膜(11)とガラス膜(4) をこの順に堆積す
る工程と,素子分離パターンを有するマスク(5)を用
いて異方性エッチングにより該ガラス膜(4) と該シ
リコン酸化膜(11)と該窒化膜(3) と該熱酸化膜
(2) をエッチングする工程と,該ガラス膜(4) 
をマスクにして異方性エッチングにより該シリコン基板
(1) をエッチングし溝(6) を形成する工程と,
該ガラス膜(4) を湿式エッチングにより除去する工
程と,該湿式エッチングにより生じた該熱酸化膜(2)
 と該シリコン酸化膜(11)のアンダーカットにより
該溝(6) 上部に突き出た該窒化膜(3) のひさし
部(3a)を,残ったシリコン酸化膜(11)をマスク
にしてエッチングし除去する工程と,全面に絶縁物(9
) を堆積して該溝(6) を埋め込む工程と,該窒化
膜(3) 上の該絶縁物(9) 及び該シリコン酸化膜
(11)を除去して該溝(6)に該絶縁物(9) を残
す工程とを有し,該シリコン基板(1) に素子分離膜
(10)を形成することを特徴とする半導体装置の製造
方法。
[Claim 2] A step of thermally oxidizing a silicon substrate (1) to form a thermal oxide film (2), and then depositing a nitride film (3), a silicon oxide film (11), and a glass film (4) in this order. Then, the glass film (4), the silicon oxide film (11), the nitride film (3), and the thermal oxide film (2) are etched by anisotropic etching using a mask (5) having an element isolation pattern. and the glass film (4)
etching the silicon substrate (1) by anisotropic etching using as a mask to form a groove (6);
A process of removing the glass film (4) by wet etching, and removing the thermal oxide film (2) produced by the wet etching.
The eaves part (3a) of the nitride film (3) that protrudes above the groove (6) due to the undercut of the silicon oxide film (11) is etched and removed using the remaining silicon oxide film (11) as a mask. process and insulating material (9
) to fill the groove (6), and removing the insulator (9) and the silicon oxide film (11) on the nitride film (3) and filling the groove (6) with the insulator. (9) A method for manufacturing a semiconductor device, comprising the steps of: (9) forming an element isolation film (10) on the silicon substrate (1);
JP3067495A 1991-04-01 1991-04-01 Method for manufacturing semiconductor device Expired - Fee Related JP3003250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3067495A JP3003250B2 (en) 1991-04-01 1991-04-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3067495A JP3003250B2 (en) 1991-04-01 1991-04-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04303942A true JPH04303942A (en) 1992-10-27
JP3003250B2 JP3003250B2 (en) 2000-01-24

Family

ID=13346630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067495A Expired - Fee Related JP3003250B2 (en) 1991-04-01 1991-04-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3003250B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712185A (en) * 1996-04-23 1998-01-27 United Microelectronics Method for forming shallow trench isolation
KR19980060506A (en) * 1996-12-31 1998-10-07 김영환 Device Separator Formation Method of Semiconductor Device
US5989975A (en) * 1997-10-04 1999-11-23 United Microelectronics Corp. Method for manufacturing shallow trench isolation
KR20000067398A (en) * 1999-04-28 2000-11-15 김영환 Manufacturing Method for Isolation of Semiconductor Device
US6208003B1 (en) 1997-09-26 2001-03-27 Nippon Steel Corporation Semiconductor structure provided with a polycide interconnection layer having a silicide film formed on a polycrystal silicon film
US6239001B1 (en) 1997-01-10 2001-05-29 Nec Corporation Method for making a semiconductor device
US6242323B1 (en) 1997-02-18 2001-06-05 Hitachi, Ltd. Semiconductor device and process for producing the same
US6255686B1 (en) 1997-12-02 2001-07-03 Nippon Steel Corporation Semiconductor storage device including short circuit avoiding structure and method of fabricating thereof
KR100317041B1 (en) * 1999-10-18 2001-12-22 윤종용 A method of forming a trench isolation in a semiconductor device
US6348396B1 (en) 1998-03-27 2002-02-19 Hitachi, Ltd. Semiconductor device and production thereof
US6562695B1 (en) 1999-03-03 2003-05-13 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing involving the scale-down width of shallow groove isolation using round processing
JP2008187208A (en) * 2008-04-28 2008-08-14 Sharp Corp Method for manufacturing semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712185A (en) * 1996-04-23 1998-01-27 United Microelectronics Method for forming shallow trench isolation
KR19980060506A (en) * 1996-12-31 1998-10-07 김영환 Device Separator Formation Method of Semiconductor Device
US6239001B1 (en) 1997-01-10 2001-05-29 Nec Corporation Method for making a semiconductor device
US6559027B2 (en) 1997-02-18 2003-05-06 Hitachi, Ltd. Semiconductor device and process for producing the sme
US7402473B2 (en) 1997-02-18 2008-07-22 Renesas Technology Corp. Semiconductor device and process for producing the same
US6881646B2 (en) 1997-02-18 2005-04-19 Renesas Technology Corp. Semiconductor device and process for producing the same
US6242323B1 (en) 1997-02-18 2001-06-05 Hitachi, Ltd. Semiconductor device and process for producing the same
US6800911B2 (en) 1997-09-26 2004-10-05 United Microelectronics Corporation Method of making a polycide interconnection layer having a silicide film formed on a polycrystal silicon for a semiconductor device
US6596567B1 (en) 1997-09-26 2003-07-22 United Microelectronics Corporation Method for fabricating a semiconductor device having a impurity layer disposed between a non-doped silicon film and high melting-point metal film for reducing solid state reaction between said high melting-point metal film and polycrystal silicon film
US6208003B1 (en) 1997-09-26 2001-03-27 Nippon Steel Corporation Semiconductor structure provided with a polycide interconnection layer having a silicide film formed on a polycrystal silicon film
US5989975A (en) * 1997-10-04 1999-11-23 United Microelectronics Corp. Method for manufacturing shallow trench isolation
US6461912B2 (en) 1997-12-02 2002-10-08 Nippon Steel Corporation Method of fabricating semiconductor storage device having a capacitor
US6255686B1 (en) 1997-12-02 2001-07-03 Nippon Steel Corporation Semiconductor storage device including short circuit avoiding structure and method of fabricating thereof
US6348396B1 (en) 1998-03-27 2002-02-19 Hitachi, Ltd. Semiconductor device and production thereof
US6562695B1 (en) 1999-03-03 2003-05-13 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing involving the scale-down width of shallow groove isolation using round processing
US6720234B2 (en) 1999-03-03 2004-04-13 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing involving the scale-down width of shallow groove isolation using round processing
US7397104B2 (en) 1999-03-03 2008-07-08 Elpida Memory, Inc. Semiconductor integrated circuit device and a method of manufacturing the same
KR20000067398A (en) * 1999-04-28 2000-11-15 김영환 Manufacturing Method for Isolation of Semiconductor Device
KR100317041B1 (en) * 1999-10-18 2001-12-22 윤종용 A method of forming a trench isolation in a semiconductor device
JP2008187208A (en) * 2008-04-28 2008-08-14 Sharp Corp Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3003250B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
US5795811A (en) Method for forming insulating films in semiconductor devices
US5663108A (en) Optimized metal pillar via process
JPH04303942A (en) Manufacture of semiconductor device
US5371036A (en) Locos technology with narrow silicon trench
JPH0427702B2 (en)
JP3439388B2 (en) Method for manufacturing semiconductor device
JPH0521591A (en) Manufacture of semiconductor device
JP3178416B2 (en) Method for manufacturing semiconductor device
JP3773785B2 (en) Manufacturing method of semiconductor device
JPH05849B2 (en)
US6221785B1 (en) Method for forming shallow trench isolations
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JP2715972B2 (en) Method for manufacturing semiconductor device
JP2000183150A (en) Manufacture of semiconductor device
JP2762973B2 (en) Method for manufacturing semiconductor device
JP2812013B2 (en) Method for manufacturing semiconductor device
JP3160928B2 (en) Element isolation formation method
JPH1092806A (en) Method of forming semiconductor element isolation region
JP3680521B2 (en) Manufacturing method of semiconductor device
JP3923584B2 (en) Method for forming element isolation film of semiconductor device
JPH01307242A (en) Manufacture of semiconductor device
JPH05235157A (en) Manufacture of semiconductor device
JP2692918B2 (en) Method for manufacturing semiconductor device
JP2671359B2 (en) Method for manufacturing semiconductor device
JPS6139736B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees