JPS5882519A - Ion implantation for semiconductor - Google Patents

Ion implantation for semiconductor

Info

Publication number
JPS5882519A
JPS5882519A JP18141181A JP18141181A JPS5882519A JP S5882519 A JPS5882519 A JP S5882519A JP 18141181 A JP18141181 A JP 18141181A JP 18141181 A JP18141181 A JP 18141181A JP S5882519 A JPS5882519 A JP S5882519A
Authority
JP
Japan
Prior art keywords
ion implantation
semiconductor
substrate
irradiated
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18141181A
Other languages
Japanese (ja)
Other versions
JPH0517699B2 (en
Inventor
Tai Sato
佐藤 耐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP18141181A priority Critical patent/JPS5882519A/en
Publication of JPS5882519A publication Critical patent/JPS5882519A/en
Publication of JPH0517699B2 publication Critical patent/JPH0517699B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent the destriction of an insulating film and to permit large current ion implantation by a method wherein secondary electrons are simultaneously emitted to the surface of a semiconductor at the time of ion implantation and particle beams being neutralized are irradiated thereon. CONSTITUTION:An impurity is implanted into an Si substrate. The secondary electrons are simultaneously emitted to the surface of a substrate at the time of the ion implantation and particle beams being neutralized, for example low-speed electron beams or ultraviolet rays are irradiated thereon. When the low-speed electrode beams are irradiated, charges charged by ion implantation are exhausted as the secondary electrons to neutralize the substrate. When ultraviolet rays are irradiated, the charges trapped on the surface of the substrate are exhausted toward vacuum or a conductor as the secondary electrons to neutralize the substrate. This prevents the destriction of an insulating film and permits large-current ion implantation. The ion dosage applied in this method is effective when large-current ion implantation is applied to a high concentration of 2X 10<17>pieces/m<2> or more and an electric field applied to an insulator is low for the dosage of 2X10<17>pieces/m<2> or less and a problem of insulator destruction scarcely occurs.

Description

【発明の詳細な説明】 本発明は半導体装置に高11&の不純物領域を形成する
半導体のイオン注入方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor ion implantation method for forming an impurity region with a height of 11& in a semiconductor device.

近年、イオン注入方法は非、常に広範囲に使われるよう
になって龜た1例えばMO8半導体装置において、イオ
ン注入方法は、従来主としてチャネルのしきい値電圧の
;ントロールに用いられてきたのに対し、最近はソース
、ドレインの形成など高濃度の不純物領域の形成に用い
られるようになりできている・ このように高一度に電荷イオンを注入する場合、次のよ
うな問題点がある。
In recent years, ion implantation methods have become widely used. For example, in MO8 semiconductor devices, ion implantation methods have traditionally been used primarily to control the threshold voltage of the channel. Recently, it has been used to form highly concentrated impurity regions such as sources and drains. When implanting charged ions at once in this way, there are the following problems.

注入イオンドーズをN(個/−)、荷電数を鳳、素電荷
q−1,6X10   C,注入が絶縁層になされてい
るとして、その誘電率なε(F/m )とする。
Assuming that the implanted ion dose is N (number/-), the number of charges is 0, the elementary charge is q-1,6X10 C, and the implantation is made into an insulating layer, its dielectric constant is ε (F/m).

今、イオン注入が一様になされその電荷が絶縁物の両端
に電界Xを作るとすると、E (V/m )の大きさは qN E厘□ ε となる。
Now, assuming that ion implantation is uniform and the resulting charges create an electric field X at both ends of the insulator, the magnitude of E (V/m) is qN E □ ε.

この式に具体的な数値としてMO8半導体装置のソース
、ドレインの拡散の例をとシ、絶縁物として5102を
仮定すると、n = l 、N=2X10”個/−1ε
= g。、 =3.5 X 10−” F 7mとなシ
、これを上式に代入するとE=1x1o11v/mとな
る。
As a specific value for this formula, let us take the example of diffusion of the source and drain of an MO8 semiconductor device, and assuming 5102 as the insulator, n = l, N = 2X10'' pieces/-1ε
= g. , = 3.5 x 10-''F 7m, and substituting this into the above equation yields E = 1x1o11v/m.

ところでStO□の絶縁耐電界は約10’V/mといわ
れているため、この電界がそのiまかかれば絶縁族が破
壊されてしまうので、帯電した電荷を逃がすことが必要
となる。また通常、半導体にイオン注入する場合、フォ
トレジストをマスクトシテ用いているが、このフォトレ
ジストハ電導度が低く、またフォトレジストのない部分
や、島状に分離しているとともあるため、表面をリーク
して逃げる電荷が、注入される電荷よシも少く、次第に
大電荷が帯電して絶縁被層することが度々あった。
By the way, the dielectric strength field of StO□ is said to be about 10'V/m, and if this electric field is applied to that i, the insulating group will be destroyed, so it is necessary to release the charged charges. In addition, when ion implantation into semiconductors is normally performed, a photoresist is used as a mask, but this photoresist has low conductivity, and there are areas without photoresist or separated into islands, so the surface The amount of charge that leaks out and escapes is smaller than the amount of charge that is injected, and it often happens that a larger charge gradually builds up and forms an insulating layer.

本発明は、このような問題点に鑑みなされたもので、絶
縁膜の破壊を防止して、大1IlcrILイオン注入を
可能にして高濃度不純物領域の形成に効果的な半導体の
イオン注入方法を提供するものである。
The present invention has been made in view of these problems, and provides a semiconductor ion implantation method that prevents breakdown of the insulating film, enables large 1IlcrIL ion implantation, and is effective in forming a high concentration impurity region. It is something to do.

即ち本発明方法は、半導体に荷電イオンを2×10 個
/−以上注入する半導体のイオン注入方法において、イ
オン注入と同時に、半導体の表面に、2次電子を放出し
て中性化する粒子線を叩射すゐことを特徴とするもので
ある・以下本発明方法を詳細に説明する。
That is, the method of the present invention is a semiconductor ion implantation method in which charged ions of 2×10 or more are implanted into a semiconductor, and at the same time as the ion implantation, a particle beam is used to neutralize the surface of the semiconductor by emitting secondary electrons. The method of the present invention will be explained in detail below.

本発明において、半導体にイオン注入する荷電粒子とし
ては、例えばB 、 As・P・Sl・Ga m I!
に、 8n等が挙げられる。また本発明方法か適用され
るイオンドーズ量は2x10 個/−以上の高111K
に大電流イオン注入する場合に効果的であり、上記未満
のドーズ量では絶縁物に加わる電界が低く、絶縁破壊の
問題は少ない。
In the present invention, examples of charged particles to be ion-implanted into a semiconductor include B, As, P, Sl, Ga m I!
Examples include 8n. In addition, the ion dose applied by the method of the present invention is as high as 111K, which is more than 2x10 ions/-.
It is effective when carrying out large-current ion implantation, and when the dose is less than the above, the electric field applied to the insulator is low and there is little problem of dielectric breakdown.

また本発明において、2次電子を放出して半導体基板を
中性化する粒子線としては、例えば低速電子線と紫外線
がある。
In the present invention, examples of particle beams that neutralize the semiconductor substrate by emitting secondary electrons include low-speed electron beams and ultraviolet rays.

低速電子線を照射する場合にはtooov以下で照射す
ることによシ、イオン注入による帯電した電荷が2次電
子としてはき出されて、基板を中性化するものである。
When irradiating with a low-speed electron beam, by irradiating at a speed of less than too much, the electric charge generated by ion implantation is ejected as secondary electrons, thereby neutralizing the substrate.

この場合、100OVを越える高い電子線を照射すると
基板表面をチャーシア、プして逆に帯電量を増加させる
ので好ましくない。また低速電子線の照射角度は、半導
体基板に対して斜めに照射する場合が、最も2次電子が
出易く効果的である・ また紫外線を照射する場合には、3・7以上のエネルギ
ーを有するものを用いるととによシ、基板表面にトラ?
 f している電荷を2次電子として真空中あるいは導
電体へ向けて放出し、基板を中性化するものである・な
お紫外線の照射によ92次電子を放出する荷電粒子はマ
イナスイオンに限られ−、A■、Pなどのグラスイオン
の場合には適用することができない書 また上記方法に加え、本発明で紘荷亀イオンビームのス
キャニング電極の前に、電導性薄膜フィルターを設けて
、ここで電荷を吸収し、イオンのみを透過して、半導体
基板に注入するようにしても良い。との場合、電導性薄
膜フィルターとしてはAL a Cs AMなどの薄膜
を用いるが、これら薄膜による電荷吸収の作用は、イオ
ン注入条件や膜厚によシ異なυ制御が難しいため上記低
速電子線や紫外線の照射と併用すると効果的である。
In this case, irradiation with a high electron beam of more than 100 OV is not preferable because the surface of the substrate becomes charsier and the amount of charge increases. In addition, regarding the irradiation angle of the low-speed electron beam, it is most effective when the semiconductor substrate is irradiated obliquely, since secondary electrons are easily generated. Also, when irradiating ultraviolet rays, it has an energy of 3.7 or more. If you use something, is there a problem with the surface of the board?
This method neutralizes the substrate by emitting the electric charge as secondary electrons into a vacuum or toward a conductor.The charged particles that emit 92nd electrons when irradiated with ultraviolet rays are limited to negative ions. In addition to the method described above, which cannot be applied in the case of glass ions such as A, A, P, etc., the present invention provides a conductive thin film filter in front of the scanning electrode of the ion beam. Here, the charge may be absorbed, and only ions may be transmitted through and implanted into the semiconductor substrate. In this case, a thin film such as AL a Cs AM is used as a conductive thin film filter, but the effect of charge absorption by these thin films is difficult to control υ depending on the ion implantation conditions and film thickness, so it is difficult to It is effective when used in combination with ultraviolet irradiation.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 7リコン基板に一ロン0)を、次の注入条件でイオン注
入した。−ロンを59 k@Vで注入し、ドーズ量は2
X10  個/rr?、照射時間20分で、4インチシ
リコンウェハ10枚にイオン注入したり 上記イオン注入と同時に、電子ビームを一100V(試
料に刺して)のカソードよシ発射し、試料面に対して4
5@で照射した。なおこのときの低速電子線のビーム電
流は10  Aとした。
Example 1 Ion-implanted ions were implanted into a silicon substrate under the following implantation conditions. - Ron was implanted at 59 k@V with a dose of 2
X10 pieces/rr? For an irradiation time of 20 minutes, ions were implanted into 10 4-inch silicon wafers, and at the same time as the ion implantation, an electron beam was emitted from the cathode at 100 V (pierced into the sample), and the electron beam was applied to the sample surface at 4
Irradiated at 5@. Note that the beam current of the slow electron beam at this time was 10 A.

この結果、基板表面のポリシリコンの飛散や、酸化膜の
破壊は全く観察されず、良好な高濃度不純物領域を形成
することができた。
As a result, no scattering of polysilicon on the substrate surface or destruction of the oxide film was observed, and a good high concentration impurity region could be formed.

実施例2 上記実施例と同一のイオン注入条件で、Iaンをイオン
注入すると同時に、X−ランプの紫外線をサファイヤ窓
を通して試料面に照射したなおこの場合、紫外線の照射
は500ワ、トのX・ランlを、レンズを使ってウェハ
全面を覆うように照射した〇 この結果、上記1!施例と同様に酸化膜の破壊は紹めら
れず、良好な高1111不純物領域を形成することがで
き九〇 以上説明した如く、本発明に係わる半導体のイオン注入
方法によれば、絶縁物の破壊を防止して、大電流イオン
注入を可能にして萬濃度不純物領域を良好に形成する仁
とができるものである。
Example 2 Under the same ion implantation conditions as in the above example, Ia was ion-implanted and at the same time the sample surface was irradiated with ultraviolet rays from an X-lamp through a sapphire window.・Run l was irradiated using a lens so as to cover the entire wafer. As a result, the above 1! As in the example, the destruction of the oxide film was not introduced, and a good high-1111 impurity region could be formed.As explained above, according to the semiconductor ion implantation method according to the present invention, It is possible to prevent destruction, enable large current ion implantation, and form a highly concentrated impurity region in a good manner.

出願人代理人  弁理士 鈴 江 武 彦91−Applicant's agent: Patent attorney Suzue Takehiko 91-

Claims (4)

【特許請求の範囲】[Claims] (1)  半導体に荷電イオンを2 X 10”個/1
以上注入する半導体のイオン注入方法において、イ・オ
ン注入と同時に、半導体の表面に、2次電子を放出して
中性化する粒子線を照射することを特徴とする半導体の
イオン注入方法。
(1) Charged ions in semiconductor 2 x 10”/1
A semiconductor ion implantation method characterized in that, at the same time as the ion implantation, the surface of the semiconductor is irradiated with a particle beam that neutralizes the semiconductor by emitting secondary electrons.
(2)  粒子線として低速電子線を用いることを特徴
とする特許請求の範囲@1項記載の半導体のイオン注入
方法。
(2) A semiconductor ion implantation method according to claim @1, characterized in that a low-velocity electron beam is used as the particle beam.
(3)粒子線として紫外線を用いることを特徴とする特
許請求の範曲第1項記載の半導体のイオン注入方法。
(3) A semiconductor ion implantation method according to claim 1, characterized in that ultraviolet rays are used as the particle beam.
(4)  イオン注入を、電導性薄膜フィルターを通し
て行なうととを特徴とする特許請求の範囲@1項記載の
半導体のイオン注入方法。
(4) The ion implantation method for a semiconductor according to claim 1, wherein the ion implantation is performed through a conductive thin film filter.
JP18141181A 1981-11-12 1981-11-12 Ion implantation for semiconductor Granted JPS5882519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18141181A JPS5882519A (en) 1981-11-12 1981-11-12 Ion implantation for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18141181A JPS5882519A (en) 1981-11-12 1981-11-12 Ion implantation for semiconductor

Publications (2)

Publication Number Publication Date
JPS5882519A true JPS5882519A (en) 1983-05-18
JPH0517699B2 JPH0517699B2 (en) 1993-03-09

Family

ID=16100287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18141181A Granted JPS5882519A (en) 1981-11-12 1981-11-12 Ion implantation for semiconductor

Country Status (1)

Country Link
JP (1) JPS5882519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933257A (en) * 1986-10-13 1990-06-12 Mitsubishi Denki Kabushiki Kaisha Positive quinone diazide photo-resist composition with antistatic agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489475A (en) * 1977-12-27 1979-07-16 Fujitsu Ltd Ion implanting method
JPS5787056A (en) * 1980-09-24 1982-05-31 Varian Associates Method and device for strengthening neutralization of ion beam of positive charge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489475A (en) * 1977-12-27 1979-07-16 Fujitsu Ltd Ion implanting method
JPS5787056A (en) * 1980-09-24 1982-05-31 Varian Associates Method and device for strengthening neutralization of ion beam of positive charge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933257A (en) * 1986-10-13 1990-06-12 Mitsubishi Denki Kabushiki Kaisha Positive quinone diazide photo-resist composition with antistatic agent

Also Published As

Publication number Publication date
JPH0517699B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US3747203A (en) Methods of manufacturing a semiconductor device
US8999824B2 (en) Method for manufacturing semiconductor device by performing multiple ion implantation processes
EP0097533B1 (en) A method of manufacturing a mis type semiconductor device
US5219773A (en) Method of making reoxidized nitrided oxide MOSFETs
US4014772A (en) Method of radiation hardening semiconductor devices
JPH02152226A (en) Manufacture of semiconductor device
EP0165055A2 (en) Method and apparatus for exposing photoresist by using an electron beam and controlling its voltage and charge
JPH05198523A (en) Ion implantation method and ion implantation device
JPS5882519A (en) Ion implantation for semiconductor
JPH0361303B2 (en)
JPS57104218A (en) Fabrication of semiconductor device
US20040266123A1 (en) Electron beam treatment of SixNy films
JPS59196600A (en) Neutral particle implanting method and its device
Yoshizawa et al. Secondary electron effect on electric potential of insulator surface during ion implantation
JPS58131731A (en) Irradiation of energy rays
GB2263196A (en) Semiconductor dosimeter
JP3339516B2 (en) Ion implantation method and ion implantation apparatus
JPS5985858A (en) Ion implantation device
Sigmon et al. Pulsed x‐ray annealing of ion‐implanted silicon
JP2002289107A (en) Ion generating device, ion irradiation device, ion generating method and ion implantation method
JPS6091630A (en) Impurity difusing process
JPS5949685B2 (en) Ion implantation method
JPH07134968A (en) Semiconductor substrate processing device and semiconductor substrate processing method
JPH01146240A (en) Ion implanting apparatus
JPS6310454A (en) Charge preventing device in ion implantation equipment