JPH0517699B2 - - Google Patents
Info
- Publication number
- JPH0517699B2 JPH0517699B2 JP56181411A JP18141181A JPH0517699B2 JP H0517699 B2 JPH0517699 B2 JP H0517699B2 JP 56181411 A JP56181411 A JP 56181411A JP 18141181 A JP18141181 A JP 18141181A JP H0517699 B2 JPH0517699 B2 JP H0517699B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- ion implantation
- ions
- thin film
- conductive thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 17
- 238000005468 ion implantation Methods 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 239000010408 film Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- -1 Boron ions Chemical class 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Description
【発明の詳細な説明】
本発明は半導体装置に高濃度の不純物領域を形
成する半導体のイオン注入方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor ion implantation method for forming a highly concentrated impurity region in a semiconductor device.
近年、イオン注入方法は非常に広範囲に使われ
るようになつてきた。例えばMOS半導体装置に
おいて、イオン注入方法は、従来主としてチヤン
ネルのしきい値電圧のコントロールに用いられて
きたのに対し、最近はソース、ドレインの形成な
ど高濃度の不純物領域の形成に用いられるように
なつてきている。 In recent years, ion implantation methods have become very widely used. For example, in MOS semiconductor devices, ion implantation has traditionally been used primarily to control the threshold voltage of channels, but recently it has been used to form highly concentrated impurity regions such as sources and drains. I'm getting used to it.
このように高濃度に電荷イオンを注入する場
合、次のような問題点がある。 When implanting charged ions at such a high concentration, there are the following problems.
注入イオンドーズをN(個/m2)、荷電数をn、
素電荷q=1.6×10-19C、注入が絶縁層になされ
ているとして、その誘電率をε(F/m)とする。 The implanted ion dose is N (pieces/m 2 ), the number of charges is n,
Assuming that the elementary charge q=1.6×10 -19 C and that the injection is made into the insulating layer, its dielectric constant is ε (F/m).
今、イオン注入が一様になされその電荷が絶縁
物の両端に電界Eを作るとすると、E(V/m)
の大きさは
E=nqN/ε
となる。 Now, if ion implantation is uniform and the charges create an electric field E at both ends of the insulator, then E (V/m)
The size of is E=nqN/ε.
この式に具体的な数値としてMOS半導体装置
のソース、ドレインの拡散の例をとり、絶縁物と
してSiO2を仮定すると、n=1、N=2×1019
個/m2、ε=εpx=3.5×10-11F/mとなり、これ
を上式に代入するとE=1×1011V/mとなる。 Using the example of diffusion of the source and drain of a MOS semiconductor device as specific values for this formula, and assuming SiO 2 as the insulator, n = 1, N = 2 × 10 19
/m 2 , ε=ε px =3.5×10 −11 F/m, and by substituting this into the above equation, E=1×10 11 V/m.
ところでSiO2の絶縁耐電界は約109V/mとい
われているため、この電界がそのままかかれば絶
縁膜が破壊されてしまうので、帯電した電荷を逃
がすことが必要となる。また通常、半導体にイオ
ン注入する場合、フオトレジストをマスタとして
用いているが、このフオトレジストは電導度が低
く、またフオトレジストのない部分や、島状に分
離していることもあるため、表面をリークして逃
げる電荷が、注入される電荷よりも少く、次第に
大電荷が帯電して絶縁破壊することが度々あつ
た。 By the way, the dielectric strength field of SiO 2 is said to be about 10 9 V/m, and if this electric field is applied as it is, the insulating film will be destroyed, so it is necessary to release the charged charges. Furthermore, when ion implantation is performed into semiconductors, a photoresist is normally used as a master, but this photoresist has low conductivity, and there may be areas without photoresist or isolated islands, so the surface The amount of charge that leaks out and escapes is smaller than the amount of charge that is injected, and a large charge gradually builds up, often resulting in dielectric breakdown.
本発明は、このような問題点に鑑みなされたも
ので、絶縁膜の破壊を防止して、大電流イオン注
入を可能にして高濃度不純物領域の形成に効果的
な半導体のイオン注入方法を提供しようとするも
のである。 The present invention has been made in view of these problems, and provides a semiconductor ion implantation method that prevents breakdown of the insulating film, enables large current ion implantation, and is effective in forming a high concentration impurity region. This is what I am trying to do.
すなわち、本発明方法は半導体に荷電イオンを
2×1017個/m2以上注入するに際し、前記半導体
に前記イオン注入を電導性薄膜フイルタを通して
行うと同時に、前記半導体表面に紫外線を照射す
ることを特徴とするものである。 That is, the method of the present invention, when implanting charged ions of 2×10 17 or more/m 2 or more into a semiconductor, simultaneously implants the ions into the semiconductor through a conductive thin film filter and irradiates the surface of the semiconductor with ultraviolet rays. This is a characteristic feature.
前記半導体にイオン注入する荷電粒子として
は、例えば、B,As,P,Si,Ga,In,Sn等が
挙げられる。 Examples of the charged particles to be ion-implanted into the semiconductor include B, As, P, Si, Ga, In, and Sn.
前記イオンドーズ量は、2×1017個/m2以上の
高濃度で大電流イオン注入する場合に効果的であ
り、前記未満のドーズ量では絶縁膜に加わる電界
が低く、絶縁破壊の問題は少ない。 The above ion dose is effective when performing large current ion implantation at a high concentration of 2×10 17 ions/m 2 or more, and when the dose is less than the above, the electric field applied to the insulating film is low and the problem of dielectric breakdown is eliminated. few.
前記導電性薄膜フイルタは、前記荷電イオンビ
ームをスキヤニングするための電極の前に配置さ
れ、前記荷電イオンを中和して原子状態で前記半
導体に注入する機能を有する。かかる電導性薄膜
フイルタとしては、例えばAl,C,Auなどの薄
膜が用いられる。前記電導性薄膜フイルタによる
荷電粒子の中和作用は、イオン注入条件や膜厚に
より異なり、制御が難しいため、前述したように
紫外線の照射と併用すると効果的である。 The conductive thin film filter is disposed in front of an electrode for scanning the charged ion beam, and has a function of neutralizing the charged ions and implanting them in an atomic state into the semiconductor. As such a conductive thin film filter, for example, a thin film of Al, C, Au, etc. is used. The neutralization effect of charged particles by the conductive thin film filter varies depending on the ion implantation conditions and film thickness, and is difficult to control. Therefore, it is effective to use it in combination with ultraviolet irradiation as described above.
上記紫外線を照射する場合には、3eV以上のエ
ネルギーを有するものを用いることにより、基板
表面にトラツプしている電荷を2次電子として真
空中あるいは導電体へ向けて放出し、基板を中性
化するものである。なお紫外線の照射により2次
電子を放出する荷電粒子はマイナスイオンに限ら
れ、As,Pなどのプラスイオンの場合には適用
することができない。 When irradiating the above ultraviolet rays, use one with an energy of 3 eV or more to release the charges trapped on the substrate surface as secondary electrons into the vacuum or toward a conductor, neutralizing the substrate. It is something to do. Note that the charged particles that emit secondary electrons when irradiated with ultraviolet light are limited to negative ions, and cannot be applied to positive ions such as As and P.
また上記方法に加え、本発明では荷電イオンビ
ームのスキヤニング電極の前に、電導薄膜フイル
ターを設けて、ここで電荷を吸収し、イオンのみ
を透過して、半導体基板に注入するようにしても
良い。この場合、電導性薄膜フイルターとしては
Al,C,Auなどの薄膜を用いるが、これら薄膜
による電荷吸収の作用は、イオン注入条件や膜厚
により異なり制御が難しいため上記紫外線の照射
と併用すると効果的である。 Further, in addition to the above method, in the present invention, a conductive thin film filter may be provided in front of the scanning electrode of the charged ion beam, and the electric charge may be absorbed there, and only the ions may be transmitted therethrough to be implanted into the semiconductor substrate. . In this case, as a conductive thin film filter,
Although thin films of Al, C, Au, etc. are used, the effect of charge absorption by these thin films varies depending on the ion implantation conditions and film thickness and is difficult to control, so it is effective to use them in combination with the above-mentioned ultraviolet irradiation.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
シリコンウエハにボロンBを、次に注入条件で
イオン注入した。ボロンを50keVで注入し、ドー
ズ量は2×1019個/m2、照射時間20分間で、4イ
ンチシリコンウエハ10枚にイオン注入した。 Boron B was ion-implanted into a silicon wafer under the following implantation conditions. Boron ions were implanted at 50 keV at a dose of 2×10 19 ions/m 2 for an irradiation time of 20 minutes into ten 4-inch silicon wafers.
前記イオン注入と同時にXeランプの紫外線を
サフアイ窓を通して試料面に照射した。なお、こ
の場合の紫外線の照射は500ワツトのXeランプ
を、レンズを使つて前記ウエハ全面に亘つて照射
した。 At the same time as the ion implantation, the sample surface was irradiated with ultraviolet rays from a Xe lamp through the Safeye window. In this case, ultraviolet rays were irradiated over the entire surface of the wafer using a 500 watt Xe lamp using a lens.
この結果、前記ウエハ表面におけるポリシリコ
ンの飛散や酸化膜の破壊は全く観察されず、良好
な高濃度不純物領域を形成することができた。 As a result, no scattering of polysilicon or destruction of the oxide film on the wafer surface was observed, and a good high concentration impurity region could be formed.
以上説明した如く、本発明に係わる半導体のイ
オン注入方法によれば、絶縁物の破壊を防止し
て、大電流イオン注入を可能にして高濃度不純物
領域を良好に形成することができるものである。 As explained above, according to the semiconductor ion implantation method according to the present invention, breakdown of the insulator can be prevented, large current ion implantation can be performed, and a high concentration impurity region can be formed satisfactorily. .
Claims (1)
入するに際し、前記半導体への前記イオン注入を
電導性薄膜フイルタを通して行うと同時に、前記
半導体表面に紫外線を照射することを特徴とする
半導体のイオン注入方法。1. A semiconductor characterized in that when 2×10 17 or more charged ions/m 2 or more are implanted into a semiconductor, the ion implantation into the semiconductor is performed through a conductive thin film filter, and at the same time, the surface of the semiconductor is irradiated with ultraviolet rays. ion implantation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18141181A JPS5882519A (en) | 1981-11-12 | 1981-11-12 | Ion implantation for semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18141181A JPS5882519A (en) | 1981-11-12 | 1981-11-12 | Ion implantation for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5882519A JPS5882519A (en) | 1983-05-18 |
JPH0517699B2 true JPH0517699B2 (en) | 1993-03-09 |
Family
ID=16100287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18141181A Granted JPS5882519A (en) | 1981-11-12 | 1981-11-12 | Ion implantation for semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5882519A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH083628B2 (en) * | 1986-10-13 | 1996-01-17 | 三菱電機株式会社 | Non-chargeable resist |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5489475A (en) * | 1977-12-27 | 1979-07-16 | Fujitsu Ltd | Ion implanting method |
JPS5787056A (en) * | 1980-09-24 | 1982-05-31 | Varian Associates | Method and device for strengthening neutralization of ion beam of positive charge |
-
1981
- 1981-11-12 JP JP18141181A patent/JPS5882519A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5489475A (en) * | 1977-12-27 | 1979-07-16 | Fujitsu Ltd | Ion implanting method |
JPS5787056A (en) * | 1980-09-24 | 1982-05-31 | Varian Associates | Method and device for strengthening neutralization of ion beam of positive charge |
Also Published As
Publication number | Publication date |
---|---|
JPS5882519A (en) | 1983-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4014772A (en) | Method of radiation hardening semiconductor devices | |
US5238859A (en) | Method of manufacturing semiconductor device | |
US5032535A (en) | Method of manufacturing semiconductor device | |
Aitken | 1/spl mu/m MOSFET VLSI technology. VIII. Radiation effects | |
US5219773A (en) | Method of making reoxidized nitrided oxide MOSFETs | |
EP0097533A2 (en) | A method of manufacturing a MIS type semiconductor device | |
EP0165055B1 (en) | Method and apparatus for exposing photoresist by using an electron beam and controlling its voltage and charge | |
JPH05198523A (en) | Ion implantation method and ion implantation device | |
JPH0517699B2 (en) | ||
JPH0361303B2 (en) | ||
Ma | Effects of RF annealing on the excess charge centers in MIS dielectrics | |
Kaschieva et al. | Electron irradiation of ion-implanted n-type Si-SiO2 structures studied by deep-level transient spectroscopy | |
US6982215B1 (en) | N type impurity doping using implantation of P2+ ions or As2+ Ions | |
JPS59196600A (en) | Neutral particle implanting method and its device | |
CN111739838B (en) | Preparation method of anti-radiation SOI material | |
Kassabov et al. | UV radiation effects of argon plasma on Si− SiO2 structures | |
JPS5985858A (en) | Ion implantation device | |
JPS6210033B2 (en) | ||
GB2263196A (en) | Semiconductor dosimeter | |
JP3339516B2 (en) | Ion implantation method and ion implantation apparatus | |
JPS6091630A (en) | Impurity difusing process | |
JPS5949685B2 (en) | Ion implantation method | |
JPS6290841A (en) | Method of ion irradiation | |
JPS6310454A (en) | Charge preventing device in ion implantation equipment | |
JPH0318018A (en) | Manufacture of semiconductor device |