JPS5875016A - Contactless measuring method - Google Patents
Contactless measuring methodInfo
- Publication number
- JPS5875016A JPS5875016A JP17295481A JP17295481A JPS5875016A JP S5875016 A JPS5875016 A JP S5875016A JP 17295481 A JP17295481 A JP 17295481A JP 17295481 A JP17295481 A JP 17295481A JP S5875016 A JPS5875016 A JP S5875016A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- light
- mirror
- point
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は被測物までの距離’klt#Jする方法、特に
被測物までの距離を無接触で計測する方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the distance to an object to be measured, and particularly to a method for measuring the distance to an object without contact.
従来の、被測定物までの距離全無接触で計測する方法に
おいては、m1illJ定物&面上に対物レンズを通し
てレーザ光を収束させて行う方法が行われているが、こ
のような方法によれば一回ごとに対物レンズの焦点を合
わせなければならないので、計測スピード上めげるにに
限界がある。また焦点を合わせるに当9対物レンズの移
動會少なくする友め、焦点距離の長い対物レンズを用い
ると、焦点合わせが難しくなり、計1III誤差の現わ
れる危険が生じる。さらに光軸と被測定物の法線方向が
55度以上では計測が不可能である。In the conventional method of measuring the distance to the object to be measured without contact, the laser beam is focused on the m1illJ constant object & surface through an objective lens. Since the objective lens must be focused each time, there is a limit to how much the measurement speed can be increased. In addition, if an objective lens with a long focal length is used, since the movement of the objective lens is reduced when focusing, focusing becomes difficult, and there is a risk that a total of 1III errors will occur. Furthermore, if the normal direction of the optical axis and the object to be measured is 55 degrees or more, measurement is impossible.
本発wAは、上記した従来公知の計測方法の問題点を解
決する丸めに創案されたもので、対物レンズを用いるこ
となく計測スピーrt−上げかつ計測誤差の少ない被測
定物までの距離を無接触で計測する方法を提供すること
を目的とするものである。The present wA was invented to solve the problems of the conventionally known measurement methods described above, and it increases the measurement speed without using an objective lens and eliminates the distance to the object to be measured with less measurement error. The purpose is to provide a method for measuring by contact.
そして、本発明は、被測定物表面の被測定点に収束光を
当て、さらに別方向から同測定点忙収束光を当てると、
これらの光が交差する瞬間に照光されている被測足点の
温度が変化するのt感知して、被測定点までの距離を計
測するという技術思想を基調とするものであって、その
構成は、光源からの光を半透鏡で二分割してその一方の
光を直接被測定物に照射するとともに他方の元t%表面
からは光を反射し裏面からは光を透過するよう構成され
た8鏡の表面から反射させて前記被IIII足物に照射
し、前記円鏡内に配設され九温度創建器からレーず光を
円@Iを透過しかつその方向が前記8鏡からの反射光と
一致するよう前記被測定物に照射しつつ前記8鏡t−垂
直方向に上下移動させて、前記二分割した光の前記被創
建物上での照射点の物への照射点かう前記半透鏡筒での
垂直路wItを但し・ 易:半透鏡中心から円−中心ま
での水平距離
r:8鏡の半径
m:8鏡の垂直方向移動距離
の式により求めることを特徴とする無接触で被測定物ま
での距離を計測する方法よりなるものである。According to the present invention, when a convergent light is applied to a point to be measured on the surface of the object to be measured, and further convergent light is applied to the same point to be measured from another direction,
It is based on the technical concept of measuring the distance to the point to be measured by sensing the change in temperature of the illuminated foot point at the moment these lights intersect. The device was constructed so that the light from the light source was divided into two by a semi-transparent mirror, one of which was irradiated directly onto the object to be measured, and the light was reflected from the other surface and transmitted from the back surface. It is reflected from the surface of the 8th mirror and irradiated onto the object III, and the laser light from the 9th temperature creator disposed within the circular mirror is transmitted through the circle @I, and its direction is reflected from the 8th mirror. While irradiating the object to be measured so as to match the light, the 8 mirrors are moved up and down in the vertical direction, and the irradiation point of the divided light on the object on the damaged building is irradiated with the 8 mirrors. A non-contact method characterized in that the vertical path wIt in the transparent lens barrel is determined by the equation of: Horizontal distance from the center of the semi-transparent mirror to the center of the circle r: 8 Radius of the mirror m: 8 The vertical movement distance of the mirror This method consists of measuring the distance to the object to be measured.
本発明の冥施例を図面を参照して以下説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図及び!2図に本発明の計測方法に用いる装置が示
されている。同図中1は光源、2はスリット・ 3は半
透鏡であって、光源1よル出た光はスリット2で収束光
となり半透鏡3で透過光と反射光とに二分割される。4
はその表面からは光を反射し1!kFf1からは光を透
過するように構成された所llIマジ、りン2−と称さ
れる8鏡である。5に8鏡4内忙配設された温度測定器
であって前記円i14の表面からの反射光を追跡するよ
うKWkけられ、この温度測定器5からはレーデ光を照
射して被測定物60表面温度を常時測定するよう罠なっ
ている。Figure 1 and! FIG. 2 shows an apparatus used in the measuring method of the present invention. In the figure, 1 is a light source, 2 is a slit, and 3 is a semi-transparent mirror.The light emitted from the light source 1 becomes convergent light at the slit 2, and is split into two by the semi-transparent mirror 3 into transmitted light and reflected light. 4
reflects light from its surface and 1! There are 8 mirrors called phosphorus 2-, which are configured to transmit light from kFf1. 5 is a temperature measuring device disposed inside the mirror 4, which is designed to track the reflected light from the surface of the circle i14. 60 The trap is designed to constantly measure the surface temperature.
前記スリ、ト2は光源lからの光を0.1−以下の収束
光和する。The above-mentioned slots and gates 2 converge and lighten the light from the light source 1 to a value of 0.1 or less.
また前記半透鏡3はスリット2からの収束光を二分割す
るとともに、被測定物6の形状によっては前記温度測定
器5とと4に連動して光源からの光軸に対して360度
回転できる構造となっている。The semi-transparent mirror 3 divides the convergent light from the slit 2 into two, and depending on the shape of the object 6, can rotate 360 degrees with respect to the optical axis from the light source in conjunction with the temperature measuring devices 5 and 4. It has a structure.
さらに、前記8鏡4は温度測定器5と同時に連動して半
透鏡3との水平距離を変化させることも可能である。ま
た8鏡4と温度測定器5、半透鏡3會同時に連動させて
、光IFIIと半透鏡3の垂直距離1変化させることも
できるφ
前記温度測定器5は前記したように8硯4からの反射光
音追跡するために、これが前記反射光の方向に必らず向
くようにする必畳があるが、この温度測定器5の方向は
次のように規制される。すなわち、!3図に示すように
、8鏡4への照射点In接点とし、8鏡半径rk直径と
する内接円を考える時、温度測定器5はこの内接円周上
の一点BK位置しかつ8鏡中心Aからは円I#4の垂直
方向の移動量mに等しい距離にあり、し力為も温度測定
器5から照射されるレーザ光の方向(直線BD)が円*
4中心Aと温度測定器5の位置Bとを結ぶ直@ABに対
して直角の方向となるよう忙規制する。Further, the eight mirrors 4 can be linked with the temperature measuring device 5 at the same time to change the horizontal distance from the semi-transparent mirror 3. In addition, the vertical distance between the optical IFII and the semi-transparent mirror 3 can be changed by 1 by linking the 8-mirror 4, the temperature measuring device 5, and the 3 semi-transparent mirrors at the same time. In order to track the reflected light and sound, it is necessary to ensure that the temperature measuring device 5 faces in the direction of the reflected light, and the direction of the temperature measuring device 5 is regulated as follows. In other words! As shown in Fig. 3, when considering an inscribed circle with the irradiation point In to 8 mirrors 4 and the 8 mirror radius rk diameter, the temperature measuring device 5 is located at a point BK on this inscribed circle and 8 The distance from the mirror center A is equal to the vertical movement amount m of circle I#4, and therefore the direction (straight line BD) of the laser beam irradiated from the temperature measuring device 5 is a circle *
4. The direction is adjusted so that the direction is perpendicular to the line @AB connecting the center A and the position B of the temperature measuring device 5.
次に本発明による計測法につhて説明する。Next, the measurement method according to the present invention will be explained.
光源lより出た光はスリット2で収束光とな9、半透1
13で二分割され、一方の透過光はそのまま直進して被
測定物6を照射点6′で直接照射し、他方の反射光は円
vja40表面でさらに反射して被測定物6を照射点6
“で照射する。(第1図)温度測定器5からはレーザ光
を照射し、前記照射点6′の表面温度を常時測定する。The light emitted from the light source 1 becomes convergent light at the slit 2 9, semi-transparent 1
13, one of the transmitted light goes straight and directly irradiates the object to be measured 6 at the irradiation point 6', and the other reflected light is further reflected on the surface of the circle vja40 and irradiates the object to be measured 6 at the irradiation point 6'.
(FIG. 1) A laser beam is irradiated from the temperature measuring device 5, and the surface temperature of the irradiated point 6' is constantly measured.
次いで円fa4會喬直方向に上下移動させてその一表面
からの反射光の方向を#JI4整してその照射点デが透
過光の照射点CK一致するようにする。前記二つの照射
点C1Cが重なった瞬関忙その表面温度11111足し
ている温度測定器5Kg化が生じるため、この瞬間をと
らえて、8鏡4の移動管停止し、この時の半透鏡3から
の照射光線に対する四偶4の垂直方向の移動量mを計測
し、被測定物6から半透鏡3までの高さ1(計測する。Next, it is moved vertically in the direction perpendicular to the circle fa4 to adjust the direction of the reflected light from one surface thereof so that the irradiation point D coincides with the irradiation point CK of the transmitted light. At the moment when the two irradiation points C1C overlap, the surface temperature of 11111 and the temperature measuring device 5kg will be generated, so seize this moment and stop moving the tube of 8 mirror 4, and from the half-transparent mirror 3 at this moment. The amount of vertical movement m of the quadruple 4 with respect to the irradiation light beam is measured, and the height 1 from the object to be measured 6 to the semi-transparent mirror 3 is measured.
すなわち、第4図において、mf牛透鏡3(半透鏡から
の照射光)と8鏡4の中心との水平距離、eta射光の
入射角1反射角とすると、三角形DEFにおいて
t−IP冨D E ta 2 a ・・・・・・(
1)4 九D I =1= I −rxe ”=
(2)であるから(1) 、 (2)よ)
Am(s−rcm#)・tm2@ −・−・(3)
三角形ムGDにおいて
sk#麿−・・・・・・・・・(4)
また三角函数の公式より
であるから、(3)式に(4)〜(6)弐を代入すると
、とな9、s、rは一定であるから、計測の際の四偶4
の上下(垂直)方向の移動量mk計測すればLの値、す
なわち半透鏡3から被測定物6までの距離を無接触で計
測することができる。That is, in FIG. 4, assuming that the horizontal distance between the mf cow mirror 3 (irradiated light from the semi-transparent mirror) and the center of the 8-mirror 4, and the incident angle of the incident light as eta and the reflection angle as 1, then t-IP depth DE in the triangle DEF. ta 2 a ・・・・・・(
1) 4 9D I =1= I −rxe ”=
(2), so (1), (2)) Am(s-rcm#)・tm2@ −・−・(3)
In the triangle GD, sk #maro - (4) Also, since it is from the formula of trigonometric functions, substituting (4) to (6) 2 into equation (3), we get 9 , s, and r are constant, so 4 even 4 at the time of measurement
By measuring the amount of movement mk in the vertical (vertical) direction, the value of L, that is, the distance from the semi-transparent mirror 3 to the object to be measured 6 can be measured without contact.
このように計測の都度、8鏡4を垂直方向に上方あるい
は下方に移動させて光源からの透過光と反射光とによる
各照射点を被測定物上で瞬時に交差させることにより、
その際の8鏡4の半透!!3からの垂直方向の移動量を
計測し、被測定物60半透鏡3からの距離を1竺jする
ことができる。In this way, each time a measurement is made, by moving the eight mirrors 4 vertically upward or downward so that each irradiation point of the transmitted light and reflected light from the light source intersect on the object to be measured,
8 mirror 4 semi-transparent at that time! ! By measuring the amount of movement in the vertical direction from 3, the distance from the object to be measured 60 to the semi-transparent mirror 3 can be reduced by 1.
そして、8鏡4の移動量と移動速度を選ぶことによシ、
計測スピードは任意に選択することができる。Then, by selecting the amount and speed of movement of 8 mirrors 4,
The measurement speed can be selected arbitrarily.
また最初の測定点では円fIAt−上下に移動させ、次
の測定点では円鐘ヲ下から上へと反復するととによ〕、
計測スピードをさらK[えることも可能である。Also, at the first measurement point, the circle fIAt is moved up and down, and at the next measurement point, the circle is repeated from the bottom to the top.
It is also possible to further increase the measurement speed.
また、計測精度は得られる直進性の収束光によりて左右
されるが光源としてレーデ光源管用いれば飛躍的に向上
できる。Furthermore, although measurement accuracy depends on the linear convergent light obtained, it can be dramatically improved by using a Rade light source tube as the light source.
さらに、半透鏡3と8鏡4の間隔1近づけることにより
、はとんどの被測定物の計測は可能となるが、光の届か
ない影の部分については第5図に示す実施例のようにそ
れぞれ二個の8鏡4.イと温度測定器5,5′を用意し
、これらの8鏡と温度測定器との各組4,5とイ、5′
と1互−に直角の面上に配置することにより、この部分
の計測も可能となる。Furthermore, by bringing the distance between the semi-transparent mirrors 3 and 8 mirrors 4 closer by 1, it is possible to measure most of the objects to be measured, but for shadow areas where light cannot reach, it is possible to measure the objects as shown in the embodiment shown in FIG. 8 mirrors, two each 4. A and temperature measuring devices 5 and 5' are prepared, and each set of 8 mirrors and temperature measuring devices 4, 5 and A, 5' is prepared.
By arranging it on a plane perpendicular to each other, it is also possible to measure this part.
本発明は以上のようなものであるから、光源からの二分
割された光の被測定物上での交差点を瞬間的にとらえる
ことができて、計測スピードを大幅に上げることができ
、また対物レンズを用いないため焦点合わせのような面
倒な操作を要せず計測精度を上げることができ、さらに
光の届きにくいようなところにある被測定物の計測も可
能となるという従来の方法に比べ格段の効果を奏するも
のである。Since the present invention is as described above, it is possible to instantaneously capture the intersection of the two divided lights from the light source on the object to be measured, and the measurement speed can be greatly increased. Compared to conventional methods, this method does not use a lens, so it does not require troublesome operations such as focusing, which increases measurement accuracy, and it also makes it possible to measure objects in places where light cannot reach easily. It is extremely effective.
第1図、@2図は本発明の一実施例1示す儒面因で、第
1図は二分割された光がそれぞれ被測定物上に照射され
九通常の状態を示し、@2図は前記二分割され九光が被
測定物上の同一点に照射された計測時の状態を示す、第
3肉は温度測定器と四偶との位置関係を示す略図、第4
因は半透鏡と照射交点との垂直距離、半透鏡と8鏡との
水平距離、四偶の移動距離管それぞれ示す略−1第5図
は本発明の他の実施例を示す斜視図である。
1・・・光源、2・・・スリ、ト、3・・・半透鏡、4
.4′・・・8鏡、5,5′・・・温度測定器、6・・
・被測定物、6′。
V・・・照射点。
第1図
第2図
第3図
第5図Figures 1 and 2 show the first embodiment of the present invention, and Figure 1 shows the normal state in which the two divided lights are irradiated onto the object to be measured, and Figure @2 shows the normal state. The third figure is a schematic diagram showing the positional relationship between the temperature measuring device and the fourth figure, showing the state at the time of measurement when the nine divided lights are irradiated on the same point on the object to be measured.
The causes are the vertical distance between the semi-transparent mirror and the irradiation intersection, the horizontal distance between the semi-transparent mirror and the 8-mirror, and the moving distance of the four-way tube, respectively. Fig. 5 is a perspective view showing another embodiment of the invention. . 1...Light source, 2...Slip, To, 3...Semi-transparent mirror, 4
.. 4'...8 mirror, 5,5'...temperature measuring device, 6...
・Object to be measured, 6'. V...Irradiation point. Figure 1 Figure 2 Figure 3 Figure 5
Claims (1)
被測定物に照射するとともに、他方の光を、表面からは
光を反射し裏面かられ光を透過するよう構成されたn−
の表面から反射させて前記被測定物に照射し、前記円鏡
内に配設され九温度副定器からレーデ光tP3鏡を透過
しかつその方向が前記円鏡からの反射光と一致するよう
前記被測定物に照射しつつ前記円鏡vti直方向に上下
移動させて前記二分割した光の前記被測定物上での照射
点の一致し九点を検知し、前記光源η為らの光の被il
1足物への照射点から前記半透−までの−直距離Lt。 但し 、二牛透跳中心から円鏡中心までの水平距離 r:n−の半径 m:n−の泰直方向移動距離 の式によ多束めることを特徴とする無接触で被測定物ま
での距離を計測する方法・。[Claims] Light from a light source is divided into two by a semi-transparent mirror and one of the lights is directly irradiated onto the object to be measured, while the other light is reflected from the front surface and transmitted from the back surface. n− configured to
Radhe light tP3 is reflected from the surface of the mirror and irradiated onto the object to be measured, and is transmitted from the nine temperature sub-meters disposed within the circular mirror through the mirror so that its direction coincides with the light reflected from the circular mirror. While irradiating the object to be measured, the circular mirror is moved up and down in the direction perpendicular to Vti to detect nine coincident irradiation points of the divided light on the object to be measured, and detect the light emitted from the light source η. the ills of
Direct distance Lt from the irradiation point to the object to the semi-transparent light. However, the object to be measured is non-contact and is characterized in that it is multiplied by the equation of the horizontal distance r: n- from the center of the two-gyu jump to the center of the circular mirror, and the vertical movement distance of radius m: n-. How to measure the distance to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17295481A JPS5875016A (en) | 1981-10-30 | 1981-10-30 | Contactless measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17295481A JPS5875016A (en) | 1981-10-30 | 1981-10-30 | Contactless measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5875016A true JPS5875016A (en) | 1983-05-06 |
Family
ID=15951438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17295481A Pending JPS5875016A (en) | 1981-10-30 | 1981-10-30 | Contactless measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5875016A (en) |
-
1981
- 1981-10-30 JP JP17295481A patent/JPS5875016A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1577639B1 (en) | Optical axial displacement sensor | |
JPS63195513A (en) | Optical noncontact position measuring instrument | |
CN105758336B (en) | Reflective laser differential confocal curvature radius measurement method and device | |
US4874246A (en) | Arrangement for optically measuring a distance between a surface and a reference plane | |
US7129508B2 (en) | Compact VCSEL sensor with multiple sensing capabilities | |
CN103940348A (en) | Device and method for detecting movement errors of working platform in multiple degrees of freedom | |
CN111982028A (en) | Laser radar scanning galvanometer three-dimensional angle measuring device and method | |
JPH1114357A (en) | Automatic tracking device of surveying equipment | |
JPS63163313A (en) | Focus positioning device | |
JPH0652170B2 (en) | Optical imaging type non-contact position measuring device | |
TW201903351A (en) | Non-contact lens radius of curvature and thickness detection device and detection method thereof | |
JPS5875016A (en) | Contactless measuring method | |
CN105806237B (en) | Reflective laser confocal curvature radius measurement method and device | |
JPS6161070B2 (en) | ||
JPS6125011A (en) | Optical distance measuring device | |
JPS58179308A (en) | Measuring method without contacting | |
JPS63101702A (en) | Optical length measuring gauge | |
JPH0752626Y2 (en) | Lightwave distance measuring device | |
JPH02145903A (en) | Displacement measuring apparatus | |
JPH01292631A (en) | Tracking controlling method | |
JPH075550Y2 (en) | Optical device for optical pickup | |
JP2596756Y2 (en) | Lightwave ranging device | |
JPS6095313A (en) | Shape measuring device | |
JPH01118712A (en) | Optical displacement measuring instrument | |
JPS6112203B2 (en) |