JPS6112203B2 - - Google Patents
Info
- Publication number
- JPS6112203B2 JPS6112203B2 JP52052772A JP5277277A JPS6112203B2 JP S6112203 B2 JPS6112203 B2 JP S6112203B2 JP 52052772 A JP52052772 A JP 52052772A JP 5277277 A JP5277277 A JP 5277277A JP S6112203 B2 JPS6112203 B2 JP S6112203B2
- Authority
- JP
- Japan
- Prior art keywords
- measuring device
- optical system
- deviation
- light
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 73
- 238000006073 displacement reaction Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Description
【発明の詳細な説明】
本発明は、測定対象までの距離を広範囲に且つ
非接触で測定するための装置に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the distance to a measurement target over a wide range and in a non-contact manner.
一般に測定対象までの距離あるいは測定対象の
変化を測ることは測定技術の中でも最も基本的な
事項であり、従来より差動変圧器、渦流コイル方
式、レーザ変調位相検出方式、光学的三角測量方
式等が実用に供されている。 In general, measuring the distance to a measurement target or changes in a measurement target is the most basic measurement technology, and conventional methods include differential transformers, eddy current coil methods, laser modulation phase detection methods, and optical triangulation methods. is put into practical use.
就中光学的三角測量方式は、非接触測定が可能
であり、又比較的長距離まで測定ができ、測定精
度が高いなどの長所をもつた優れた測定方式であ
る。 In particular, the optical triangulation method is an excellent measurement method that allows non-contact measurement, can measure relatively long distances, and has high measurement accuracy.
然しこの方式でもこれを自動測定装置として実
用化するには、測定速度が遅く、測定範囲を広く
すると焦点の狂いによつて誤差が増大するなどの
欠点をもつている。 However, even this method has drawbacks such as slow measurement speed and increased errors due to out of focus when the measurement range is widened before it can be put to practical use as an automatic measuring device.
本発明はこれらの実情に鑑み、測定対象までの
距離を広い範囲にわたつて測定し、然も非接触,
高速、高精度で測定する機能をもつた優れた自動
測定装置を提供するものであり、その要旨とする
ところは、スポツト光を発する光源と、該光源か
らのスポツト光を入射し測定対象表面上に微小ス
ポツト光を結像させるレンズと、該レンズと測定
対象表面との光学的距離を一定とする固定と移動
自在なプリズムあるいはレンズからなる入射光側
の光学系と、該光学系からの光軸に対して一定の
角度を保持して測定対象表面上の微小スポツト光
の反射光を集光するミラーおよび固定と移動自在
なプリズムあるいはレンズからなる光学系で構成
された集光光学系と、該集光光学系の光軸と入射
光側の光軸との交点から測定対象表面上の微小ス
ポツト光までの偏差を光学的に測定する偏差測定
装置と、該偏差にもとづき前記入射光側の光学系
と集光光学系が載置された測定装置の移動部分を
移動させるサーボ装置と、該サーボ装置により移
動された移動部分の移動距離を測定する変位測定
装置と、前記偏差測定装置からの偏差信号、変位
測定装置からの変位信号および測定対象表面に入
射される光軸と集光光学系の光軸とのなす角度か
ら測定対象表面までの距離を計算する信号処理装
置とからなることを特徴とする光学的距離測定装
置にある。 In view of these circumstances, the present invention has been developed to measure the distance to a measurement target over a wide range, and to do so without contact.
We provide an excellent automatic measuring device with the ability to measure at high speed and with high precision.The main points of this device are a light source that emits a spot light, and a spot light from the light source that is incident on the surface of the object to be measured. An optical system on the incident light side consisting of a lens that forms a minute spot light into an image, a fixed and movable prism or lens that maintains a constant optical distance between the lens and the surface to be measured, and a light beam from the optical system. a condensing optical system consisting of a mirror that maintains a constant angle with respect to the axis and condenses the reflected light of the minute spot light on the surface of the object to be measured, and an optical system consisting of a fixed and movable prism or lens; a deviation measuring device that optically measures the deviation from the intersection of the optical axis of the condensing optical system and the optical axis on the incident light side to a minute spot light on the surface of the object to be measured; a servo device for moving a moving part of a measuring device on which an optical system and a condensing optical system are mounted; a displacement measuring device for measuring a moving distance of the moving part moved by the servo device; It consists of a signal processing device that calculates the distance to the measurement target surface from the deviation signal, the displacement signal from the displacement measurement device, and the angle between the optical axis of the optical axis incident on the measurement target surface and the optical axis of the focusing optical system. The optical distance measuring device is characterized by:
以下本発明を図面に示す実施例に基づいて説明
する。 The present invention will be described below based on embodiments shown in the drawings.
第1図において、測定装置全体は2点鎖線Aで
包囲された枠内にあり、これに対する測定対象物
表面は符号5で示されている。 In FIG. 1, the entire measuring device is within a frame surrounded by a two-dot chain line A, and the surface of the object to be measured relative to this is indicated by reference numeral 5.
而して測定装置は、まず光源1とレンズ2及び
さらに一定の間隔をもつて配置された光学系3、
所要数のミラー4からなる入射光側と、入射され
る光軸8の測定対象物表面5上の微小スポツト光
の反射光をとるミラー11、光学系12、結像レ
ンズ13及び偏差測定装置14からなる受光側
と、偏差測定装置14からの偏差信号17に基づ
いて図中21で示す(斜線部)測定装置内の移動
部分を操作する移動装置18と、前記移動部分2
1の移動距離を測定する変位測定装置19と、前
記偏差測定装置14からの偏差信号、変位測定装
置19からの変位信号および測定対象物表面に入
射される光軸と集光光学系の光軸とのなす角度か
ら測定対象物表面までの距離を計算する信号処理
装置22から成立つている。 The measuring device first includes a light source 1, a lens 2, and an optical system 3 arranged at a constant interval.
An incident light side consisting of a required number of mirrors 4, a mirror 11 that takes the reflected light of a minute spot light on the surface 5 of the measuring object on the optical axis 8, an optical system 12, an imaging lens 13, and a deviation measuring device 14. a light-receiving side consisting of a light receiving side, a moving device 18 that operates a moving part in the measuring device indicated by 21 (shaded area) in the figure based on the deviation signal 17 from the deviation measuring device 14, and the moving part 2.
1, a deviation signal from the deviation measuring device 14, a displacement signal from the displacement measuring device 19, an optical axis incident on the surface of the object to be measured, and an optical axis of the condensing optical system. It consists of a signal processing device 22 that calculates the distance to the surface of the object to be measured from the angle formed by the object.
前記移動部分21には入射光側の光学系3と受
光側のミラー11、光学系12および必要に応じ
て像回転装置27が載置されている。 On the movable portion 21, an optical system 3 on the incident light side, a mirror 11 on the light receiving side, an optical system 12, and an image rotation device 27 as necessary are mounted.
而して光学系3は、測定対象物表面5がP0から
P0′のように大きく変位してもレンズ2による光
源1の焦点位置が常に測定対象物表面5の近傍に
位置するようにして焦点の狂いによる誤差の増大
を防ぐために、例えば第2図に示すように、2個
のプリズム30,31で構成させ、一方のプリズ
ム30は前記した移動部分21に固定し他方のプ
リズム31は測定対象物の変位に伴ない補償移動
(後述)できるようにしている。このプリズム3
0,31に代えてレンズを用いることができる。
このときも一方のレンズは移動部分21に固定
し、他は補償移動自在とされる。 Therefore, the optical system 3 is configured such that the surface 5 of the object to be measured is from P 0 to
In order to prevent an increase in error due to focal deviation by ensuring that the focal position of the light source 1 by the lens 2 is always located near the surface 5 of the object to be measured even if there is a large displacement such as P 0 ', for example, as shown in FIG. As shown, it is composed of two prisms 30 and 31, one prism 30 is fixed to the above-mentioned movable part 21, and the other prism 31 can be moved compensatingly (described later) in accordance with the displacement of the object to be measured. There is. This prism 3
A lens can be used instead of 0.31.
At this time as well, one lens is fixed to the movable part 21, and the other lens is allowed to move freely for compensation.
本発明による装置は概略以上のように構成され
ているが装置各部の機能および各部の関係を動作
例を用いつつ説明すると、光源1から発せられた
光は、測定対象物表面5の上に焦点を結ぶ様なレ
ンズ2を通過した後、光学系3を通る。 The apparatus according to the present invention is roughly constructed as described above, but to explain the functions and relationships between each part of the apparatus using an operational example, the light emitted from the light source 1 is focused onto the surface 5 of the object to be measured. After passing through a lens 2 that connects the two, it passes through an optical system 3.
光学系3は測定対象物表面5が大きく変位して
も、レンズ2による光源1の焦点位置が常に測定
対象物表面5の近傍にある様にして、焦点位置の
狂いによる誤差の増大を防止するために例えば第
2図に示す様に2個のプリズム30,31で構成
する。プリズム30は移動部分21に固定され
て、移動部分21と共に動き、プリズム31は測
定対象物表面5の変位に伴なつて光軸8の長さが
変化する分だけ補償して、レンズ2と測定対象物
表面5の間の光学的な距離が一定になる様に移動
する。例えば移動部分21は、受光部の光軸9が
光軸8と測定対象物表面5の交点に略一致する様
に制御されれば、移動部分21の移動距離をdと
してd/2sinだけプリズム31を移動部分21
に対して動かせば良い。 The optical system 3 ensures that the focal position of the light source 1 by the lens 2 is always in the vicinity of the measurement object surface 5 even if the measurement object surface 5 is largely displaced, thereby preventing an increase in errors due to focal position deviation. For this purpose, for example, as shown in FIG. 2, two prisms 30 and 31 are used. The prism 30 is fixed to the movable part 21 and moves together with the movable part 21, and the prism 31 compensates for the change in the length of the optical axis 8 due to the displacement of the surface 5 of the object to be measured. It moves so that the optical distance between the object surfaces 5 becomes constant. For example, if the moving part 21 is controlled so that the optical axis 9 of the light receiving part substantially coincides with the intersection of the optical axis 8 and the surface 5 of the object to be measured, the prism 31 will move by d/2sin, where the moving distance of the moving part 21 is d. Move the part 21
You can move it against.
光学系3を通過した光は、ミラー4によつて適
当に位置決めされた後、測定対象物表面5に焦点
を結ぶ。 The light that has passed through the optical system 3 is properly positioned by a mirror 4 and then focused on the surface 5 of the object to be measured.
一方、移動部分21がこれと共に移動する受光
系のミラー11,光学系12の光軸9が、光軸8
と角度を保つたまま、測定対象物表面5上のス
ポツト光P0と交わる様に位置されていれば、P0か
らの反射光の内、光軸9の方向に進んだ光はミラ
ー1に入射し、光学系12を通過した後に、結像
レンズ13によつて偏差測定装置14の位置15
に結像する。光学系12は光学系3と同じ機能を
有するものである。測定対象物表面5が符号6の
位置に微少量△rだけ変位し、P0がPに移動した
時、光軸9も追従するとすれば移動部分21は△
dだけ移動する必要があるが、△rが微少量であ
れば、移動部分21が移動しなくても、P点の偏
差測定装置14に結像する点は光軸10にて示す
如く点16に移動するので、移動部分21が移動
すべき変位△dが偏差測定装置14で検出され偏
差信号17の△dが得られる。 On the other hand, the optical axis 9 of the mirror 11 and optical system 12 of the light receiving system, which the moving part 21 moves with, is the optical axis 8.
If the spot light P 0 on the surface 5 of the object to be measured intersects with the spot light P 0 while maintaining the same angle as After entering and passing through the optical system 12, the position 15 of the deviation measuring device 14 is determined by the imaging lens 13.
image is formed. The optical system 12 has the same function as the optical system 3. When the surface 5 of the object to be measured is displaced by a minute amount △r to the position 6 and P 0 moves to P, if the optical axis 9 also follows, the moving part 21 will be △
It is necessary to move by d, but if Δr is a small amount, even if the moving part 21 does not move, the point imaged on the deviation measuring device 14 of point P will be point 16 as shown on the optical axis 10. Therefore, the displacement Δd by which the moving part 21 should move is detected by the deviation measuring device 14, and the deviation signal 17 Δd is obtained.
一方、移動装置21の光軸9と光軸8の構成す
る三角形の底辺の長さd0を測定する変位測定装置
19から変位信号20のd0が得られ、前記偏差信
号17および変位信号20が信号処理装置22に
入力され、r=(d0+△d)/tanの関係よりP
点までの距離rを測定出来る。 On the other hand, the displacement signal 20 d 0 is obtained from the displacement measuring device 19 that measures the length d 0 of the base of the triangle formed by the optical axis 9 and the optical axis 8 of the moving device 21 , and the deviation signal 17 and the displacement signal 20 are obtained. is input to the signal processing device 22, and from the relationship r=(d 0 +△d)/tan, P
The distance r to a point can be measured.
測定対象物表面5が符号7の位置に大幅に移動
し、P0点がP0′に移動した時は、偏差測定装置1
4からの偏差信号(△d信号)17が移動装置1
8にフイードバツクされ、移動部分21を偏差信
号17がほぼ0(ゼロ)になる様に移動する。 When the surface 5 of the object to be measured moves significantly to the position 7 and the P 0 point moves to P 0 ', the deviation measuring device 1
The deviation signal (Δd signal) 17 from 4 is the mobile device 1
8, the movable portion 21 is moved so that the deviation signal 17 becomes approximately 0 (zero).
光源1は例えばHeNeレーザー、偏差測定装置
14は例えばリニアアレイが使用出来るが、これ
らに限定はしない。 The light source 1 can be, for example, a HeNe laser, and the deviation measuring device 14 can be, for example, a linear array, but the invention is not limited to these.
なお図中符号23は外部信号、24は測定信
号、25はミラー11が移動した状態を示してい
る。 In the figure, reference numeral 23 indicates an external signal, 24 indicates a measurement signal, and 25 indicates a state in which the mirror 11 has moved.
第3図は第1図の―方向矢視図であるが、
測定装置を傾け第1図の光軸8、光軸9を測定対
象物表面5に対し所要の角度θをとることもでき
る。 Figure 3 is a view taken in the - direction arrow of Figure 1.
It is also possible to tilt the measuring device so that the optical axes 8 and 9 in FIG. 1 form a required angle θ with respect to the surface 5 of the object to be measured.
また、この角度θを変化させることも可能であ
るが、この場合偏差測定装置14に結像する点1
5,16等偏差信号17の移動方向が角度θの変
化によつて変わると測定困難になるが、このよう
な問題は像回転装置27を光学系12と偏差測定
装置14との間に介在させることにより解決でき
る。 It is also possible to change this angle θ, but in this case, the point 1 imaged on the deviation measuring device 14
If the moving direction of the 5th, 16th, etc. deviation signal 17 changes due to a change in the angle θ, measurement becomes difficult, but such a problem can be solved by interposing the image rotation device 27 between the optical system 12 and the deviation measuring device 14. This can be solved by
この像回転装置27は、例えば第4図に示すよ
うにプリズム28を用いることにより具現化でき
る。 This image rotation device 27 can be realized, for example, by using a prism 28 as shown in FIG.
即ち入射光線29の像方向32は、プリズム2
8をθ/2回転させることにより出射光線33の
像方向34はθだけ回転する。 That is, the image direction 32 of the incident light ray 29 is
8 is rotated by θ/2, the image direction 34 of the emitted light beam 33 is rotated by θ.
以上述べたように本発明装置によれば、測定対
象までの距離を該対象が大きく変位しても高精度
に測定でき、且つこれを非接触状態で自動的に測
定することができるものである。 As described above, according to the device of the present invention, the distance to the object to be measured can be measured with high precision even if the object is largely displaced, and this can be automatically measured in a non-contact state. .
第1図は本発明による装置例を示し、第2図は
第1図の符号3部分の具体的構成例、第3図は第
1図―方向矢視図、第4図は第1図の符号2
7部分の具体的構成例を示している。
FIG. 1 shows an example of the device according to the present invention, FIG. 2 shows a specific configuration example of the part 3 in FIG. 1, FIG. 3 is a view taken from FIG. code 2
A specific example of the configuration of seven parts is shown.
Claims (1)
ポツト光を入射し測定対象表面上に微小スポツト
光を結像させるレンズと、該レンズと測定対象表
面との光学的距離を一定とする固定と移動自在な
プリズムあるいはレンズからなる入射光側の光学
系と、該光学系からの光軸に対し一定の角度を保
持して測定対象表面上の微小スポツト光からの反
射光を集光するミラーおよび固定と移動自在なプ
リズムあるいはレンズからなる光学系で構成され
た集光光学系と、該集光光学系の光軸と入射光側
の光軸との交点から測定対象表面上の微小スポツ
ト光までの偏差を光学的に測定する偏差測定装置
と、該偏差にもとずき前記入射光側の光学系と集
光光学系が載置された測定装置の移動部分を移動
させるサーボ装置と、前記移動部分の移動距離を
測定する変位測定装置と、前記偏差測定装置から
の偏差信号、変位測定装置からの変位信号および
測定対象表面に入射される光軸と集光光学系の光
軸とのなす角度から測定対象表面までの距離を計
算する信号処理装置とからなることを特徴とする
光学的距離測定装置。 2 スポツト光を発する光源と、該光源からのス
ポツト光を入射し測定対象表面上に微小スポツト
光を結像させるレンズと、該レンズと測定対象表
面との光学的距離を一定とする固定と移動自在な
プリズムあるいはレンズからなる入射光側の光学
系と、該光学系からの光軸に対し一定の角度を保
持して測定対象表面上の微小スポツト光からの反
射光を集光するミラーおよび固定と移動自在なプ
リズムあるいはレンズからなる光学系で構成され
た集光光学系と、該集光光学系の光軸と入射光側
の光軸との交点から測定対象表面上の微小スポツ
ト光までの偏差を光学的に測定する偏差測定装置
と、該偏差にもとずき前記入射光側の光学系と集
光光学系が載置された測定装置の移動部分を移動
させるサーボ装置と、前記移動部分の移動距離を
測定する変位測定装置と、前記偏差測定装置から
の偏差信号、変位測定装置からの変位信号および
測定対象表面に入射される光軸と集光光学系の光
軸とのなす角度から測定対象表面までの距離を計
算する信号処理装置とからなり、前記光源からの
光軸と、反射光を集光する集光光学系の光軸とが
作る平面が、光学的距離測定装置のある基準面と
なす角度を変化させ得るように偏差測定装置の前
方に像転回装置を併設して前記平面の回転に伴な
う偏差測定装置における像の回転を防ぐようにし
たことを特徴とする光学的距離測定装置。[Claims] 1. A light source that emits spot light, a lens that receives the spot light from the light source and forms a minute spot light on the surface to be measured, and an optical distance between the lens and the surface to be measured. An optical system on the incident light side consisting of a fixed and movable prism or lens, and a fixed angle to the optical axis from the optical system to capture reflected light from a minute spot light on the surface of the object to be measured. A condensing optical system consisting of an optical system consisting of a condensing mirror and a fixed and movable prism or lens; a deviation measuring device that optically measures the deviation of the light up to a minute spot light, and a moving part of the measuring device in which the optical system on the incident light side and the condensing optical system are mounted is moved based on the deviation. a servo device, a displacement measuring device that measures the moving distance of the moving part, a deviation signal from the deviation measuring device, a displacement signal from the displacement measuring device, an optical axis incident on the surface of the object to be measured, and a condensing optical system. An optical distance measuring device comprising: a signal processing device that calculates a distance to a surface to be measured from an angle formed with an optical axis. 2. A light source that emits spot light, a lens that receives the spot light from the light source and forms a minute spot light on the surface to be measured, and fixation and movement to keep the optical distance between the lens and the surface to be measured constant. An optical system on the incident light side consisting of a flexible prism or lens, and a fixed mirror that maintains a certain angle to the optical axis from the optical system and focuses the reflected light from a minute spot light on the surface of the measurement target. and a condensing optical system consisting of an optical system consisting of a movable prism or lens, and a light spot from the intersection of the optical axis of the condensing optical system and the optical axis on the incident light side to a minute spot light on the surface of the object to be measured. a deviation measuring device that optically measures a deviation; a servo device that moves a movable part of the measuring device on which the optical system on the incident light side and the condensing optical system are mounted based on the deviation; A displacement measuring device that measures the moving distance of the part, a deviation signal from the deviation measuring device, a displacement signal from the displacement measuring device, and an angle between the optical axis incident on the surface of the measurement target and the optical axis of the condensing optical system. The optical distance measuring device consists of a signal processing device that calculates the distance from the surface to the surface to be measured; An image rotation device is provided in front of the deviation measuring device so as to change the angle formed with a certain reference plane, thereby preventing rotation of the image in the deviation measuring device due to rotation of the plane. Optical distance measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5277277A JPS53138367A (en) | 1977-05-09 | 1977-05-09 | Optical distance measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5277277A JPS53138367A (en) | 1977-05-09 | 1977-05-09 | Optical distance measuring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53138367A JPS53138367A (en) | 1978-12-02 |
JPS6112203B2 true JPS6112203B2 (en) | 1986-04-07 |
Family
ID=12924148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5277277A Granted JPS53138367A (en) | 1977-05-09 | 1977-05-09 | Optical distance measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS53138367A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8302228A (en) * | 1983-06-22 | 1985-01-16 | Optische Ind De Oude Delft Nv | MEASURING SYSTEM FOR USING A TRIANGULAR PRINCIPLE, CONTACT-FREE MEASURING A DISTANCE GIVEN BY A SURFACE CONTOUR TO AN OBJECTIVE LEVEL. |
JP3259475B2 (en) * | 1993-10-27 | 2002-02-25 | ミノルタ株式会社 | Distance measuring device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS519623A (en) * | 1974-07-15 | 1976-01-26 | Matsushita Electric Ind Co Ltd | Isobunrigatakaraasatsuzosochi |
JPS5120907A (en) * | 1974-08-15 | 1976-02-19 | Dai Ichi Kogyo Seiyaku Co Ltd | SENJOZAI |
-
1977
- 1977-05-09 JP JP5277277A patent/JPS53138367A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS519623A (en) * | 1974-07-15 | 1976-01-26 | Matsushita Electric Ind Co Ltd | Isobunrigatakaraasatsuzosochi |
JPS5120907A (en) * | 1974-08-15 | 1976-02-19 | Dai Ichi Kogyo Seiyaku Co Ltd | SENJOZAI |
Also Published As
Publication number | Publication date |
---|---|
JPS53138367A (en) | 1978-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4764016A (en) | Instrument for measuring the topography of a surface | |
JP2913984B2 (en) | Tilt angle measuring device | |
US4356392A (en) | Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed | |
EP0208276B1 (en) | Optical measuring device | |
JP2771546B2 (en) | Hole inner surface measuring device | |
JP2618377B2 (en) | Apparatus with F-theta corrected telecentric objective for non-contact measurement | |
JPS5979104A (en) | Optical device | |
JPS6112203B2 (en) | ||
JPS6161070B2 (en) | ||
JPS57199909A (en) | Distance measuring device | |
JP2698446B2 (en) | Interval measuring device | |
JPH0479522B2 (en) | ||
JPH0721409B2 (en) | Optical distance detector | |
JPS6117908A (en) | Three-dimensional shape measuring instrument | |
JPS6242327Y2 (en) | ||
JP2609606B2 (en) | Optical pickup objective lens position detector | |
JPH0219403B2 (en) | ||
JPH03130639A (en) | Optical-axis aligning method for mtf measuring apparatus | |
JPH06137827A (en) | Optical level difference measuring apparatus | |
JPH0652168B2 (en) | Three-dimensional shape measuring device | |
SU754203A1 (en) | Photoelectric device for measuring angular turns | |
JPH08166209A (en) | Polygon mirror evaluating device | |
JPH01233310A (en) | Optical method and optical probe for measuring shape of surface | |
JP2973017B2 (en) | Focus detection device | |
JPH01267407A (en) | Displacement measuring apparatus |