JPH02145903A - Displacement measuring apparatus - Google Patents

Displacement measuring apparatus

Info

Publication number
JPH02145903A
JPH02145903A JP30019888A JP30019888A JPH02145903A JP H02145903 A JPH02145903 A JP H02145903A JP 30019888 A JP30019888 A JP 30019888A JP 30019888 A JP30019888 A JP 30019888A JP H02145903 A JPH02145903 A JP H02145903A
Authority
JP
Japan
Prior art keywords
measuring device
displacement
measured
probe
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30019888A
Other languages
Japanese (ja)
Inventor
Sakae Horyu
法隆 榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30019888A priority Critical patent/JPH02145903A/en
Publication of JPH02145903A publication Critical patent/JPH02145903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement in a direction vertical to the radius of a test specimen at a high accuracy in a non-contact manner by utilizing one light probe. CONSTITUTION:An area A and an area B are delimited by the centers of image sensors 6 and 7, the relation between, the difference of quantities of light obtained by the sensors 6 and 7, (A-B)/(A+B)(the difference is divided by A+B to normalize so that characteristic is made free from a total quantity of light) and the position of an objective lens 4 is as shown in Fig K. Then, a shape of a test specimen 1 is determined by characteristic in the same figure. In other words, a probe 8 is moved turning the test specimen 1 so as to be always focused and the current movement thereof is determined with a length measuring device XLM as displacement from a specified position. A focusing position of the objective lens 4 of the probe 8 is so set as to coincide with the center of rotation of the test specimen 1 beforehand and with this moment as reference, the shape of the test specimen 1 (radius) as determined from the position of the probe 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は変位測定装置に関し、例えば弾性変化する部材
のヤング率やポアソン比等の物性定数を光学的子役によ
り非接触、高精度に、しかも高速に測定することのでき
る変位測定装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a displacement measuring device, and is capable of measuring physical property constants such as Young's modulus and Poisson's ratio of elastically changing members non-contactly and with high precision using an optical probe. The present invention relates to a displacement measuring device that can perform high-speed measurement.

(従来の技術) 弾性材料の物性定数のうち材料の変形に関する例えばヤ
ング率やポアソン比は重要な諸定数の1つであり従来よ
り種々の方法で測定されている。
(Prior Art) Among the physical property constants of elastic materials, Young's modulus and Poisson's ratio, for example, related to material deformation are important constants and have been conventionally measured by various methods.

今被測定材料を斯面蹟Sの円筒形状に成形し該材料な力
Fで引張ったとき半径γかγ−Δγ。
When the material to be measured is formed into a cylindrical shape with a surface S and pulled with a force F, the radius γ or γ - Δγ.

長さ文が交+Δ見に変化したとするとヤング率Eとポア
ソン比δは 式より求めることができる。
Assuming that the length of the sentence changes to the intersection + Δ, the Young's modulus E and Poisson's ratio δ can be obtained from the formula.

従来よりヤング率Eとポアソン比δ等の物性定数を求め
る為の変位測定装置としては加用はショッパ形試験器等
により行い、伸びの測定は被測定物に予め付した標線間
を例^ばノギス等の測定手段を用いて譲材料に接触させ
て測定していた。
Conventionally, the displacement measuring device used to determine physical property constants such as Young's modulus E and Poisson's ratio δ is a Schopper type tester, etc., and elongation is measured between gauge lines pre-attached to the object to be measured. Measurement was carried out by contacting the material with a measuring device such as a vernier caliper.

一般に従来の測定方法ではミクロンオーダーの測定精度
を得るのは大変難しく、又被測定物に接触して行ってい
た為に柔らかい材料の場合は変形してしまい高精度に測
定するのが難しかった。
Generally, with conventional measurement methods, it is very difficult to obtain measurement accuracy on the order of microns, and since the measurement is performed by contacting the object to be measured, soft materials may be deformed, making it difficult to measure with high precision.

これに対してレーザを用いた半径測定器やリニアエンコ
ーダ簿は比較的高精度な測定が可能であり、種々な測定
方法が提案されている。
On the other hand, radius measuring instruments and linear encoders using lasers are capable of relatively highly accurate measurement, and various measurement methods have been proposed.

これらの測定方法は一般に被測定物に力を加えたまま測
定する必要がある為操作性が悪く、高精度な測定が難し
いという問題点があった。
These measurement methods generally have problems in that they have poor operability and are difficult to perform highly accurate measurements because it is necessary to measure while applying force to the object to be measured.

(発明が解決しようとする問題点) 本発明は光プローブを利用し、円筒形状に成形した被測
定物の半径平向と垂直方向の測定を非接触で高精度に行
うことができ、しかも装置全体の小型化及び操作性の良
い簡易な構成の変位測定装置の提供を特徴とする 特に2ビ一ム方式を採用することにより高速でしかも高
精度な測定を可能とした変位測定装置の提供を目的とし
ている。
(Problems to be Solved by the Invention) The present invention uses an optical probe to measure the radial direction and vertical direction of a cylindrical object to be measured with high precision in a non-contact manner. The purpose of the present invention is to provide a displacement measuring device that is compact in size and has a simple configuration with good operability.In particular, by adopting a two-beam system, it is possible to perform high-speed and highly accurate measurements. The purpose is

c問題点を解決する為の手段) 2つの光源からの光束を対物レンズの光軸から異った位
置に入射させた後、被測定物に集光し、被測定物に対す
る該対物レンズのその光軸方向のずれに対する被測定物
からの反射光の光軸と垂直方向のずれ看を2つのイメー
ジセンサ−で受光するようにしたプローブと該プローブ
を光軸方向に移動させる移動機構Xsと該移動機構xs
の移動噴を求める測長器X L )i’lと該測長′a
XLMからのデータを処理したり装置全体の制御を行う
$+制御回路部そして該測長器X L、 Mや該制御回
路部等からの各種の情報を蓄積する記憶部とを有し、こ
れらの要素を利用して被測定物の形状を求めていること
である。
(Means for solving problem C) After making the light beams from the two light sources incident on different positions from the optical axis of the objective lens, the light beams are focused on the object to be measured, and the beams of light from the objective lens relative to the object are focused. A probe configured to receive the deviation in the direction perpendicular to the optical axis of the reflected light from the object to be measured due to the deviation in the optical axis direction, a moving mechanism Xs for moving the probe in the optical axis direction, and a moving mechanism Xs for moving the probe in the optical axis direction. moving mechanism xs
Length measuring device X L ) i'l and the length measuring device 'a
It has a $+ control circuit section that processes data from the XLM and controls the entire device, and a storage section that stores various information from the length measuring devices XL, M, the control circuit section, etc. The shape of the object to be measured is determined using the following elements.

(実施例) 第1図は本発明の一実施例の要部概略図である。(Example) FIG. 1 is a schematic diagram of essential parts of an embodiment of the present invention.

同図において1は被測定物体でその一部には測定の除用
いる2本の水下標線が設けられている。
In the figure, reference numeral 1 denotes an object to be measured, and a part of the object is provided with two underwater gauge lines for use in measurement.

2.3は各々光源としてのレーザ、4は対物レンズでレ
ーザ2.3からの光束2a、3aが軸外から異った入射
角で入射し、又被測定物lからの反射光束が軸外から再
入射している。5は結像レンズ、6.7は各々COD等
のイメージセンサである。このうちイメージセンサ6は
対物レンズ4を介して被測定物1と略共役関係に配置さ
れ、イメージセンサ7は対物レンズ4と結像レンズ5を
介して被測定物1と略共役関係に配置されている。
2.3 is a laser as a light source, 4 is an objective lens, and the light beams 2a and 3a from the laser 2.3 are incident at different incident angles from off-axis, and the reflected light beam from the object to be measured l is off-axis. It is re-injecting from Reference numeral 5 represents an imaging lens, and reference numerals 6 and 7 each represent an image sensor such as a COD. Among these, the image sensor 6 is arranged in a substantially conjugate relationship with the object to be measured 1 through the objective lens 4, and the image sensor 7 is arranged in an approximately conjugate relationship with the object to be measured 1 through the objective lens 4 and the imaging lens 5. ing.

被測定物lからの反射光束のうち大きな角度で反射した
光束2aは対物レンズ4により集光されてイメージセン
サ6面上に集光されている。又被測定物lからの反射光
束のうち小さな角度で反射した光束3aは対物レンズ4
で集光された後反射jlllで反射し、結像レンズ5に
よりイメージセンサ7面上に集光している。
Among the reflected light beams from the object to be measured 1, a light beam 2a reflected at a large angle is condensed by the objective lens 4 and focused on the surface of the image sensor 6. Among the reflected light beams from the object to be measured 1, the light beam 3a reflected at a small angle is reflected by the objective lens 4.
After the light is focused, it is reflected by the reflection jllll, and is focused by the imaging lens 5 onto the surface of the image sensor 7.

LDはレーザドライバーでレーザ2.3を駆動制御して
いる。SDはセンサードライバであり、イメージセンサ
6.7を駆動制御している。
The LD uses a laser driver to drive and control the laser 2.3. SD is a sensor driver that drives and controls the image sensor 6.7.

8はプローブであり、2つのレーザ2.3、対物レンズ
4.結像レンズ5.2つのイメージセンサ6.7、レー
ザドライバLD、そしてセンサードライバSDとを有し
ている。
8 is a probe, which includes two lasers 2.3 and an objective lens 4. It has an imaging lens 5, two image sensors 6, 7, a laser driver LD, and a sensor driver SD.

xs、zsは各々移動機構としてのパルスステージであ
り、このうちパルスステージXSは対物レンズ4の光軸
方向にプローブ8を駆動させており、パルスステージz
Sは光軸と垂直方向にプローブ8を駆動させている。
xs and zs are pulse stages each serving as a moving mechanism. Of these, the pulse stage XS drives the probe 8 in the optical axis direction of the objective lens 4, and the pulse stage z
S drives the probe 8 in a direction perpendicular to the optical axis.

XLM、ZLMは各々測長器であり、このうち測長器X
LMは対物レンズ4の光軸方向を測長器ZLMは対物レ
ンズ4の光軸と垂直方向の測長を行っている。ECは伸
縮器であり、被測定物1に力を付加し、伸ばしたり縮め
たりしている。
XLM and ZLM are length measuring devices, among which length measuring device
LM measures the length in the optical axis direction of the objective lens 4, and ZLM measures the length in the direction perpendicular to the optical axis of the objective lens 4. EC is an expander, which applies force to the object to be measured 1 to extend or contract it.

L Cはロードセルであり、伸縮1lEcの伸縮力を測
定している。
LC is a load cell, which measures a stretching force of 11Ec.

θS1. θS2は各々パルスステージであり、被測定
物1を回転駆動させている。
θS1. Each of θS2 is a pulse stage, which rotates the object 1 to be measured.

CRはコントローラでありパルスステージxs、zs、
θS1、es2を駆動制御シティる。
CR is a controller and pulse stages xs, zs,
Drive control city θS1 and es2.

GOMPは制御回路部であり、各種の測定データを処理
し、又装置全体を駆動制御している。ASはアナログス
イッチであり、イメージセンサ6.7からの53号を必
要に応じて選択している。
GOMP is a control circuit unit that processes various measurement data and controls the entire device. AS is an analog switch, and selects No. 53 from image sensor 6.7 as necessary.

A/Dはアナログ−デジタル変換器でありイメージセン
サ6.7からの出力信号をアナログ量からデジタル量に
変換している0MEMOは記憶部であり、測長′aXL
M、ZLMや制御回路部COMP等からの種々の情報を
記憶している。
A/D is an analog-to-digital converter that converts the output signal from the image sensor 6.7 from an analog quantity to a digital quantity. MEMO is a storage unit and the length measurement 'aXL
It stores various information from M, ZLM, control circuit section COMP, etc.

1) PはCRTWの表示器、PRはプリンターであり
、制御回路部COMPからの信号をプリント出力してい
る。
1) P is a display of CRTW, and PR is a printer, which prints out signals from the control circuit section COMP.

次に本実施例において被測定物lを円筒形状に成形した
ときの半径γと断面積Sの測定方法について示す。
Next, a method for measuring the radius γ and the cross-sectional area S when the object to be measured l is formed into a cylindrical shape in this example will be described.

今対物レンズ4を介して被測定物1とイメージセンサ6
.7が合焦状態にあるときは、予め・イメージセンサ6
.7面上の光を分布が第2図の実線で示す曲線21のよ
うになり、又非合焦状態のときは点線で示す曲線22の
ように左右に横ずれを起こすように調整されている。
The object to be measured 1 and the image sensor 6 are now connected through the objective lens 4.
.. 7 is in focus, the image sensor 6
.. It is adjusted so that the distribution of light on the seven surfaces is as shown by a curve 21 shown by a solid line in FIG. 2, and when the lens is out of focus, there is a horizontal shift as shown by a curve 22 shown by a dotted line.

このときの横ずれ量は同じ横ずれ看に対してイメージセ
ンサ6上のずれ噛がイメージセンサ7上のずれ電の例え
ば100倍となるように結像レンズ5の焦点距離を設定
している。結像レンズ5なしでイメージセンサ6を共通
に使用し、同じずれ量の差を得ようとすると対物レンズ
4の有効径が増大してくる。この為、結像レンズ5なし
の場合はイメージセンサ6上のずれ量がイメージセンサ
7上のずれ晴に対して10倍程度までに設定するのが良
い。
At this time, the focal length of the imaging lens 5 is set so that the amount of lateral deviation on the image sensor 6 is, for example, 100 times the amount of lateral deviation on the image sensor 7 for the same lateral deviation. If an attempt is made to use the image sensor 6 in common without the imaging lens 5 and to obtain the same difference in displacement amount, the effective diameter of the objective lens 4 will increase. For this reason, when the imaging lens 5 is not used, it is preferable to set the amount of deviation on the image sensor 6 to about 10 times the amount of deviation on the image sensor 7.

又1本の光束だけででも異なるずれ積を得ることはでき
るが本発明の目的を良好に達成しようとするとイメージ
センサ上のずれ量が少なくなり感度が悪くなってくるの
で2本の光束を用いた方が良い。
Also, although it is possible to obtain different shift products using only one light beam, in order to achieve the purpose of the present invention, the amount of shift on the image sensor will decrease and the sensitivity will deteriorate, so two light beams are used. It's better to be there.

イメージセンサの中心を境にして領域Aと領域Bに分け
このときのセンサーで得られる光層の差(A −B)/
(A + B) (特性が金光噛に影響されないように
A+8で除して正規化している。)と対物レンズ4の位
置との関係を示すと第3図のようになる。同図において
点P3.24間は点Pl、P2間の100倍となってい
る。同図の特性より被測定物lの形状を求めている。
Divided into area A and area B with the center of the image sensor as the border, the difference in light layer obtained by the sensor at this time (A - B) /
The relationship between (A + B) (normalized by dividing by A + 8 so that the characteristics are not affected by golden light) and the position of the objective lens 4 is shown in FIG. 3. In the figure, the distance between points P3 and P24 is 100 times the distance between points P1 and P2. The shape of the object to be measured l is determined from the characteristics shown in the figure.

即ち本実施例では被測定物1を回転させつつプローブ8
が常に合焦状態となるように移動させ、このときの移動
贋を測長3X LMで所定位置からの変位置として求め
ている。
That is, in this embodiment, the probe 8 is rotated while the object to be measured 1 is rotated.
is moved so that it is always in focus, and the movement at this time is determined as a displacement from a predetermined position using length measurement 3X LM.

またはfめプローブ8の対物レンズ4の合焦位置を被測
定物lの回転中心に合致するように設定し、このときを
基準としてプローブ8の位置より被測定物lの形状(半
径)を求めている。
Alternatively, set the focusing position of the objective lens 4 of the f-th probe 8 to match the center of rotation of the object to be measured l, and use this time as a reference to determine the shape (radius) of the object to be measured l from the position of the probe 8. ing.

又本実施例では測定精度を向上させる為に点PL、P2
間の幅を例λば【μmとなるように構成した場合1合焦
状態から±05μm以上離れていると対物レンズ4の位
置が分かりにくくなるが、点P3、P4の幅が点P1.
P2間の100倍のt 0Ountとなるように設定し
ているのでこの特性からずれ屋が求まり合焦制御を次の
ように高精度かつ高速に行うことができる。
In addition, in this embodiment, in order to improve measurement accuracy, points PL and P2 are
If the width between points P3 and P4 is configured to be, for example, [μm], it will be difficult to determine the position of the objective lens 4 if the distance is more than ±05 μm from the in-focus state, but the width of points P3 and P4 is equal to the width of point P1.
Since it is set so that t 0 Ount is 100 times as large as that between P2, the deviation can be determined from this characteristic, and focusing control can be performed with high precision and high speed as follows.

第4図は本実施例において合焦制御を行う場合の一実施
例のフロチャートである。
FIG. 4 is a flowchart of an embodiment in which focusing control is performed in this embodiment.

同図においてレーザ3を点灯すると被測定物lからの反
射光束がイメージセンサ7に入射する。
In the figure, when the laser 3 is turned on, the reflected light beam from the object to be measured 1 enters the image sensor 7.

制御回路部COMPはイメージセンサ7から合焦状態か
らのずれIDに関する情報を読み出して第3図に示す特
性からずれ量りを演算し、ずれIDが±0゜5μm以内
(イメージセンサ6の検出範囲内)にあるかどうかチエ
ツクする。範囲外であればずれIDの値から必要なだけ
パルスステージXSを駆動する。又範囲内であればレー
ザ2を点灯して、イメージセンサ6の出力からずれID
を演算する。
The control circuit unit COMP reads information regarding the deviation ID from the in-focus state from the image sensor 7, calculates the deviation amount from the characteristics shown in FIG. ). If it is outside the range, pulse stage XS is driven as necessary from the value of shift ID. Also, if it is within the range, the laser 2 is turned on and the deviation ID from the output of the image sensor 6 is detected.
Calculate.

ずれ量りがパルスステージXSの1ステツプ分の長さS
Lより大きい場合にはパルスステージXSを更に駆動さ
せて合焦状態に近づける。■ステップの長さSLより小
さくなったら次のステップに進む。
The amount of deviation is the length S of one step of the pulse stage XS.
If it is larger than L, the pulse stage XS is further driven to bring it closer to the in-focus state. ■When the step length becomes smaller than SL, proceed to the next step.

第5図は被測定物lの半径γと断面積Sを求める一実施
例の70チヤートである。
FIG. 5 shows 70 charts of an example for determining the radius γ and cross-sectional area S of the object to be measured l.

被測定物1の半径γは合焦制御の終γ後に被測定物lの
回転中心を0としたときの測長器XLMからの出力信号
と合焦状態からのずれIDとの和または差として測定す
る。
The radius γ of the object to be measured 1 is calculated as the sum or difference between the output signal from the length measuring device Measure.

測定箇所Nはθラジアン間隔で測定を行うとすると N、  2x−一 θ となる、このとき半径γ、断面積Sは このときの結果はメモリMEMOに格納すると共に必要
に応じて表示mDPやプリンターPRより出力している
If the measurement point N is to be measured at intervals of θ radians, it will be N, 2x-1θ.In this case, the radius γ and the cross-sectional area S will be stored in the memory MEMO and displayed on the mDP or printer as necessary. It is output from PR.

次に本実施例において被測定ガニの高さ文の測定方法に
ついて示す。
Next, in this embodiment, a method for measuring the height of a crab to be measured will be described.

合波測定物l上に入射している光束の直径は対物レンズ
4への光軸からの入射位置が離れる程小さくなる。
The diameter of the beam incident on the multiplexing measurement object l becomes smaller as the incident position on the objective lens 4 is farther from the optical axis.

例えば第1図においてレーザ2.3からの光束の被測定
物1面上のスポット径2P、3Pは第6図に示すように
なる。このときのスポット径で被測定物1面上に設けら
れた標線を上方から下方へ光走査したときの反射光束は
単調に減少してい〈 。
For example, in FIG. 1, the spot diameters 2P and 3P of the light beam from the laser 2.3 on the surface of the object to be measured are as shown in FIG. At this time, the reflected light flux when the marked line provided on the surface of the object to be measured is optically scanned from above to below with the spot diameter decreases monotonically.

各スポットの反射光束2a、3aが減少して5sく様子
をスポット全体がf!A線にかかつてし1なし1ときを
「l」、スポット全体が標線にかかつているときをrO
Jとして示すと第7図のような曲線71.72となる。
The entire spot is f! "l" means 1 o'clock when there is no 1 on the A line, and rO means when the entire spot is on the marked line.
If it is indicated as J, it becomes a curve 71.72 as shown in FIG.

縦線の間隔はパルスステージZSの1ステツプ分に相当
し、0.1μm程度が可能である。
The interval between the vertical lines corresponds to one step of the pulse stage ZS, and can be approximately 0.1 μm.

双方の曲1i71.72は一点1”で交差する。このと
きの上下の標線のT点間を測定すれば高さβを求めるこ
とができる。
Both tracks 1i71 and 72 intersect at a point 1''.The height β can be determined by measuring between the T points of the upper and lower marked lines at this time.

交点Tの位置はある基準点から測定点までの長さしく測
長器で測定)と測定点から点Tまでの長さΔρによって
決まる。
The position of the intersection T is determined by the length from a certain reference point to the measurement point (measured with a length measuring device) and the length Δρ from the measurement point to point T.

パルスステージの1ステツプの長さを01μmとすると
Δ氾の最小値として01μm程度が可能である。
If the length of one step of the pulse stage is 01 .mu.m, the minimum value of the delta flood can be about 0.1 .mu.m.

第8図はこのときの高さ2を求める際の一実施例のブロ
ック図である。
FIG. 8 is a block diagram of an embodiment for determining the height 2 at this time.

パルスステージθ31、θS2を高さβの測定位置に相
当するOラジアンに合わせる。パルスステージZSを駆
動して被測定物lに設けている標線を越えるまでプロー
ブ8を高さ方向に移動させる。標線を越えたときのレー
ザ2.3からの反射光束Ll−A、L2・Aを各々記憶
部MEMOへ格納する。
The pulse stages θ31 and θS2 are adjusted to O radians corresponding to the measurement position of the height β. Pulse stage ZS is driven to move probe 8 in the height direction until it passes over a marked line provided on object to be measured l. The reflected light beams Ll-A and L2.A from the laser 2.3 when they cross the marked line are respectively stored in the storage unit MEMO.

その点から更にプローブ8を下方に移動させレーザ2か
らの反射光束が減少を始めたらパルスステージZSの1
ステツプ毎にレーザ2,3からの反射光束L1.L2と
測長器ZLMのデータを記憶部MEMOに格納する。
When the probe 8 is moved further downward from that point and the reflected light flux from the laser 2 begins to decrease, the pulse stage ZS 1
At each step, the reflected light beams L1 . The data of L2 and the length measuring device ZLM are stored in the storage unit MEMO.

更にプローブ8を下方に移動させてレーザ2.3からの
反射光束の変化がなくなったときの各々の反射光1iL
1・!、L2・lを記憶部MEMOに格納する。
When the probe 8 is further moved downward and there is no change in the reflected light flux from the laser 2.3, each reflected light 1iL
1.! , L2·l are stored in the storage unit MEMO.

反射光電L]、L2のデータを前述の各諸定数を用いて z−1,!−Ll・I Ll・A−Ll・I のように正規化する。この正規化したデータから両面線
の交点Tを求める。
Reflected photoelectricity L], L2 data using the above-mentioned constants, z-1,! -Ll・I Normalize as Ll・A−Ll・I. The intersection point T of the double-sided lines is determined from this normalized data.

このときの交点T近傍の曲線71.72を略直線とみな
して演算し長さ2を求めている。
At this time, the length 2 is calculated by regarding the curves 71 and 72 near the intersection T as substantially straight lines.

尚本実施例において標線として被測定物と被測定物の保
持器との境界を利用するようにしても良い。
In this embodiment, the boundary between the object to be measured and the holder of the object may be used as the gauge line.

(発明の効果) 以上のように本発明によれば1つの光プローブを利用し
、被測定物の半径平向と争点方向の測定を非接触で高精
度に行うことができ、しかも装置全体の小型化及び操作
性の良い簡易な構成の変位測定装置を達成することがで
きる。
(Effects of the Invention) As described above, according to the present invention, it is possible to measure the radial direction and the target direction of the object to be measured with high accuracy without contact using one optical probe, and moreover, It is possible to achieve a displacement measuring device that is compact and has a simple configuration with good operability.

又2ビ一ム方式を採用することにより高速でしかも高精
度な被測定物の変位測定を可能としている。
Furthermore, by adopting the two-beam method, it is possible to measure the displacement of the object to be measured at high speed and with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部概略図、第2図、第3
図は本発明に係るイメージセンサ上の光【11分布とイ
メージセンサからの出カイ3号の説明図、第4図は本発
明に係るプローブの合焦制御のフローチャート、第5図
は本発明において被測定物の半径と断面積を求めるフロ
ーチャート、第6図は本発明において被測定物上の標線
を光束が横切るときの説明図、第7図は第6図における
反射光の変化を示す説明図、第8図は本発明において被
測定物の長さβを求めるときのフローチャートである0
図中1は被測定物、2.3は光源、4は対物レンズ、5
は結像レンズ、6.7はイメージセンサ、8はプローブ
、xs、zsはパルスステージ、XLM、ZLMは測長
器、LDはレーザードライバ、SDはセンサードライバ
ーCOM−Pは制御回路部、MEMOは記憶部、である
。 第 図 第 図
Figure 1 is a schematic diagram of the main parts of an embodiment of the present invention, Figures 2 and 3.
The figure is an explanatory diagram of the light distribution on the image sensor according to the present invention and the output from the image sensor, Figure 4 is a flowchart of focusing control of the probe according to the present invention, and Figure 5 is A flowchart for determining the radius and cross-sectional area of the object to be measured, FIG. 6 is an explanatory diagram when a light beam crosses the marked line on the object to be measured in the present invention, and FIG. 7 is an explanation showing changes in reflected light in FIG. 6. 8 is a flowchart for determining the length β of the object to be measured in the present invention.
In the figure, 1 is the object to be measured, 2.3 is the light source, 4 is the objective lens, and 5
is an imaging lens, 6.7 is an image sensor, 8 is a probe, xs, zs are pulse stages, XLM, ZLM are length measuring devices, LD is a laser driver, SD is a sensor driver, COM-P is a control circuit, MEMO is a This is the storage section. Figure Figure

Claims (6)

【特許請求の範囲】[Claims] (1)2つの光源からの光束を対物レンズの光軸から異
った位置に入射させた後、被測定物に集光し、被測定物
に対する該対物レンズのその光軸方向のずれに対する被
測定物からの反射光の光軸と垂直方向のずれ量を2つの
イメージセンサーで受光するようにしたプローブと該プ
ローブを光軸方向に移動させる移動機構XSと該移動機
構XSの移動量を求める測長器XLMと該測長器XLM
からのデータを処理したり装置全体の制御を行う制御回
路部そして該測長器XLMや該制御回路部等からの各種
の情報を蓄積する記憶部とを有していることを特徴とす
る変位測定装置。
(1) After the light beams from the two light sources are incident on different positions from the optical axis of the objective lens, they are focused on the object to be measured, and Determining a probe configured to receive the amount of deviation in the direction perpendicular to the optical axis of the reflected light from the object to be measured using two image sensors, a moving mechanism XS that moves the probe in the optical axis direction, and the amount of movement of the moving mechanism XS. Length measuring device XLM and the length measuring device XLM
A displacement device characterized by having a control circuit unit that processes data from the XLM and controls the entire device, and a storage unit that stores various information from the length measuring device XLM, the control circuit unit, etc. measuring device.
(2)前記プローブを光軸と垂直方向に移動させる移動
機構ZSと該移動機構ZSの移動量を求める測長器ZL
Mとを有していることを特徴とする請求項1記載の変位
測定装置。
(2) A moving mechanism ZS that moves the probe in a direction perpendicular to the optical axis, and a length measuring device ZL that measures the amount of movement of the moving mechanism ZS.
2. The displacement measuring device according to claim 1, further comprising: M.
(3)被測定物に対して光軸と垂直方向に力を印加する
伸縮機構とこのときの力の量を求める測定器LCを有し
ていることを特徴とする請求項2記載の変位測定装置。
(3) Displacement measurement according to claim 2, further comprising a telescoping mechanism that applies a force to the object to be measured in a direction perpendicular to the optical axis, and a measuring device LC that measures the amount of force at this time. Device.
(4)所定方向に沿った変位を検出すべき被検物に第一
および第二光束を照射する照射手段と、被検物から反射
した第一光束を受光して被検物の前記所定方向に沿った
変位を粗検出する第一検出手段と、被検物から反射した
第二光束を受光して被検物の前記所定方向に沿った変位
を粗検出する第二検出手段と、を有することを特徴とす
る変位測定装置。
(4) irradiation means for irradiating the first and second light beams onto the object whose displacement along a predetermined direction is to be detected; and a second detection means that roughly detects the displacement of the test object along the predetermined direction by receiving a second light beam reflected from the test object. A displacement measuring device characterized by:
(5)前記第一検出手段は、被検物から反射した第一光
束が所定位置付近で受光されるまで前記照射手段を移動
させる手段と、該移動時の前記照射手段の移動量を検出
する移動量検出手段と、を有し、前記第二検出手段は、
前記移動手段による移動の後被検物から反射した第二光
束の受光位置により変位検出を行なうことを特徴とする
請求項4記載の変位測定装置。
(5) The first detection means includes means for moving the irradiation means until the first light beam reflected from the object is received near a predetermined position, and detecting the amount of movement of the irradiation means at the time of the movement. and a movement amount detection means, the second detection means comprising:
5. The displacement measuring device according to claim 4, wherein displacement is detected based on a receiving position of the second beam reflected from the object after movement by the moving means.
(6)前記照射手段は第一光束と第二光束とを異なる入
射角で被検物に照射することを特徴とする請求項4記載
の変位測定装置。
(6) The displacement measuring device according to claim 4, wherein the irradiation means irradiates the test object with the first beam and the second beam at different incident angles.
JP30019888A 1988-11-28 1988-11-28 Displacement measuring apparatus Pending JPH02145903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30019888A JPH02145903A (en) 1988-11-28 1988-11-28 Displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30019888A JPH02145903A (en) 1988-11-28 1988-11-28 Displacement measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02145903A true JPH02145903A (en) 1990-06-05

Family

ID=17881915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30019888A Pending JPH02145903A (en) 1988-11-28 1988-11-28 Displacement measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02145903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305358B2 (en) 2017-06-29 2022-04-19 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305358B2 (en) 2017-06-29 2022-04-19 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product

Similar Documents

Publication Publication Date Title
US8570532B2 (en) Noncontact surface shape measuring method and apparatus thereof
CN101793500B (en) Method and device for measuring central thickness of differential confocal lens
JPH0743251B2 (en) Optical displacement meter
JPH07103710A (en) Displacement detector
US5432330A (en) Two-stage detection noncontact positioning apparatus having a first light detector with a central slit
EP0208276A1 (en) Optical measuring device
JP2771546B2 (en) Hole inner surface measuring device
JPH02145903A (en) Displacement measuring apparatus
JPH0213810A (en) Linear encoder and linear scale
JPH04366711A (en) Displacement detecting device
JP2698446B2 (en) Interval measuring device
Brown et al. Industrial applications of an optical profilometer
JP2861927B2 (en) Method and apparatus for detecting inclination or height of optical multilayer object
JPH08261734A (en) Shape measuring apparatus
JP2672771B2 (en) Through hole inner diameter measuring device
JPH02188907A (en) Face-position detection apparatus
JPS63222207A (en) Apparatus for measuring depth of recessed part and thickness of film
JP2005311057A (en) Exposure device
JPS61223604A (en) Gap measuring instrument
JPH08334309A (en) Optical displacement-detecting apparatus
JP2529049B2 (en) Optical displacement meter
JPH05240624A (en) Optical measuring instrument
JPH0642163Y2 (en) Optical shape measuring device
JPH08304020A (en) Movement-accuracy measuring apparatus
JP2973017B2 (en) Focus detection device