JPS58661Y2 - Glass particle synthesis torch - Google Patents

Glass particle synthesis torch

Info

Publication number
JPS58661Y2
JPS58661Y2 JP9051678U JP9051678U JPS58661Y2 JP S58661 Y2 JPS58661 Y2 JP S58661Y2 JP 9051678 U JP9051678 U JP 9051678U JP 9051678 U JP9051678 U JP 9051678U JP S58661 Y2 JPS58661 Y2 JP S58661Y2
Authority
JP
Japan
Prior art keywords
gas outlet
glass
torch
outlet
synthesis torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9051678U
Other languages
Japanese (ja)
Other versions
JPS558650U (en
Inventor
昭一 須藤
文明 塙
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP9051678U priority Critical patent/JPS58661Y2/en
Publication of JPS558650U publication Critical patent/JPS558650U/ja
Application granted granted Critical
Publication of JPS58661Y2 publication Critical patent/JPS58661Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はガラス微粒子合成トーチに関するものである。[Detailed explanation of the idea] The present invention relates to a glass particle synthesis torch.

この種のガラス微粒子合成トーチ(以下、単に合成トー
チという。
This type of glass particle synthesis torch (hereinafter simply referred to as a synthesis torch).

)は第1図に示す方法いわゆるVAD法)により光フア
イバ母材を製造する場合に使用される。
) is used when manufacturing an optical fiber base material by the method shown in FIG. 1 (the so-called VAD method).

第1図において、合成トーチによって合成されたガラス
微粒子が付着、焼結して棒状ガラス焼結体(以下焼結体
という)2を形成する。
In FIG. 1, glass fine particles synthesized by a synthesis torch are attached and sintered to form a rod-shaped glass sintered body (hereinafter referred to as a sintered body) 2.

焼結体2は回転・引上げ装置3によって回転しながら引
上げられ、電気炉4の内に入る。
The sintered body 2 is rotated and pulled up by a rotation/lifting device 3 and enters an electric furnace 4 .

5は発熱体で、焼結体を1600−1700℃に加熱し
、透明なガラス体とする。
5 is a heating element that heats the sintered body to 1600-1700°C to form a transparent glass body.

この透明なガラス体が光フアイバ母材6である。This transparent glass body is the optical fiber base material 6.

7は保護容器、8は排気調整器である。通常VAD法で
は、ガラス微粒子の合或は、原料となる四塩化けい素、
四塩化ゲルマニューム、オキシ酸化りん、三臭化はう素
等を酸水素炎によって加水分解することによって行われ
るので、合成トーチ内の可燃性ガスの流出口と助燃性ガ
スの流出口の隔壁は非常に高温となる。
7 is a protective container, and 8 is an exhaust regulator. Normally, in the VAD method, silicon tetrachloride, which is the raw material for glass fine particles or
Because this process is carried out by hydrolyzing germanium tetrachloride, phosphorous oxyoxide, boron tribromide, etc. using an oxyhydrogen flame, the partition wall between the flammable gas outlet and the combustible gas outlet in the synthesis torch is extremely becomes high temperature.

従来、合成トーチの材料は、軟化点が高いことや、遷移
金属等の不純物(光ファイバの損失を増加する)の混入
がないことなどを考慮して、石英がラスが使用された。
Conventionally, quartz lath has been used as the material for synthetic torches because it has a high softening point and is free from impurities such as transition metals (which increase optical fiber loss).

しかしながら、石英ガラスは融点が約1650℃である
ほか、1000〜1713℃の範囲で失透(SiO2の
ガラス状態からの結晶化)を起こし、特性が劣化する。
However, quartz glass has a melting point of approximately 1650°C, and devitrification (crystallization from the glass state of SiO2) occurs in the range of 1000 to 1713°C, resulting in deterioration of properties.

このため、酸水素炎によって高温(1700〜2000
℃)に加熱される前記隔壁は、その先端部分から次第に
崩壊し、100〜200時間で合成トーチは使用不可能
となるという欠点があった。
For this reason, the oxyhydrogen flame causes high temperatures (1700 to 2000
C), the partition wall gradually collapses from its tip, and the synthesis torch becomes unusable after 100 to 200 hours.

特に、失透を起こすと石英ガラスは急速に劣化し、さら
に合成トーチの寿命は短くなる。
In particular, devitrification causes rapid deterioration of quartz glass and further shortens the life of the synthetic torch.

本考案は合成トーチの可燃性ガスの流出口と助燃性ガス
の流出口の隔壁に高温で軟化、失透しない材料(たとえ
ばサファイヤ)を使用したもので、その目的は隔壁の崩
壊を防ぎ、合成トーチを長時間使用できるようにするこ
とにある。
The present invention uses a material (such as sapphire) that does not soften or devitrify at high temperatures for the partition walls between the flammable gas outlet and the combustion supporting gas outlet of the synthesis torch.The purpose of this is to prevent the partition walls from collapsing and The purpose is to allow the torch to be used for a long time.

第2図は本考案の一実施例を示し、21は原料吹き出し
口、22はそれを取り囲む不活性ガス(たとえばAr、
He、N2等)の流出口、23は可燃性ガスの流出口、
24は助燃性ガスの流出口であり、また25は可燃性ガ
スの流出口と助燃性ガスの流出口の隔壁で材質はサファ
イヤである。
FIG. 2 shows an embodiment of the present invention, in which 21 is a raw material outlet, 22 is an inert gas surrounding it (for example, Ar,
23 is an outlet for flammable gas,
Reference numeral 24 indicates an outlet for the combustible gas, and 25 indicates a partition wall between the combustible gas outlet and the combustible gas outlet, which is made of sapphire.

サファイヤの融点は2040℃で、石英ガラスより高く
、また失透という特性劣化もないので、合成トーチは長
時間使用できる。
The melting point of sapphire is 2040°C, which is higher than that of quartz glass, and there is no property deterioration such as devitrification, so the synthetic torch can be used for a long time.

たとえば本考案の合成トーチを用いて可燃性ガスを毎分
51、助燃性ガスを毎分10 l流してガラス微粒子を
合或した場合、火炎の中心温度は1600〜1800℃
で、隔壁先端の温度は1500〜1600℃であるが、
サファイヤは特に石英ガラスに比べて熱伝導が2000
倍程度食いので、先端温度は低下し易く、隔壁は崩壊し
にくい。
For example, when using the synthesis torch of the present invention to flow 5 l/min of combustible gas and 10 l/min of combustible gas to coalesce glass particles, the center temperature of the flame will be 1600-1800°C.
The temperature at the tip of the partition wall is 1500 to 1600°C,
Sapphire has a thermal conductivity of 2000% compared to quartz glass.
Since it eats about twice as much, the temperature at the tip tends to drop and the partition wall is difficult to collapse.

この合成トーチは500〜1000時間劣化の少ない状
態で使用でき、毎時100gのガラス原料を供給してガ
ラス微粒子を合或し、焼結体を形成すれば1本の合成ト
ーチで12〜24 kgの光フアイバ母材(外径150
μmの光ファイバに線引きして300〜600Km相当
)を製造できた。
This synthesis torch can be used for 500 to 1000 hours with little deterioration, and if 100g of glass raw material is fed per hour to coalesce glass fine particles and form a sintered body, one synthesis torch can produce 12 to 24 kg. Optical fiber base material (outer diameter 150
It was possible to manufacture a 300 to 600 km long optical fiber by drawing it into a μm optical fiber.

以上説明したように、本考案の合成トーチは、可燃性ガ
スの流出口と助燃性ガスの流出口の隔壁に高温で軟化、
失透のない材料を使用したものであるから、合成トーチ
の寿命を大幅に向上できる利点がある。
As explained above, in the synthetic torch of the present invention, the partition wall between the flammable gas outlet and the combustible gas outlet is softened at high temperature.
Since it uses a material that does not devitrify, it has the advantage of greatly increasing the life of the synthetic torch.

さらに合成斗−チの寿命が長くなると、製造条件の均一
な光フアイバ母材を量産できるだけでなく、光ファイバ
の価格も低下できるという利点がある。
Furthermore, if the life of the synthetic beam is extended, there is an advantage that not only can optical fiber preforms with uniform manufacturing conditions be mass-produced, but also the price of optical fibers can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光フアイバ母材製造装置の概略図、第2図は本
考案の一実施例図であ。 1・・・・・・合成トーチ、2・・・・・・焼結体、3
・・・・・・回転・引上げ装置、4・・・・・・電気炉
、5・・・・・・発熱体、6・・・・・・光フアイバ母
材、7・・・・・・保護容器、8・・・・・・排気調整
器、21・・・・・・原料吹き出し口、22・・・・・
・不活性ガスの流出口、23・・・・・・可燃性ガスの
流出口、24・・・・・・助燃性ガスの流出口、25・
・・・・・サファイヤの隔壁。
FIG. 1 is a schematic diagram of an optical fiber preform manufacturing apparatus, and FIG. 2 is a diagram of an embodiment of the present invention. 1... Synthesis torch, 2... Sintered body, 3
...Rotating/pulling device, 4...Electric furnace, 5...Heating element, 6...Optical fiber base material, 7... Protective container, 8... Exhaust regulator, 21... Raw material outlet, 22...
・Inert gas outlet, 23... Flammable gas outlet, 24... Combustible gas outlet, 25.
...Sapphire bulkhead.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 可燃性ガスを燃焼させて作られる火炎中にガラス原料を
吹き込み、加水分解によってガラス微粒子を合成する、
中央に原料吹き出し口を有し、これを次々に取り囲む不
活性ガスの流出口、可燃性ガスの流出口、さらに助燃性
ガスの流出口を有する合成トーチにおいて、可燃性ガス
の流出口と助燃性ガスの流出口の間に、石英ガラスの軟
化点より高温で軟化、失透しない材料からなる隔壁を設
けたことを特徴とするガラス微粒子合成トーチ。
Glass raw materials are blown into a flame created by burning flammable gas, and glass particles are synthesized through hydrolysis.
In a synthesis torch that has a raw material outlet in the center, which is surrounded one after another by an inert gas outlet, a combustible gas outlet, and an auxiliary gas outlet, the combustible gas outlet and the combustion auxiliary gas outlet are A glass particle synthesis torch characterized in that a partition made of a material that does not soften or devitrify at a temperature higher than the softening point of quartz glass is provided between the gas outlet.
JP9051678U 1978-07-03 1978-07-03 Glass particle synthesis torch Expired JPS58661Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9051678U JPS58661Y2 (en) 1978-07-03 1978-07-03 Glass particle synthesis torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9051678U JPS58661Y2 (en) 1978-07-03 1978-07-03 Glass particle synthesis torch

Publications (2)

Publication Number Publication Date
JPS558650U JPS558650U (en) 1980-01-21
JPS58661Y2 true JPS58661Y2 (en) 1983-01-07

Family

ID=29018917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9051678U Expired JPS58661Y2 (en) 1978-07-03 1978-07-03 Glass particle synthesis torch

Country Status (1)

Country Link
JP (1) JPS58661Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777219A (en) * 1980-11-04 1982-05-14 Nissan Motor Co Ltd Air conditioner for vehicle
JPS5992927A (en) * 1982-11-15 1984-05-29 Shin Etsu Chem Co Ltd Preparation of parent material of focusing optical fiber

Also Published As

Publication number Publication date
JPS558650U (en) 1980-01-21

Similar Documents

Publication Publication Date Title
JPS58661Y2 (en) Glass particle synthesis torch
JPS6356178B2 (en)
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JPS6143290B2 (en)
JP4565221B2 (en) Optical fiber preform
JPS59184734A (en) Transparent vitrification process of optical porous glass
JPS5924741B2 (en) Manufacturing method of optical fiber base material
JP3064276B1 (en) Apparatus for producing porous preform for optical fiber and glass rod for optical fiber
JP2000128558A (en) Production of quartz glass preform for optical fiber
JP2994829B2 (en) Manufacturing method of preform for optical fiber
JPH0234895B2 (en) HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPS61101429A (en) Production of glass tube
JPH0333660B2 (en)
JPS62292650A (en) Method for clearly vitrifying porous glass
JPH0239457B2 (en)
JPS5910938B2 (en) Method of manufacturing optical transmission glass
KR100257142B1 (en) Manufacturing method of optical fiber preform using high purity quartz powder
JPS60180927A (en) Production of base material for optical fiber
JP3020920B2 (en) Method for producing glass preform for optical fiber
JPH04119940A (en) Production of glass body
JPS60255639A (en) Production of glass parent material for optical fiber
JPS59137333A (en) Manufacture of base material for optical fiber
JP2003300749A (en) Glass preform and method for fabricating glass preform
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPH06219765A (en) Production of preform for optical fiber