JPH0234895B2 - HIKARIFUAIBAYOBOZAINOSEIZOHOHO - Google Patents

HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Info

Publication number
JPH0234895B2
JPH0234895B2 JP5638585A JP5638585A JPH0234895B2 JP H0234895 B2 JPH0234895 B2 JP H0234895B2 JP 5638585 A JP5638585 A JP 5638585A JP 5638585 A JP5638585 A JP 5638585A JP H0234895 B2 JPH0234895 B2 JP H0234895B2
Authority
JP
Japan
Prior art keywords
glass tube
glass
rod
burner
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5638585A
Other languages
Japanese (ja)
Other versions
JPS61215229A (en
Inventor
Hiroo Kanamori
Ryuji Tono
Tsunehisa Kyodo
Akira Urano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5638585A priority Critical patent/JPH0234895B2/en
Publication of JPS61215229A publication Critical patent/JPS61215229A/en
Publication of JPH0234895B2 publication Critical patent/JPH0234895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、光フアイバ用母材の製造方法に関し
特にガラス管内にガラス棒を配置し、両者を加熱
一体化する工程を含む光フアイバ用母材の製造方
法に関するものである。
Detailed Description of the Invention <Industrial Field of Application> The present invention relates to a method for manufacturing an optical fiber base material, and in particular to a method for manufacturing an optical fiber base material, which includes a step of arranging a glass rod in a glass tube and heating and integrating the two. The invention relates to a method for manufacturing materials.

<従来の技術> 光フアイバ用母材、特に石英系光フアイバ用母
材の製造方法として、例えば、ロツドインチユー
ブ法、VAD法、MCVD法が知られている。ロツ
ドインチユーブ法では、コアとなる石英を主成分
とする高純度ガラス棒を、該コア部より屈折率の
低いクラツト部となる石英系ガラス管内に配置
し、両者を加熱一体化して棒状の光フアイバ用母
材とする。VAD法では、SiCl4等のガラス原料を
O2・H2等と共にガラス微粒子合成用バーナーに
送り込み、火炎加水分解反応により、火炎内で形
成させたガラス微粒子を、棒状出発材端部に堆積
させると共に、該出発材を回転させつつ軸方向に
移動させていくことにより、ガラス微粒子の堆積
体を軸方向に形成し、然るのちに該ガラス微粒子
の堆積体に、必要に応じて加熱脱水処理を施した
のち、これを加熱透明ガラス化し、棒状の高純度
な母材とする。この該母材を所定径に延伸し、石
英ガラス管内部に配置して、加熱一体化すること
により、線引可能な棒状光フアイバ用母材する。
<Prior Art> Known methods for producing optical fiber preforms, particularly quartz-based optical fiber preforms, include, for example, the rod inch tube method, VAD method, and MCVD method. In the rod-in-tube method, a high-purity glass rod containing quartz as the main component is placed inside a quartz-based glass tube that serves as a crat portion with a lower refractive index than the core portion, and the two are heated and integrated to form a rod-shaped rod. Used as base material for optical fiber. In the VAD method, glass raw materials such as SiCl 4 are
The glass particles are fed into a burner for synthesizing glass particles together with O 2 , H 2 , etc., and the glass particles formed in the flame are deposited on the end of the rod-shaped starting material through a flame hydrolysis reaction. A deposit of glass fine particles is formed in the axial direction, and then the deposit of glass fine particles is subjected to a heating dehydration treatment as required, and then heated to form transparent glass. , a rod-shaped high-purity base material. This base material is stretched to a predetermined diameter, placed inside a quartz glass tube, and heated and integrated to produce a base material for a drawable rod-shaped optical fiber.

MCVD法では、出発石英ガラス管内に、SiCl4
等のガラス原料とO2等を供給し、外部より加熱
することにより、高純度の石英を主成分とするガ
ラス層を該出発石英ガラス管内面上に形成させた
のち、該出発石英ガラス管を外部より加熱し、中
実化することにより、棒状の光フアイバ用母材と
する。又該棒状の光フアイバ用母材を他の石英管
内に配置し両者を加熱一体化する場合もある。
In the MCVD method, SiCl 4 is placed in the starting quartz glass tube.
A glass layer containing high-purity quartz as a main component is formed on the inner surface of the starting quartz glass tube by supplying glass raw materials such as O2, etc., and heating from the outside. By heating from the outside and solidifying it, it becomes a rod-shaped base material for optical fiber. In some cases, the rod-shaped optical fiber base material is placed inside another quartz tube and the two are heated and integrated.

上記のように、光フアイバ用母材製造時に於い
て、棒状ガラス母材をガラス管内に配置し、両者
を加熱一体化することが多い。
As mentioned above, when manufacturing an optical fiber preform, a rod-shaped glass preform is often placed inside a glass tube and the two are heated and integrated.

このような棒状ガラス母材(以下ガラス棒と云
う)とガラス管の一体化の方法は、第2図に模式
的に示した方法で、通常行なわれる。第2図に於
いて、1はガラス管、2はガラス管1の内部に配
置したガラス棒、3は加熱用バーナーである。ガ
ラス管1をガラス旋盤等に固定し、ガラス管1と
ガラス棒2と同期回転させつつ加熱用バーナー3
(以下バーナーと云う)をガラス管1の軸方向と
平行にガラス管1と相対的に移動させて行く。ガ
ラス管1は、加熱されることにより、径方向に収
縮し、軸方向に順次、ガラス棒2に融着して行
き、ガラス管1とガラス棒2は一体化される。
A method for integrating such a rod-shaped glass base material (hereinafter referred to as a glass rod) and a glass tube is normally carried out by the method schematically shown in FIG. 2. In FIG. 2, 1 is a glass tube, 2 is a glass rod placed inside the glass tube 1, and 3 is a heating burner. The glass tube 1 is fixed to a glass lathe or the like, and the heating burner 3 is rotated synchronously with the glass tube 1 and the glass rod 2.
(hereinafter referred to as a burner) is moved relative to the glass tube 1 in parallel to the axial direction of the glass tube 1. When heated, the glass tube 1 contracts in the radial direction and is sequentially fused to the glass rod 2 in the axial direction, so that the glass tube 1 and the glass rod 2 are integrated.

この際、ガラス管1とガラス棒2の間隙の空間
を減圧し、一体化を促進する場合もある。
At this time, the space between the glass tube 1 and the glass rod 2 may be depressurized to promote integration.

<発明が解決しようとする問題点> 上記のような、一体化の方法に於いて、未融着
部のガラス管1の内表面とガラス棒2の表面は、
バーナー3で十分加熱されることが望ましい。何
故ならば、ガラス表面を高温に加熱することによ
り、ガラス表面の粘性が下り、表面張力により、
ガラス表面に残存する凹凸や、微少な傷が消滅す
るので、ガラス管1の内表面とガラス棒2の表面
が平滑になる他、ガラス表面に付着している異物
を揮発させる効果もある。その結果、未融着部分
のガラス管1の内表面とガラス棒2の表面は十分
に加熱されることにより、一体化後の気泡の原因
となる凹凸、微少傷、異物等がなくなり、ガラス
管1とガラス棒2の界面での気泡をなくすことが
できる。
<Problems to be Solved by the Invention> In the above-described integration method, the inner surface of the unfused portion of the glass tube 1 and the surface of the glass rod 2 are
It is desirable that the burner 3 sufficiently heats. This is because by heating the glass surface to a high temperature, the viscosity of the glass surface decreases, and due to surface tension,
Since the unevenness and minute scratches remaining on the glass surface disappear, the inner surface of the glass tube 1 and the surface of the glass rod 2 become smooth, and there is also the effect of volatilizing foreign matter adhering to the glass surface. As a result, the unfused portions of the inner surface of the glass tube 1 and the surface of the glass rod 2 are sufficiently heated, so that unevenness, minute scratches, foreign objects, etc. that cause bubbles after integration are eliminated, and the glass tube Air bubbles at the interface between the glass rod 1 and the glass rod 2 can be eliminated.

又高温状態では、ガラス管1の内表面とガラス
棒2の表面の粘性が十分に下つているため、融着
時に誘起される界面の応力を低減でき、一体化後
のクラツクの発生や、光フアイバ内の残存応力に
よる伝送特性の劣化を防止することができる。
In addition, in high temperature conditions, the viscosity of the inner surface of the glass tube 1 and the surface of the glass rod 2 is sufficiently reduced, so the stress at the interface induced during fusion can be reduced, preventing the occurrence of cracks after integration and the light Deterioration of transmission characteristics due to residual stress within the fiber can be prevented.

然しながら、実際は、ガラス管1の内表面及び
ガラス棒2の表面を十分に加熱しようとして、ガ
ラス管1を外部から強く加熱すると、ガラス管1
の変形が生じたり、或いは、第3図に示すように
バーナー3進行方向側のバーナー3近傍のガラス
管1の温度のみが上昇し、ガラス管1の収縮が起
り始め、ガラス棒2の表面温度が十分に上昇しな
いうちに融着が始まる等不都合を生じ、安定な一
体化ができない場合が多い。
However, in reality, when glass tube 1 is strongly heated from the outside in an attempt to sufficiently heat the inner surface of glass tube 1 and the surface of glass rod 2, glass tube 1
Or, as shown in FIG. 3, the temperature of only the glass tube 1 near the burner 3 on the burner 3 advancing direction increases, the glass tube 1 begins to shrink, and the surface temperature of the glass rod 2 increases. In many cases, inconveniences occur such as fusion starting before the temperature rises sufficiently, and stable integration is often not possible.

特にガラス管1の肉厚が薄い場合には、外部か
らの加熱によるガラス管1の収縮や変形が生じ易
い。
Particularly when the glass tube 1 is thin, the glass tube 1 is likely to shrink or deform due to external heating.

<問題点を解決するための手段> 本発明は、上記問題点を解決するためにガラス
管1とガラス棒2を一体化するに際し、バーナー
3進行方向側のバーナー3近傍のガラス管1の未
融着部分の外表面を冷却することを提供する。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention, when integrating the glass tube 1 and the glass rod 2, solves the above-mentioned problem. Provide cooling of the outer surface of the fused portion.

<作 用> 第3図に示すように、ガラス管1とガラス棒2
の一体化の際にガラス棒2の表面及びガラス管1
の内表面の温度を十分に高くするためには、単に
バーナー3の火力を上げる或いはバーナー3の移
動速度を遅くして、ガラス管1の外部から加熱効
果を高めるだけでは不可能である。
<Function> As shown in Figure 3, the glass tube 1 and the glass rod 2
When integrating the glass rod 2 and the glass tube 1,
In order to raise the temperature of the inner surface of the glass tube 1 sufficiently, it is impossible to increase the heating effect from the outside of the glass tube 1 by simply increasing the firepower of the burner 3 or slowing down the moving speed of the burner 3.

何故ならば、ガラス管1の外部から強加熱する
だけでは、バーナー3進行方向側のバーナー3近
傍部に於いて、ガラス管1のみが収縮し得る温度
になつており、ガラス棒2の表面や、ガラス管1
の内面が十分に高温になり切つていない個所がで
き、該個所から一体化が進行してしまうからであ
る。そこで、鋭意研究結果、ガラス棒2の表面と
ガラス管1の内表面の温度が十分に高くなつてい
る状態で且つガラス管1が収縮しない状態をバー
ナー3進行方向側のバーナー3近傍のガラス管1
の表面を外部より強制的に冷却することにより実
現し、ガラス管1の内表面及びガラス棒2の表面
の未融着部分の温度を上げ得ることを見い出し
た。即ちバーナー3の進行方向側バーナー3の近
傍部に於いて、ガラス管1表面を強制的に冷却す
ることにより、冷却された部分でのガラス管1の
収縮を防止することができる一方、ガラス管1内
表面及びガラス棒2では、ガラス管1の熱伝導率
が小さいため、外部からの冷却によつても、さほ
ど温度が低下せず十分に加熱された状態を保て
る。
This is because, if the glass tube 1 is only strongly heated from the outside, the temperature in the vicinity of the burner 3 on the side in which the burner 3 advances will reach such a temperature that only the glass tube 1 can contract, and the surface of the glass rod 2 and , glass tube 1
This is because the inner surface of the material becomes sufficiently hot to create uncut areas, and integration proceeds from these areas. As a result of extensive research, we have determined that the temperature of the glass rod 2 and the inner surface of the glass tube 1 are sufficiently high, and that the glass tube 1 near the burner 3 on the burner 3 advancing direction is in a state in which the glass tube 1 does not contract. 1
It has been found that the temperature of the unfused portions of the inner surface of the glass tube 1 and the surface of the glass rod 2 can be increased by forcibly cooling the surface of the glass rod 2 from the outside. That is, by forcibly cooling the surface of the glass tube 1 in the vicinity of the burner 3 on the side in the advancing direction of the burner 3, shrinkage of the glass tube 1 in the cooled portion can be prevented, while the glass tube Since the thermal conductivity of the glass tube 1 is low on the inner surface of the glass tube 1 and the glass rod 2, the temperature does not drop much even with external cooling, and a sufficiently heated state can be maintained.

<実施例> VAD法により作製したGeO2を径方向平均で、
約35重量%含有した石英ガラス母材を、12mmφの
外径に延伸し、外径18.3mmφ、内径14mmφに成形
したガス管内に配置し、加熱用O2・H2バーナー
により、該ガラス管を外部から加熱しつつ、該バ
ーナーを20mm/分の速度で移動し、該ガラス管と
該ガラス母材を一体化した。この際第1図に模式
的に示すようにバーナー3近傍に内径8mmφの冷
却用ノズル4(以下ノズルと云う)を設け、N2
ガスを10/分の流量でノズル4に供給し、バー
ナー3の炎が集中し、ガラス管1が最も強く加熱
される部分から約15mm離れた所のガラス管1の外
表面に、N2ガスを吹きつけ、ガラス管1外表面
を常に冷却するようにした。その結果、ガラス管
1とガラス棒2の融着は、バーナー3の炎が集中
する場所とほぼ一致した所で進行すると共に、一
体化後、ガラス管1とガラス棒2の界面には、気
泡の発生がなかつた。
<Example> GeO 2 produced by the VAD method was averaged in the radial direction,
A quartz glass base material containing about 35% by weight was stretched to an outer diameter of 12 mmφ and placed in a gas tube formed into an outer diameter of 18.3 mmφ and an inner diameter of 14 mmφ, and the glass tube was heated with an O 2 H 2 burner for heating. While heating from the outside, the burner was moved at a speed of 20 mm/min to integrate the glass tube and the glass base material. At this time, as schematically shown in Fig. 1, a cooling nozzle 4 (hereinafter referred to as the nozzle) with an inner diameter of 8 mmφ is provided near the burner 3, and N 2
Gas is supplied to the nozzle 4 at a flow rate of 10/min, and N 2 gas is applied to the outer surface of the glass tube 1 at a distance of about 15 mm from the part where the flame of the burner 3 is concentrated and the glass tube 1 is heated most intensely. was sprayed to constantly cool the outer surface of the glass tube 1. As a result, the fusion between the glass tube 1 and the glass rod 2 progresses at a location that almost coincides with the location where the flame of the burner 3 is concentrated, and after the integration, there are bubbles at the interface between the glass tube 1 and the glass rod 2. There was no occurrence of

尚この時バーナー3には、O2の量35/分、
H2の量100/分を供給した。
At this time, burner 3 has an O 2 amount of 35/min.
A quantity of H2 of 100/min was supplied.

比較例 1 実施例と同一条件で、ノズル4を設けずに、ガ
ラス管1とガラス棒2の一体化を行つたところ、
融着はバーナー3の炎が集中する所から、バーナ
ー3の進行方向側に約5mm離れた場所で起つた。
この時ガラス管1とガラス棒2の界面には、一体
化後、多数の気泡が残存した。
Comparative Example 1 When the glass tube 1 and the glass rod 2 were integrated under the same conditions as in the example without providing the nozzle 4,
Fusion occurred at a location approximately 5 mm away from the location where burner 3's flame was concentrated in the direction of burner 3's movement.
At this time, many bubbles remained at the interface between the glass tube 1 and the glass rod 2 after they were integrated.

比較例 2 実施例に於いて、バーナー3に供給するH2
量を120/分、O2の量を40/分に増加させ、
且つノズル4を設けないで、一体化を行つたとこ
ろ、融着は、バーナー3の炎が集中する所から進
行方向側約10mm離れた場所で起つた。
Comparative Example 2 In the example, the amount of H 2 supplied to the burner 3 was increased to 120/min, the amount of O 2 was increased to 40/min,
When integration was performed without providing the nozzle 4, fusion occurred at a location approximately 10 mm away from the location where the flame of the burner 3 was concentrated in the advancing direction.

この時ガラス管1とガラス棒2の界面に多数の
気泡が存在すると共に、ガラス管1が収縮時不均
一に収縮し、一体化後、この母材に偏心を生じる
と共に、長手方向に曲りも生じた。
At this time, there are many bubbles at the interface between the glass tube 1 and the glass rod 2, and the glass tube 1 contracts unevenly when it contracts, causing eccentricity in the base material and bending in the longitudinal direction after integration. occured.

<発明の効果> 上記のように、本発明は、ガラス管とガラス棒
の一体化を気泡発生や、変形の不都合なく、安定
に行うために有効である。特に本発明は、使用す
るガラス管の肉厚が薄く、外部からの加熱によ
り、収縮や変形が生じ易い場合、或いは、ガラス
管内面や、ガラス棒の表面が汚染されていたり、
平滑でない場合により有効である。
<Effects of the Invention> As described above, the present invention is effective for stably integrating a glass tube and a glass rod without the problem of bubble generation or deformation. In particular, the present invention is suitable for cases where the glass tube used is thin and easily shrinks or deforms due to external heating, or when the inner surface of the glass tube or the surface of the glass rod is contaminated.
It is more effective when the surface is not smooth.

尚本発明では、ガラス管にN2ガスを吹きつけ
ることにより、ガラス管を冷却する方法のみを示
しているが、吹きつけるガスの種類は、取扱い容
易な不活性ガスや空気でも良い。又冷却方法もガ
スを吹きつける方法の他、水冷の方法も有効であ
る。又本発明は、加熱源として、バーナーを用い
るが、電気抵抗炉や誘導加熱炉等他の熱源に対し
ても有効である。
In the present invention, only a method of cooling the glass tube by blowing N 2 gas onto the glass tube is shown, but the type of gas to be sprayed may be an easily handled inert gas or air. As for the cooling method, in addition to the method of blowing gas, a method of water cooling is also effective. Although the present invention uses a burner as a heat source, it is also effective for other heat sources such as electric resistance furnaces and induction heating furnaces.

更にMCVD法等で行なわれるガラス管の中実
化に際しても、ガラス管内面の清浄平滑化や、中
実時の変形を緩和する目的にも、本発明は有効で
ある。
Furthermore, when solidifying a glass tube by MCVD or the like, the present invention is also effective for cleaning and smoothing the inner surface of the glass tube and mitigating deformation when the tube is solidified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施態様を模式的に示す図
である。第2図、第3図は、ガラス管とガラス棒
の融着一体化の方法を模式的に示す図で、第3図
は単にガラス管を強く加熱した時に繁々起る状態
を示す図である。 1はガラス管、2はガラス棒、3はバーナー、
4はノズルを示す。
FIG. 1 is a diagram schematically showing an embodiment of the present invention. Figures 2 and 3 are diagrams schematically showing the method of fusing and integrating a glass tube and a glass rod, and Figure 3 is a diagram simply showing a situation that often occurs when a glass tube is heated strongly. be. 1 is a glass tube, 2 is a glass rod, 3 is a burner,
4 indicates a nozzle.

Claims (1)

【特許請求の範囲】 1 光フアイバ用母材の製造工程において、ガラ
ス管内部にガラス棒を配置し、加熱源を該ガラス
管外部に設置し、該ガラス管の軸と平行に相対的
に移動しつつ、該ガラス管を加熱収縮させ、該ガ
ラス管を該ガラス棒に軸方向に順次融着させてい
き、該ガラス管と該ガラス棒を一体化するに際し
て、加熱源進行方向側の加熱源近傍の該ガラス管
の未融着部分の外表面を冷却することを特徴とす
る、光フアイバ用母材の製造方法。 2 前記ガラス管の未融着部分の外表面に気体を
吹きつけることにより、該未融着部分を冷却する
ことを特徴とする特許請求の範囲1項に記載の光
フアイバ用母材の製造方法。
[Claims] 1. In the process of manufacturing an optical fiber base material, a glass rod is placed inside a glass tube, a heating source is placed outside the glass tube, and the rod is moved relatively parallel to the axis of the glass tube. At the same time, the glass tube is heated and shrunk, and the glass tube is sequentially fused to the glass rod in the axial direction, and when the glass tube and the glass rod are integrated, A method for producing an optical fiber preform, comprising cooling the outer surface of the unfused portion of the glass tube in the vicinity. 2. The method for manufacturing an optical fiber base material according to claim 1, characterized in that the unfused portion of the glass tube is cooled by blowing gas onto the outer surface of the unfused portion. .
JP5638585A 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO Expired - Lifetime JPH0234895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5638585A JPH0234895B2 (en) 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5638585A JPH0234895B2 (en) 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS61215229A JPS61215229A (en) 1986-09-25
JPH0234895B2 true JPH0234895B2 (en) 1990-08-07

Family

ID=13025779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5638585A Expired - Lifetime JPH0234895B2 (en) 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0234895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595136U (en) * 1992-05-23 1993-12-24 株式会社東洋工機 Harness protector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848998A (en) * 1988-01-21 1989-07-18 Polaroid Corporation Selective volitization method for preparing fiber optics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595136U (en) * 1992-05-23 1993-12-24 株式会社東洋工機 Harness protector

Also Published As

Publication number Publication date
JPS61215229A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
EP1001912B1 (en) Apparatus and method for overcladding optical fiber preform rod and optical fiber drawing method
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
KR970006994B1 (en) Method of flame grinding glass preform
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
JP5213116B2 (en) Method for manufacturing preform for optical fiber
JP2003089541A (en) Optical fiber preform and method for manufacturing the same
EP0432791B1 (en) Method for heating glass body
EP0612701B1 (en) Vapour axial deposition process for making optical fibre preforms
JPH0234895B2 (en) HIKARIFUAIBAYOBOZAINOSEIZOHOHO
KR100979895B1 (en) Manufacture of high purity glass tubes
JP3895644B2 (en) Vitrification method of porous soot body of optical fiber preform
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP5380018B2 (en) Optical fiber preform manufacturing method
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JPH05221681A (en) Manufacture of optical fiber
JP3498590B2 (en) Manufacturing method of preform for optical fiber
KR19980075318A (en) Optical fiber base material over cladding method and optical fiber drawing method
KR100251773B1 (en) Over cladding method of manufacturing optical fiber
JP3169358B2 (en) Heating method for optical fiber preform
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JP3758596B2 (en) Glass base material and glass base material processing method
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
KR100762611B1 (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission
JPS604980Y2 (en) optical fiber spinning furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term