JPS5924741B2 - Manufacturing method of optical fiber base material - Google Patents

Manufacturing method of optical fiber base material

Info

Publication number
JPS5924741B2
JPS5924741B2 JP9112979A JP9112979A JPS5924741B2 JP S5924741 B2 JPS5924741 B2 JP S5924741B2 JP 9112979 A JP9112979 A JP 9112979A JP 9112979 A JP9112979 A JP 9112979A JP S5924741 B2 JPS5924741 B2 JP S5924741B2
Authority
JP
Japan
Prior art keywords
base material
manufacturing
optical fiber
heated
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9112979A
Other languages
Japanese (ja)
Other versions
JPS5614441A (en
Inventor
隆夫 枝広
国生 藤原
耕三 吉村
直樹 吉岡
裕男 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9112979A priority Critical patent/JPS5924741B2/en
Publication of JPS5614441A publication Critical patent/JPS5614441A/en
Publication of JPS5924741B2 publication Critical patent/JPS5924741B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01251Reshaping the ends
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/47Shaping the preform draw bulb before or during drawing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光通信用ファイバの母材を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a preform for an optical communication fiber.

光通信用ガラスファイバの代表的な製造方法として内す
す付法、軸付法および頭ノドインチユーブ法などがある
Typical manufacturing methods for glass fibers for optical communications include the internal soot attaching method, the shaft attachment method, and the head throat incubation method.

いずれも、コア材としてドーパントを含むシリカ系ガラ
ス、クラッド乃至ジャケットとして、純粋石英ガラスも
しくは屈折率をコア材より低くするためのドーパントを
含むシリカ系ガラスを用いて1000℃以上の高温に加
熱後冷却する工程を経て母材(プリフオーム)を形成し
、これを再度加熱溶融して線引きしファイバを得ている
In both cases, silica-based glass containing a dopant is used as the core material, and pure silica glass or silica-based glass containing a dopant to lower the refractive index than the core material is used as the cladding or jacket, and is heated to a high temperature of 1000°C or higher and then cooled. A base material (preform) is formed through this process, and this is heated and melted again to obtain a fiber.

従来これらの製法において、母材の成形、冷却加熱過程
においては母材に割れを生じることが多い。その理由は
。1 ドーパントを含むガラスは純粋石英ガラスに比べ
熱膨脹係数が大きく、冷却加熱過程で外周部と内部の間
に熱残留歪、もしくは熱残留応力が生じる。
Conventionally, in these manufacturing methods, cracks often occur in the base material during the molding, cooling and heating processes of the base material. The reason is. 1 Glass containing dopants has a larger thermal expansion coefficient than pure silica glass, and thermal residual strain or thermal residual stress is generated between the outer periphery and the interior during the cooling and heating process.

2 母材形成に際しドーパント量の異る材質を組合せた
ものを冷却もしくは加熱するため、異る材質問相互の熱
膨脹係数の差により熱残留歪、乃至熱残留応力を生じる
ことが原因である。
2. When forming the base material, a combination of materials with different amounts of dopants is cooled or heated, which causes thermal residual strain or thermal residual stress to occur due to the difference in thermal expansion coefficient between the different materials.

特にコアとクラッドの屈折率差(開口数)の大きいファ
イバを製造する場合、母材相互間の熱膨脹係数の差も比
例的に大きい場合が一般であり、母材の冷却加熱時に熱
歪が過多となつて破損する頻度は極めて大きい。従来こ
れに対し急熱急冷を避け、長時間かけて徐熱・徐冷する
ことにより残留歪を緩和するなどの方策がとられている
In particular, when manufacturing fibers with a large refractive index difference (numerical aperture) between the core and cladding, the difference in thermal expansion coefficients between the base materials is generally proportionally large, resulting in excessive thermal distortion during cooling and heating of the base material. The frequency of damage is extremely high. Conventionally, measures have been taken to avoid rapid heating and cooling, and to reduce residual strain by slowly heating and cooling over a long period of time.

しかし、長時間の徐熱、徐冷をおこなうことは、工業的
製造プロセスとしては、製造速度、エネルギーコストの
点で好ましくない。
However, prolonged slow heating and slow cooling is not preferable in terms of production speed and energy cost as an industrial manufacturing process.

本発明は、これらの問題点を解決し、短時間で加熱、冷
却をおこなつても破損することのない母材の成形法を提
示するものである。
The present invention solves these problems and presents a method for molding a base material that does not break even when heated and cooled in a short time.

その特徴とするところは半径方向に所望の屈折率分布を
有するガラス又はガラス微粒子からなる円柱又は円筒体
あるいはこれらの複合体を加熱溶融して透明なガラスの
円柱体を形成するとともに該円柱の両端を加熱延伸し端
部を針状とすることである。以下に1例として、ロツド
インチユーブ法による母材製造について説明する。
The feature is that a cylinder or a cylinder made of glass or glass fine particles having a desired refractive index distribution in the radial direction, or a composite thereof is heated and melted to form a transparent glass cylinder, and both ends of the cylinder are heated and melted. is heated and stretched to make the ends needle-like. As an example, the production of the base material by the rod inch tube method will be described below.

ロツドインチユーブ法には2通りの方法が挙げられる。There are two methods for the rod incubation method.

一つはコア用ロツドをクラツドもしくはジヤケツト用チ
ユーブに挿入し、そのまま加熱して、一体化すると同時
に線引するものであり、この場合一般には前述の割れを
生じることはないが、コアとクラツドの境界に生じた不
整(空気・塵あいの混入など)を目視・管理することが
難しく、また、ロツドとチユーブとの間の加熱時の粘度
の違いのため、加熱時の流動の制御が難しく、コア径・
フアイバ外径のコントロールが難しい欠点がある。これ
らの欠点を解消する目的として線引き前の段階でチユー
ブを縮径(コラプス)してロツドと一体化した母材(プ
リフオーム)とすることが好しい。第1図にこのプロセ
スの一例を示す。純粋石英のチユーブ2にドーパントを
含むシリカガラスロツド1を挿入し、熱源3に一定速度
で送り込み、2をコラプスして一体化する。第2図はこ
のようにして得た母材であるが、コア材ロツド5とクラ
ツド(ジヤケツト)チユーブ@との間には冷却時並びに
再加熱時、熱歪を生じる。
One is to insert the core rod into the cladding or jacket tube, heat it as it is, integrate it, and draw it at the same time.In this case, the above-mentioned cracks generally do not occur, but the core and cladding are separated. It is difficult to visually inspect and control irregularities that occur at the boundary (such as air and dust intrusion), and because of the difference in viscosity during heating between the rod and tube, it is difficult to control the flow during heating, and the core Diameter/
The disadvantage is that it is difficult to control the fiber outer diameter. In order to eliminate these drawbacks, it is preferable to collapse the tube to form a base material (preform) that is integrated with the rod before wire drawing. An example of this process is shown in FIG. A silica glass rod 1 containing a dopant is inserted into a pure quartz tube 2, and fed into a heat source 3 at a constant speed to collapse and integrate the rods 2. FIG. 2 shows the base material obtained in this manner, and thermal strain occurs between the core material rod 5 and the clad (jacket) tube during cooling and reheating.

一般に、残留歪(応力)分布が不連続となる両端部0も
しくは5を起点として、亀裂を生じプリフオーム長手方
向に伝播して破損する。本発明を第3図、第4図につい
て説明する。
Generally, cracks are generated starting at both ends 0 or 5 where the residual strain (stress) distribution is discontinuous, propagating in the longitudinal direction of the preform and causing damage. The present invention will be explained with reference to FIGS. 3 and 4.

コラプス開始時、始端5をコラプスして後、直ちに始端
部のみを引伸しをおこなう、その後コラプスを継続し、
終端部についてもコラプス終了直後、同様に引伸しをお
こない両端部を細径とした第4図に示す形状に仕上げる
。第2図の場合に両端部には残留歪の不連続点を持ち、
これを起点とする亀裂を発生するが、第4図の場合には
実質的に不連続点をなくすことが出来るため、亀裂の起
点がない。
When starting collapse, after collapsing the starting edge 5, immediately stretch only the starting edge, then continue collapsing,
Immediately after the collapse, the end portions are similarly stretched to create the shape shown in FIG. 4 with both ends having a narrow diameter. In the case of Figure 2, there are discontinuous points of residual strain at both ends,
A crack is generated starting from this point, but in the case of FIG. 4, the discontinuity point can be substantially eliminated, so there is no starting point for a crack.

従つてこの母材は比較的急熱・急冷のプロセスを径ても
破損することがない。より具体的な例について以下に述
べる。
Therefore, this base material will not be damaged even if it undergoes relatively rapid heating and cooling processes. A more specific example will be described below.

VAD法で作製した屈折率差2.5%のGeO2一Si
O2ガラスを加熱延伸し14mmφのガラス棒に加工し
た。
GeO2-Si with a refractive index difference of 2.5% produced by VAD method
O2 glass was heated and stretched to form a glass rod with a diameter of 14 mm.

これを外径24mmφ内径20m7!Lの石英パイプ中
に挿入し石英パイプの片端を封じて内部を減圧しながら
外部より酸水素炎で加熱して溶着しプリフオームとした
。この時溶着後の両端は特別に加工を行なわず約1時間
室温に放置したところGeO2−SiO2ガラスが石英
パイプと溶着している両端からひび割れが生じていた。
更にこれを24時間放置したところプリフオーム全体に
ひび割れが進行し、まつたく使用不可能なものとなつた
This has an outer diameter of 24mm and an inner diameter of 20m7! It was inserted into a L quartz pipe, one end of the quartz pipe was sealed, and while the inside was depressurized, it was heated from the outside with an oxyhydrogen flame and welded to form a preform. At this time, both ends after welding were not specially processed and were left at room temperature for about 1 hour, and cracks appeared at both ends where the GeO2-SiO2 glass was welded to the quartz pipe.
Furthermore, when this was left for 24 hours, cracks developed throughout the preform and it became unusable.

次に、同じ屈折率差をもつAD法により作製した母材を
24mmφ/20m1Lφの同じ寸法の石英パイプに前
記と同様のコラツプスを行つたものに、コラツプス後直
ちに両端部を延伸し針状とした。形状は第4図に示す如
きものである。このプリフオームは24時間経過して放
置してもひび割れは観察されなかつた。本発明の方法に
よりコア・クラツド材質として熱膨脹係数が大巾に異る
材質を組合せることが可能であり、コア・クラツド間の
屈折率差の大きい、大開口数のフアイバの製造が可能で
ある。
Next, a base material made by the AD method with the same refractive index difference was collapsed into a quartz pipe of the same size of 24 mmφ/20 m1Lφ in the same manner as above, and immediately after the collapse, both ends were stretched to form a needle shape. . The shape is as shown in FIG. No cracks were observed in this preform even after it was left for 24 hours. By the method of the present invention, it is possible to combine materials with widely different thermal expansion coefficients as the core and cladding materials, and it is possible to manufacture a fiber with a large numerical aperture and a large difference in refractive index between the core and cladding. .

本発明は、ロツドインチユーブ法の他、内すす付法、軸
付法等の母材製造にも適用することが出来る。
In addition to the rod inch tube method, the present invention can also be applied to base material manufacturing using the internal soot attaching method, the shaft attaching method, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製法の概略図、第2図は第1図によつて
製造された母材、第3図は本発明による製法の概略図、
第4図は第3図によつて製造された母材、1,11,2
1,41はコア;2,12,22,42はクラツド;3
,23は熱源;14,15は母材の端部。
FIG. 1 is a schematic diagram of a conventional manufacturing method, FIG. 2 is a base material manufactured by FIG. 1, and FIG. 3 is a schematic diagram of a manufacturing method according to the present invention.
Figure 4 shows the base materials 1, 11, 2 manufactured according to Figure 3.
1, 41 are core; 2, 12, 22, 42 are clad; 3
, 23 is a heat source; 14 and 15 are the ends of the base material.

Claims (1)

【特許請求の範囲】[Claims] 1 半径方向に所望の屈折率分布を有するガラスの円柱
又は円筒体あるいはこれらの複合体を加熱溶融して透明
なガラスの円柱体を形成する際に円柱体の形成後直ちに
円柱の両端を加熱延伸し端部を針状とすることを特徴と
する光ファイバ母材の製造方法。
1. When forming a transparent glass cylinder by heating and melting a glass cylinder or cylindrical body having a desired refractive index distribution in the radial direction, or a composite thereof, immediately after forming the cylinder, both ends of the cylinder are heated and stretched. A method for manufacturing an optical fiber preform, characterized in that the end portion is needle-shaped.
JP9112979A 1979-07-17 1979-07-17 Manufacturing method of optical fiber base material Expired JPS5924741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9112979A JPS5924741B2 (en) 1979-07-17 1979-07-17 Manufacturing method of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9112979A JPS5924741B2 (en) 1979-07-17 1979-07-17 Manufacturing method of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS5614441A JPS5614441A (en) 1981-02-12
JPS5924741B2 true JPS5924741B2 (en) 1984-06-12

Family

ID=14017917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9112979A Expired JPS5924741B2 (en) 1979-07-17 1979-07-17 Manufacturing method of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS5924741B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914507A1 (en) * 1999-03-30 2000-10-05 Siecor Fertigungsgesellschaft Heat treatment equipment, especially for heating an optical glass fiber preform, comprises a heating chamber with a top inlet, a bottom outlet and one or more side burner openings
NL1014374C2 (en) 2000-02-14 2001-08-15 Draka Fibre Technology Bv Rod-shaped molded part for manufacturing an optical fiber therefrom, method for manufacturing such a rod-shaped molded part, and method for manufacturing an optical fiber using such a rod-shaped molded part.
CN107337345B (en) 2016-05-03 2022-07-05 贺利氏石英北美有限责任公司 Elongation method and preform for producing an optical glass component
EP3683195A1 (en) 2019-01-15 2020-07-22 Heraeus Quartz North America LLC Automated large outside diameter preform tipping process

Also Published As

Publication number Publication date
JPS5614441A (en) 1981-02-12

Similar Documents

Publication Publication Date Title
JP3775548B2 (en) Welding method
JPH052118A (en) Optical fiber and production thereof
KR100426385B1 (en) Optical fiber and how to make it
JPH04270132A (en) Production of glass matrix for optical fiber
JPS5924741B2 (en) Manufacturing method of optical fiber base material
JPH01153551A (en) Production of optical fiber having definite polarization
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JPS627130B2 (en)
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JP4565221B2 (en) Optical fiber preform
KR20010062341A (en) Process for fabricating silica tube with low bow
JP2521186B2 (en) Glass body manufacturing method
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPS58661Y2 (en) Glass particle synthesis torch
JP4252834B2 (en) Optical fiber preform manufacturing method
JPH0818842B2 (en) Method for manufacturing base material for optical fiber
JP2000203860A (en) Large-sized quartz glass reform
JPH0710580A (en) Production of optical fiber preform
JPS60255639A (en) Production of glass parent material for optical fiber
JPS61101429A (en) Production of glass tube
JPS5951502B2 (en) Optical fiber manufacturing method
JPH0239457B2 (en)
JPS62176933A (en) Production of preform for optical fiber
JPS61215229A (en) Production of parent material for optical fiber
JPS59156928A (en) Manufacture of preform for optical fiber