JPS5853055B2 - Manufacturing method of permanent magnet material - Google Patents

Manufacturing method of permanent magnet material

Info

Publication number
JPS5853055B2
JPS5853055B2 JP56081840A JP8184081A JPS5853055B2 JP S5853055 B2 JPS5853055 B2 JP S5853055B2 JP 56081840 A JP56081840 A JP 56081840A JP 8184081 A JP8184081 A JP 8184081A JP S5853055 B2 JPS5853055 B2 JP S5853055B2
Authority
JP
Japan
Prior art keywords
temperature
permanent magnet
magnet material
manufacturing
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56081840A
Other languages
Japanese (ja)
Other versions
JPS57198228A (en
Inventor
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP56081840A priority Critical patent/JPS5853055B2/en
Publication of JPS57198228A publication Critical patent/JPS57198228A/en
Publication of JPS5853055B2 publication Critical patent/JPS5853055B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は希土類金属(以下Rと記す)とCoの金属間化
合物、特にR2C017系永久磁石の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an intermetallic compound of a rare earth metal (hereinafter referred to as R) and Co, particularly an R2C017 permanent magnet.

本発明に用いる希土類コバルト磁石としては、サマリウ
ムSm 24〜28 w t %、銅CuO〜20 w
t%、鉄FeO〜35wt%、ジルコニウムZrO〜
15wt%、チタンTiO〜1wt%(以上Oを含まず
)、残りは実質的にコバルトCoからなるS m −C
u −F e −Z r −T 1−Co系の合金で、
この合金は、残留磁束密度(Br )、保磁力IHcが
大きく、エネルギー積((BH)max)が大きく、ま
たキュリ一温度が高く、磁石特性のすぐれた永久磁石で
ある。
The rare earth cobalt magnet used in the present invention includes samarium Sm 24 to 28 wt% and copper CuO to 20 wt%.
t%, iron FeO~35wt%, zirconium ZrO~
15 wt%, titanium TiO to 1 wt% (not including O), and the remainder substantially consists of cobalt Co. S m -C
u -F e -Z r -T 1-Co alloy,
This alloy has a large residual magnetic flux density (Br), a large coercive force IHc, a large energy product ((BH)max), a high Curie temperature, and is a permanent magnet with excellent magnetic properties.

一般に本系永久磁石は、溶解、粗および微粉砕、磁場中
成型、焼結、溶体化処理(時効)の製造工程を経て得ら
れる。
Generally, permanent magnets of this type are obtained through manufacturing processes including melting, coarse and fine pulverization, molding in a magnetic field, sintering, and solution treatment (aging).

溶解はレビテーションアーク、高周波等の手段によって
不活性雰囲気または真空中で行ない、粗および微粉砕は
、鉄乳鉢、ブラウン□ルまたはボールミル、振動ミル、
ジェットミル等で行なろれる。
Melting is carried out in an inert atmosphere or vacuum by means such as a levitation arc or high frequency, and coarse and fine grinding is carried out in an iron mortar, Brown mill or ball mill, vibrating mill,
This can be done using a jet mill, etc.

磁場中での配向および成型は金型を用いる場合は同時に
行なうのが一般的で、配向磁場は通常8乃至20kOe
で、成型圧力は0.5〜10ton/cfLである。
Orientation and molding in a magnetic field are generally performed at the same time when using a mold, and the orientation magnetic field is usually 8 to 20 kOe.
The molding pressure is 0.5 to 10 ton/cfL.

焼結はアルゴンAr。ヘリウムHe等の不活性ガス雰囲
気あるいは真空中で1180℃〜1230℃の温度範囲
で行なう。
Argon is used for sintering. It is carried out in an inert gas atmosphere such as helium He or in a vacuum at a temperature in the range of 1180°C to 1230°C.

溶体化は一般に焼結と同時に進行するが、場合によって
は両工程を分離してもよい。
Solution treatment generally proceeds simultaneously with sintering, but in some cases the two steps may be separated.

熱処理は700〜950℃の温度範囲で行なわれるが、
保磁力の大きいものは、磁石特性の減磁曲線における角
形化が悪くなるという欠点がある。
Heat treatment is carried out at a temperature range of 700 to 950°C,
A magnet having a large coercive force has the disadvantage that the demagnetization curve of the magnet characteristics is not squared.

本発明は目的は、Sm−Cu−Fe Zr−Ti
Coの6元系合金においてIHcを大きくしヒステリシ
ス曲線の角形性を改良し、この結果高エネルギー積を持
つ永久磁石材の製造法を提供しようとするものである。
The purpose of the present invention is to obtain Sm-Cu-Fe Zr-Ti
The purpose of this invention is to increase IHc in a Co six-element alloy and improve the squareness of the hysteresis curve, thereby providing a method for producing a permanent magnet material with a high energy product.

本発明では、上述するような6元系合金において、焼成
時の昇温速度を250℃/時以上として1180〜12
30℃まで昇温することを特徴とするものである。
In the present invention, in the above-mentioned six-element alloy, the heating rate during firing is set to 250°C/hour or more, and the temperature rises to 1180°C to 12°C.
It is characterized by raising the temperature to 30°C.

焼成温度を1180〜1230℃に選んだのはそれ以下
では焼結が不十分でありBrが低下し、また1230℃
以上では焼結が進み過ぎIHc と角形性が著しく低下
するためである。
The reason why we chose the firing temperature to be 1180 to 1230°C is because if it is lower than that, sintering will be insufficient and Br will decrease.
This is because the sintering progresses too much and the IHc and squareness deteriorate significantly.

従来、焼成時の昇温速度は、亀裂等の点から50〜b しかったが昇温に長時間装するため工業的に好ましいも
のでは無かった。
Conventionally, the rate of temperature increase during firing was 50 to 50 bm from the viewpoint of cracks, etc., but this was not industrially preferable because it required a long period of time to increase the temperature.

しかし乍ら、本発明が焼結、溶体化処理、熱処理を鋭意
研究した結果、250℃/時以上、極端な場合として2
000℃/時と急熱昇温とすれば、磁石特性が格段に向
上することが明らかとなった。
However, as a result of intensive research into sintering, solution treatment, and heat treatment, the present invention found that the
It has become clear that the magnetic properties are significantly improved if the temperature is rapidly increased to 000° C./hour.

希土類コバルト磁石の焼結は、IHcを損なわないため
にバルク粉末を著しく成長させないような条件で行ない
、この結果、従来は焼結最高保持温度並に冷却速度が設
定されていたが、本発明におけるSm−Cu−F e
−Z r −T i −Co系においては、焼結の昇温
速度を250℃/Hr以上とすることにより、IHcp
Brを改善させ、ひいてはエネルギー積を増大させ
るという磁石特性に好効果を及ぼしている。
Sintering of rare earth cobalt magnets is carried out under conditions that do not cause the bulk powder to grow significantly in order not to impair IHc.As a result, conventionally the cooling rate was set at the same maximum sintering temperature, but in the present invention Sm-Cu-Fe
-Z r -T i -Co system, IHcp
This has a positive effect on the magnetic properties of improving Br and increasing the energy product.

なお、両実施例において溶体化処理を上述の範囲に選ん
だ理由はこの温度範囲外では多角性と1Heが著しく低
下することを実験上確かめたためである。
The reason why the solution treatment was selected within the above-mentioned range in both Examples is that it was experimentally confirmed that polygonality and 1He are significantly reduced outside this temperature range.

またその後、熱処理温度を700〜950℃の範囲に選
んだのは700℃以下では保持時間が著しく長くなるた
め工業的に不利であり、950℃以上では角形性が著し
く低下し高い(BH) が得られないためである
In addition, the heat treatment temperature was selected to be in the range of 700 to 950°C. Below 700°C, the holding time becomes significantly longer, which is industrially disadvantageous, and above 950°C, the squareness significantly decreases and becomes high (BH). This is because they cannot be obtained.

さらに冷却温度を5℃/min以下としたのはこれ以上
の温度では微粒子の析出が不充分となり角形性と、He
が著しく低下するためである。
Furthermore, the reason why the cooling temperature was set to 5°C/min or less is that if the temperature is higher than this, the precipitation of fine particles will be insufficient, resulting in poor squareness and He
This is because there is a significant decrease in

また500℃以下まで冷却したのは、これ以上の温度と
すると角形性と、Heが著しく低下するためである。
Moreover, the reason why it was cooled to 500° C. or lower is that if the temperature is higher than this, the squareness and He content will be significantly reduced.

なお、焼成において昇温速度は残留磁束密度Br及びエ
ネルギ積(BH) に大きく影響し、250℃/H
r以下ではBr1 (BH)maxが高くとれないため
である。
In addition, the temperature increase rate during firing greatly affects the residual magnetic flux density Br and the energy product (BH), and 250°C/H
This is because Br1 (BH)max cannot be kept high below r.

本発明は磁場異方性の永久磁石に限らず、等方性磁石に
も適用できることは当然である。
It goes without saying that the present invention is applicable not only to permanent magnets with magnetic field anisotropy but also to isotropic magnets.

実施例 1 Smが25.7wt%、Cuが8 w t%、Feが1
4.5wt%、Zrを1.5wt%、TiがO〜1.0
wt%、Cobolとなるようにアルゴン雰囲気中で高
周波加熱により合金を溶解した。
Example 1 Sm is 25.7 wt%, Cu is 8 wt%, Fe is 1
4.5wt%, Zr 1.5wt%, Ti O~1.0
The alloy was melted by high-frequency heating in an argon atmosphere so as to have a weight percent of Cobol.

次にこの合金を粗粉砕した後ボールミルを用いて平均粒
径4μ程度に微粉砕した。
Next, this alloy was roughly pulverized and then finely pulverized using a ball mill to an average particle size of about 4 μm.

これらの合金粉末を1.0kOe以上の磁場中、1 t
on /cntの圧力で成形した。
These alloy powders were heated for 1 t in a magnetic field of 1.0 kOe or more.
Molding was carried out at a pressure of on/cnt.

成形物を250℃/Hr、Ar雰囲気中1200℃で1
時間焼結した後1180℃で1時間溶体化処理し急冷し
た。
The molded product was heated at 250°C/Hr at 1200°C in an Ar atmosphere.
After sintering for an hour, it was solution treated at 1180°C for 1 hour and then rapidly cooled.

この焼結体を800℃で1時間熱処理した後、5℃/m
in以下の冷却速度で300℃まで冷却した。
After heat treating this sintered body at 800℃ for 1 hour, 5℃/m
The sample was cooled to 300° C. at a cooling rate of less than 1.5 in.

この試料の磁石特性を第1図に示す。Figure 1 shows the magnetic properties of this sample.

実施例 2 5m25.5 w t %、Cu8.2wt%、Fe1
4.3wt%、Zr1.4wt%、TiO,1wt%、
C0balとなるように実施例1と同様の方法で、合金
を溶解し粉砕、磁場成形を行なった。
Example 2 5m25.5wt%, Cu8.2wt%, Fe1
4.3wt%, Zr1.4wt%, TiO, 1wt%,
The alloy was melted, pulverized, and magnetically formed in the same manner as in Example 1 so as to obtain C0bal.

成形物をAAr雰囲気中、50〜b 温し1180〜1230℃で1時間焼結した後、115
0〜1200℃にて1時間溶体化処理を行なった。
The molded product was heated to 1180 to 1230°C for 1 hour in an AAr atmosphere, and then sintered at 1180 to 1230°C for 1 hour.
Solution treatment was performed at 0 to 1200°C for 1 hour.

その後700〜950℃で10分間以上保持した後5℃
/min以下の冷却速度で500’Cまで冷却した。
After that, hold at 700-950℃ for more than 10 minutes and then 5℃
The sample was cooled to 500'C at a cooling rate of /min or less.

この試料の磁気特性を第2図に示す。The magnetic properties of this sample are shown in Figure 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチタンTiの添加量とエネルギー積、残留磁束
密度の特性図を示す。 第2図は昇温速度とエネルギー積残留磁束密度の関係図
を示す。
FIG. 1 shows a characteristic diagram of the amount of titanium added, the energy product, and the residual magnetic flux density. FIG. 2 shows a diagram of the relationship between the heating rate and the energy product residual magnetic flux density.

Claims (1)

【特許請求の範囲】[Claims] I 5rn−COs C11s F e、Z rを主
成分とする組成にTiを1wt%以下含有する合金粉末
を不活性雰囲気中で250℃/Hr以上の速度で昇温し
1180〜1230℃で焼成した後1150〜1200
℃にて溶体化処理を行ない、その後700〜950℃で
10分間以上保持した後、5C/min以下の冷却速度
で500℃以下まで冷却することを特徴とする永久磁石
材料の製造方法。
I5rn-COs C11s Fe, Z An alloy powder containing 1wt% or less of Ti in a composition mainly composed of r was heated at a rate of 250°C/Hr or more in an inert atmosphere and fired at 1180 to 1230°C. After 1150~1200
A method for producing a permanent magnet material, which comprises performing solution treatment at 700 to 950°C for 10 minutes or more, and then cooling to 500°C or less at a cooling rate of 5C/min or less.
JP56081840A 1981-05-30 1981-05-30 Manufacturing method of permanent magnet material Expired JPS5853055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56081840A JPS5853055B2 (en) 1981-05-30 1981-05-30 Manufacturing method of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56081840A JPS5853055B2 (en) 1981-05-30 1981-05-30 Manufacturing method of permanent magnet material

Publications (2)

Publication Number Publication Date
JPS57198228A JPS57198228A (en) 1982-12-04
JPS5853055B2 true JPS5853055B2 (en) 1983-11-26

Family

ID=13757658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56081840A Expired JPS5853055B2 (en) 1981-05-30 1981-05-30 Manufacturing method of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS5853055B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070102A (en) * 1983-08-19 1985-04-20 Tohoku Metal Ind Ltd Atmosphere sintering method
JP5259351B2 (en) 2008-11-19 2013-08-07 株式会社東芝 Permanent magnet and permanent magnet motor and generator using the same
CN102474165B (en) 2009-08-06 2015-09-30 株式会社东芝 The variable magnetic flux motor of permanent magnet and use permanent magnet and generator

Also Published As

Publication number Publication date
JPS57198228A (en) 1982-12-04

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6181603A (en) Preparation of rare earth magnet
JPS5853055B2 (en) Manufacturing method of permanent magnet material
JPH0680608B2 (en) Rare earth magnet manufacturing method
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS60159152A (en) Permanent magnet alloy
JP3860372B2 (en) Rare earth magnet manufacturing method
JP2642619B2 (en) Manufacturing method of permanent magnet
JPS6140738B2 (en)
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPH08148315A (en) Production of rare earth magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPS6119084B2 (en)
JPS6236366B2 (en)
JPH08148317A (en) Production of rare earth magnet
JPS5874005A (en) Permanent magnet
JPS62242316A (en) Manufacture of rare-earth magnet
JPH05234733A (en) Sintered magnet
JPS5848604A (en) Production of permanent magnet of rare earths
JPH056831A (en) Manufacture of rare-earth cobalt magnet with excellent heat-resistant property
JPS6036633A (en) Production of magnet consisting of rare earth cobalt
JPS6142770B2 (en)
JPS6236365B2 (en)
JPH0422103A (en) Method of manufacturing permanent magnet