JPS6070102A - Atmosphere sintering method - Google Patents

Atmosphere sintering method

Info

Publication number
JPS6070102A
JPS6070102A JP15144283A JP15144283A JPS6070102A JP S6070102 A JPS6070102 A JP S6070102A JP 15144283 A JP15144283 A JP 15144283A JP 15144283 A JP15144283 A JP 15144283A JP S6070102 A JPS6070102 A JP S6070102A
Authority
JP
Japan
Prior art keywords
gas
furnace
rare earth
green compact
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15144283A
Other languages
Japanese (ja)
Inventor
Takashi Endo
孝 遠藤
Yasuo Fujimura
藤村 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP15144283A priority Critical patent/JPS6070102A/en
Publication of JPS6070102A publication Critical patent/JPS6070102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To sinter and produce a rare earth magnet having high quality with an inexpensive installation by replacing the inside of a furnace contg. a green compact of a rare earth cobalt alloy with an inert or reducing atmosphere, setting the pressure thereof higher than the atmospheric pressure and sintering the green compact while maintaining the furnace wall at a high temp. CONSTITUTION:A green compact of a rare earth cobalt alloy having high oxidation reactivity is housed into a vessel 33 provided with a cover 36 and the entire part of the vessel 33 is put into a furnace 32. The entire part of the wall of the vessel 33 is heated to the same temp. as the temp. of the green compact or above and at the same time the inside of the vessel 33 is replaced with an inert gas such as argon or a reducing gas such as gaseous hydrogen or a gaseous mixture composed thereof and is maintained under the pressure slightly higher by about 0.05-1.0 atm than the atmospheric pressure. The gas is released through a gas introducing pipe 34 and a lead-out pipe 35 and the abovementioned green compact is sintered. The decrease in the magnetic characteristic occuring in the reaction with the impurity gas that arises during sintering and particularly the variance thereof are thus prevented and the sintered magnet consisting of rare earth cobalt having excellent quality of the magnetic characteristic is obtd.

Description

【発明の詳細な説明】 本発明は、酸化反応性に富む希土類コバルト永久磁石の
焼結製造方法に関し、特に焼結中に起る不純ガスとの反
応に起因する磁気特性の低下、特に磁気特性のばらつき
を大巾に縮少できるようにした焼結方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sintering and producing rare earth cobalt permanent magnets with high oxidation reactivity. The present invention relates to a sintering method that can significantly reduce variations in

希土類コバルト永久磁石は、その磁石の成分組1対4か
ら1対5を中心とする材料による]−5基磁石と、1対
7から2対17を中心とする材料による2−17系磁石
があることが知られている。
Rare earth cobalt permanent magnets are made of a material whose component set is 1 to 4 to 1 to 5, and a 2-17 magnet made of a material whose component set is from 1 to 7 to 2 to 17. It is known that there is.

また、製法においては、それぞれの粉末を固化する方法
にもとづいて樹脂磁石と焼結磁石とに大別される。
In terms of manufacturing methods, magnets are broadly classified into resin magnets and sintered magnets based on the method of solidifying the respective powders.

本発明は、焼結磁石に関するものであシ、1−5系及び
2−17系いづれにもか・かわる発明である。
The present invention relates to sintered magnets, and is an invention that replaces or replaces both the 1-5 series and 2-17 series.

焼結希土類磁石の従来技術による製造方法は次の通シで
ある。
A conventional method for manufacturing a sintered rare earth magnet is as follows.

希土類コバルト合金は、1〜]0μmの微粒子に粉砕さ
れ、 4〜15. koeの磁界中で0.2〜5 to
n/cn12の加圧力によシ圧縮成形され、その後その
圧粉体は焼結される。この焼結に入る前に1本合金粉末
表面に多量に吸着している水分や他の不純ガスまたは必
要に応じて添加される潤滑材等の添加物を取りのぞく目
的で、10−”祁Hgから10−6諭Hgの真空中にお
いて常温〜800℃の間で脱ガス処理を行う。その後、
不活性ガス(主にアルゴン)又は水素ガス中に封じ込め
て焼結温度まで高める。
The rare earth cobalt alloy is ground into fine particles of 1 to ]0 μm, 4 to 15. 0.2 to 5 to in the magnetic field of koe
Compression molding is performed using a pressing force of n/cn12, and then the green compact is sintered. Before starting this sintering process, 10-"Hg Degassing treatment is performed at room temperature to 800°C in a vacuum of 10-6 mHg.After that,
It is sealed in an inert gas (mainly argon) or hydrogen gas and raised to the sintering temperature.

一方、不活性ガスや水素ガスを使用せずに一切。Meanwhile, no inert gas or hydrogen gas is used.

真空中で行うことも良く知られた技術である。It is also a well-known technique to perform this in a vacuum.

これらの操作を実現する炉体構造としては、第一図に示
す様に、密閉された鋼管11内中央部に被処理物13を
置き、鋼管11の外部からヒータ12で加熱する外熱型
の炉や、第2図に示すように、密閉容器2]内にヒータ
22を構築し、その内部に被処理物23を置く内熱型の
炉が基本構造として知られている。しかし、これらの炉
は内部の被処理物の品質維持のためには共通の欠点を持
っている。即ち、真空中で焼結温度以下で飛散したガス
が、密閉管あるいは容器の比較的温度の低い箇所に吸着
し、その後炉内温度が上昇するにつれて不純吸着ガスが
再び炉内に飛散し、これらのガスが極めて反応性の早い
被処理物と反応して品質低下の原因となる。
As shown in Fig. 1, the furnace body structure for realizing these operations is an external heating type in which the workpiece 13 is placed in the center of a sealed steel pipe 11 and is heated from the outside of the steel pipe 11 by a heater 12. As shown in FIG. 2, an internal heating type furnace in which a heater 22 is constructed in a closed container 2 and a workpiece 23 is placed inside the heater 22 is known as a basic structure. However, these furnaces have common drawbacks in maintaining the quality of the processed materials inside. In other words, gas that is scattered in a vacuum at a temperature below the sintering temperature is adsorbed to a relatively low-temperature part of a sealed tube or container, and then as the temperature inside the furnace rises, impure adsorbed gas is scattered back into the furnace. The gas reacts with the highly reactive process material, causing quality deterioration.

これらの欠点を解決す兄為、炉室を分割して比較的低い
温度から順次高い温度へと脱ガス過程が進むに応じて炉
室を設け、各温度で発生した不純ガスが高温側で被処理
物と反応することを防止することが実施されている。し
かし、この様に炉室分割した場合は、各室別個に真空排
気系、ヒータ。
In order to solve these drawbacks, the furnace chamber is divided and the furnace chambers are set up as the degassing process progresses from a relatively low temperature to a sequentially high temperature, so that the impurity gas generated at each temperature is exposed to the high temperature side. Measures are taken to prevent reaction with the processed material. However, when the furnace chambers are divided like this, each chamber has its own vacuum exhaust system and heater.

電源等を設置し、かつ各室を分けるためのダートバルブ
等を設ける必要があシ、その設備費用は膨大々ものとな
る。
It is necessary to install a power source, etc., and to install dirt valves, etc. to separate each room, and the equipment cost is enormous.

設備費用を削減する為に分割室数を減らすことは可能で
あるが、この場合は品質の低下が避けられない。このた
め、これらの品質低下を防ぐには。
Although it is possible to reduce the number of divided rooms in order to reduce equipment costs, in this case a decrease in quality is unavoidable. Therefore, to prevent these quality deteriorations.

不純ガスが被処理物と反応する以前に不純ガスを他の物
質と反応させる。す橙わちゲッタ作用を持つ物質を炉内
に入れて被処理物の品質維持を保つのが一般的である。
Before the impure gas reacts with the object to be treated, the impure gas is reacted with another substance. Generally, a substance having a getter action is placed in the furnace to maintain the quality of the processed material.

そして、希土類コバルト磁石の場合にゲッタとして用い
られる物質は、希土類元素以上に活性なもので、かつ磁
石特性を低下させないものでなければ々ら々い。特に、
炉内は希土類金属の蒸気のガス圧が高するので、これら
のバランスをくずす化合物あるいは元素は好ましくない
。この様に、ゲッタを用いる場合は、設備費用は比較的
安くできたとしても、磁石焼結における補助資材費用は
膨大であるという欠点を有している。
In the case of rare earth cobalt magnets, there are many different materials used as getters, as long as they are more active than the rare earth elements and do not deteriorate the magnetic properties. especially,
Since the gas pressure of the rare earth metal vapor is high in the furnace, compounds or elements that disrupt the balance are not preferred. In this way, when a getter is used, even if the equipment cost is relatively low, it has the disadvantage that the cost of auxiliary materials for magnet sintering is enormous.

本発明は1以上述べた焼結設備費用及び補助資材費用を
大巾に削減し、かつ本来の目的である磁石特性の品質レ
ベルを飛躍的に向上させることのできる焼結方法を提供
しようとするものである。
The present invention aims to provide a sintering method that can significantly reduce the cost of sintering equipment and auxiliary materials as described above, and dramatically improve the quality level of magnetic properties, which is the original objective. It is something.

本発明は、希土類コバルト圧粉体を耐熱密閉容器に入れ
て容器内を真空排気することなくガス置換を行い、アル
ゴンガス等の不活性ガスまたは水素またはこれらの混合
ガスで充満させた後ガスを放流しなから昇温を開始する
。この場合のガスは。
The present invention involves placing a rare earth cobalt green compact in a heat-resistant airtight container, performing gas replacement without evacuating the inside of the container, filling the container with an inert gas such as argon gas, hydrogen, or a mixture thereof, and then replacing the gas with the gas. Start heating up the water without releasing water. The gas in this case.

高純度ガスで2例えば酸素濃度は1 ppm以下、好ま
しくは0.5ppm以下が必要である。また、密閉容器
は完全々気密である必要はないが、容器内圧が実質上1
00℃以上では大気圧よシ常に高くしておく必要がある
。]OO℃という温度限定は。
A high purity gas is required, for example, an oxygen concentration of 1 ppm or less, preferably 0.5 ppm or less. Also, although airtight containers do not need to be completely airtight, it is important to note that the internal pressure of the container is
At temperatures above 00°C, it is necessary to keep the pressure higher than atmospheric pressure. ]The temperature limit is OO℃.

一般にこれ以上の高温で、特に温度が高くなるに(5) 従い希土類磁石粉末が酸素や水分子にふれることにより
、急速に酸化が促進されるためである。圧力については
、温度等の外部環境が変っても負圧にしてはならない。
Generally, at higher temperatures, especially as the temperature increases (5), this is because the rare earth magnet powder comes into contact with oxygen and water molecules, and oxidation is rapidly promoted. As for the pressure, it must not be negative even if the external environment such as temperature changes.

その為の最小圧力としては。As for the minimum pressure for that.

ガスの逆流が起らない範囲即ち大気圧プラス0.05気
圧以上が好ましい。また、このガス圧力を高くすると、
容器の機械的強度を増す必要がある為に過度外圧力設定
をすることは好ましくない。従って最大圧力は大気圧プ
ラス1.0気圧程度が最適である。
Preferably, the pressure is within a range where gas backflow does not occur, that is, atmospheric pressure plus 0.05 atmosphere or more. Also, if this gas pressure is increased,
Since it is necessary to increase the mechanical strength of the container, it is not preferable to set an excessive external pressure. Therefore, the optimum maximum pressure is about atmospheric pressure plus 1.0 atmosphere.

ところで、ガスの放流は、原則として焼結を含む一連の
熱処理作業の間中性われるが、特に常温から800℃の
間はこの放流が不可欠である。この放流によって希土類
コバルト粉末表面に吸着している有機物、水分や酸素及
びこれらから生成されるイオンが放出され、希土類コバ
ルト磁石の磁気特性は所望の値が得られる。すなわち1
本考案者は、従来、真空排気によって行われていたこれ
らの脱ガス作用が放流ガス気流中でも行われることを見
出した。この場合、放流を中止してガス気密(6) 中で加熱した場合には、当然のことながら所望の磁気特
性は得られない。また、たとえ放流したとしても、容器
内圧力が0〜0.05気圧の間にある場合にも満足でき
る磁気特性は得られないことを見出している。これは大
気が容器内に逆拡散したためであると考えられる。80
0℃以上の温度で圧粉体は徐々に固体拡散を始め、いわ
ゆる焼結が行われるが、これから先は必ずしもガスの放
流を行う必要はない。
Incidentally, the gas discharge is basically neutralized during a series of heat treatment operations including sintering, but this discharge is especially essential between room temperature and 800°C. By this discharge, organic substances, moisture, oxygen, and ions generated from these adsorbed on the surface of the rare earth cobalt powder are released, and the magnetic properties of the rare earth cobalt magnet can obtain desired values. i.e. 1
The inventors of the present invention have discovered that these degassing actions, which were conventionally performed by vacuum evacuation, can also be performed in the discharged gas stream. In this case, if the discharge is stopped and the material is heated in a gas-tight atmosphere (6), the desired magnetic properties cannot be obtained, as a matter of course. It has also been found that even if the fluid is discharged, satisfactory magnetic properties cannot be obtained even when the pressure inside the container is between 0 and 0.05 atm. This is thought to be due to atmospheric back-diffusion into the container. 80
At a temperature of 0° C. or higher, the green compact gradually begins to undergo solid diffusion, resulting in so-called sintering, but from now on it is not always necessary to release the gas.

この焼結容器は、実効的な容器内壁部分が希土類コバル
ト圧粉体と同一温度かまたはそれ以上でなければならな
いというのが本発明の重要な点である。すなわち、脱ガ
ス工程において比較的低い温度で希土類コバルト粉末表
面から出たガスが。
An important point of the present invention is that the effective inner wall portion of this sintered container must be at the same temperature as or higher than that of the rare earth cobalt compact. That is, the gas released from the rare earth cobalt powder surface at a relatively low temperature during the degassing process.

その粉末表面の温度より低い温度の炉内壁に触れると、
そこで再び壁面に吸着する可能性があるからである。こ
のため、この吸着が容器の内面部分で起ない様な構造で
なければならない。
When you touch the inner wall of the furnace whose temperature is lower than that of the powder surface,
This is because there is a possibility that it will stick to the wall surface again. Therefore, the structure must be such that this adsorption does not occur on the inner surface of the container.

第3図〜第5図は本要件を満足する炉体及び焼結容器の
原理構造を示すものである。
FIGS. 3 to 5 show the basic structure of a furnace body and a sintering container that satisfy these requirements.

第3図は容器33全体を炉32の均一温度範囲内に収め
ることによシ、実効的な容器内壁部分が均一に圧粉体と
同一温度かあるいはそれ以上になるようにしたものであ
シ、ガスの導入管34.導出管35のみが炉外に通じて
いる。導入管と導出管との位置関係は逆であっても良い
。なお、この場合は、圧粉体の出し入れは容器33の蓋
36を外して行う必要がある。この蓋36の密閉度を良
くするために、金属のパツキンを用いても良いが。
Figure 3 shows a system in which the entire container 33 is kept within the uniform temperature range of the furnace 32, so that the effective inner wall of the container is uniformly at the same temperature as the powder compact or higher. , gas introduction pipe 34. Only the outlet pipe 35 communicates with the outside of the furnace. The positional relationship between the inlet pipe and the outlet pipe may be reversed. In this case, it is necessary to remove the lid 36 of the container 33 to take in and take out the green compact. In order to improve the degree of sealing of the lid 36, a metal gasket may be used.

容器の内圧さえ高くすれば良いわけであるから。All you have to do is increase the internal pressure of the container.

嵌め合い精度を上げるか、ネジ機構にする等の方法で高
価なi4ッキン構造等をとらなくても良い。
There is no need to use an expensive i4 fitting structure by increasing the fitting precision or using a screw mechanism.

このシール部分が常温部分、すなわち炉外に来シ容器4
3を形成するようにしたものである。すなわち、外容器
43−]とこの内側に収められる内容器43−2とで被
焼結用圧粉体の収容空間を形成している。このような例
では、ガス導入部44は容器43の高温部分に接続する
必要がある。
This sealed part is the room temperature part, that is, outside the furnace.
3. That is, the outer container 43-] and the inner container 43-2 housed inside the outer container 43-2 form a storage space for the green compact to be sintered. In such an example, the gas introduction part 44 needs to be connected to a hot part of the container 43.

45はガス導出部である。45 is a gas outlet.

このよう表構造によれば、炉の昇温に伴って発生する不
純ガスは、外容器43−1と内容器43−2との間を通
して炉外へ排出される。なお、途中で不純ガスが炉内壁
に吸着する可能性があるが。
According to such a table structure, impure gas generated as the temperature of the furnace increases is discharged to the outside of the furnace through the space between the outer container 43-1 and the inner container 43-2. However, there is a possibility that impure gas will be adsorbed to the inner wall of the furnace during the process.

放流ガス気流は、常に高温部分から低温部分に流れる為
、不純ガスが炉内に逆流して滞留する心配はない。容器
内の雰囲気の動きは非常に複雑な動きをする為、不純ガ
スが炉内に逆流しない様にする為には、内容器43−2
と外容器43−1の間隔をできるだけ小さくしておかな
ければならない。
Since the discharged gas stream always flows from the high-temperature area to the low-temperature area, there is no worry that impure gas will flow back into the furnace and stay there. Since the movement of the atmosphere inside the container is very complicated, in order to prevent impure gas from flowing back into the furnace, it is necessary to
The distance between the outer container 43-1 and the outer container 43-1 must be kept as small as possible.

容器内の逆流が起きなければ、第5図の構造でも十分で
ある。すなわち、容器53をそのシール部分が炉52外
にあるように炉52内に配設し。
The structure shown in FIG. 5 is sufficient as long as no backflow occurs within the container. That is, the container 53 is placed inside the furnace 52 so that its sealed portion is outside the furnace 52.

炉内の容器53の端部にはガス導入部54を接続し、炉
外の容、器53にガス導出部55を接続したものである
。このような構造において、放流ガス流が常に炉内の高
温部分から炉外の低温部分に流れるようにすることによ
り、不純ガスの滞留は生じない。
A gas inlet 54 is connected to the end of the container 53 inside the furnace, and a gas outlet 55 is connected to the container 53 outside the furnace. In such a structure, by ensuring that the discharge gas stream always flows from a hot section inside the furnace to a cold section outside the furnace, no accumulation of impure gases occurs.

(9) ガス導入、導出系、炉制御系についての説明は省略する
(9) Explanation of the gas introduction, derivation system, and furnace control system will be omitted.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1゜ Sm 35.8%、残coの合金を平均粒径2.5ミク
ロンに粉砕し、 7 koeの磁界中で1Ton/cf
n2の加圧成形を行った。プレス体の大きさは18X7
X3(謹)である。このプレス体を] 90X75X4
5 (mm)のケースに5段つみ重ねて入れた。ケτス
内のプレス体個数は] OXI OX5の合計500個
である。プレス体の最上段にはケースの内寸よシ2閣小
さいステンレスの板をかぶせた。
Example 1 An alloy with 35.8% Sm and residual co was ground to an average particle size of 2.5 microns and heated at 1 Ton/cf in a magnetic field of 7 koe.
Pressure molding of n2 was performed. The size of the press body is 18X7
It is X3 (honor). This press body] 90X75X4
5 (mm) case and stacked in 5 layers. The number of pressed bodies in the case is 500 in total: OXI OX5. The top of the press body was covered with a stainless steel plate that was two times smaller than the inside dimensions of the case.

このケース入シ圧粉体を第1図の炉に入れ。Place this cased green compact into the furnace shown in Figure 1.

500℃までロータリーポンプ及びメカニカルブースタ
ー、Xンプにより排気し、その後アルゴンガスを充填し
て1]00℃の温度で1時間焼結した。
It was evacuated to 500°C using a rotary pump, a mechanical booster, and an X pump, and then filled with argon gas and sintered at a temperature of 1]00°C for 1 hour.

完成した焼結体を炉からと導出した時の温度は40℃以
下であった。ケース内最上段のステンレス板をとりのぞ
くと、ケース内の焼結体はステンレス板の輪郭に沿って
変色が見られた。次に、最(10) 上段の焼結体のみに関して各々の磁石の位置を明確にし
た」二で、磁石を2.3關に研磨し、洗浄後18 ko
eの電磁石磁界中で着磁した。その磁石の表面磁束密度
をガラスメータで測定したところ。
The temperature of the completed sintered body when it was taken out of the furnace was 40°C or lower. When the topmost stainless steel plate inside the case was removed, discoloration of the sintered body inside the case was observed along the outline of the stainless steel plate. Next, (10) the position of each magnet was clarified with respect to only the upper sintered body.'' At step 2, the magnets were polished to 2.3 degrees, and after cleaning, the position of each magnet was clarified.
It was magnetized in the magnetic field of an electromagnet e. The surface magnetic flux density of the magnet was measured using a glass meter.

第1衣の結果が得られた。The results for the first garment were obtained.

以下余白 (11) 同様の圧粉体を上記ケースと全く同一のケースに入れ、
同様に板をかぶせ、第5図の方法で焼結を行った。80
0℃までは3117分のアルゴンガスを流し、以後アル
ゴン放流を止め内圧を1.05気圧とした。焼結温度は
]]00℃で]時間の保持を行った。この時のガス圧は
1.8気圧(大気圧+0,8気圧)であった。
Margin below (11) Put a similar powder compact into the exact same case as above,
A plate was similarly covered and sintering was performed using the method shown in FIG. 80
Argon gas was flowed for 3117 minutes until the temperature reached 0°C, and then the argon flow was stopped and the internal pressure was set at 1.05 atm. The sintering temperature was kept at 00°C for a period of time. The gas pressure at this time was 1.8 atm (atmospheric pressure + 0.8 atm).

焼結完了後、焼結体を大気にと多山した時、焼結体の温
度は約50℃であった。ケース内の焼結体は非常にきれ
いな銀色をしていた。前の試験と同様に最上段の焼結体
のみに関して磁石の位置を明確にした上で磁石を2.3
+mnに研磨し、洗浄後] 8 ]<Oeで着磁した。
After the sintering was completed, the temperature of the sintered body was about 50° C. when it was exposed to the atmosphere. The sintered body inside the case had a very beautiful silver color. As in the previous test, the position of the magnet was clarified for only the uppermost sintered body, and the magnet was
After polishing to +mn and cleaning, it was magnetized to [8]<Oe.

その磁石の表面磁束密度は第2表の通りである。The surface magnetic flux density of the magnet is shown in Table 2.

以下余日 (12) 第1表の従来方法の場合は、ケース外周部に位置した磁
石に磁気特性の低いものが見られるのに対して1本発明
の第2表の結果はその欠点がのぞかれている。
(12) In the case of the conventional method shown in Table 1, the magnets located on the outer periphery of the case have poor magnetic properties, whereas the results shown in Table 2 of the present invention have no drawbacks. I'm being watched.

実施例2゜ 実施例]と同月料の圧粉体を、第3図に示す焼結容器内
にじかに入れた。容器の大きさは内径】20.高さ97
咽である。圧粉体は]段に62個を12段積みした。 
′ この容器の蓋はピッチ2ミリのネジを切って本体にとり
つける構造とした。アルゴンガスを約11/minで流
しながら炉の温度を上昇させた。
Example 2 A green compact of the same material as in Example 2 was placed directly into a sintering container shown in FIG. The size of the container is the inner diameter]20. height 97
It is the throat. The green compacts were stacked in 12 stages of 62 pieces.
' The lid of this container was designed to be attached to the main body by cutting screws with a pitch of 2 mm. The temperature of the furnace was raised while flowing argon gas at a rate of about 11/min.

200℃〜400℃の範囲でネジ部から白い煙が出るの
を観察した。600℃以後から容器の内圧が上昇し始め
たので、バルブを開き内圧’i 1.2気圧(常圧+0
.2気圧)になるように気圧調整を行った。焼結完了後
、アルゴンガスを止めた時の焼結体の温度は約80℃で
あった。
White smoke was observed coming out from the threaded portion in the range of 200°C to 400°C. The internal pressure of the container began to rise after 600°C, so the valve was opened and the internal pressure was reduced to 1.2 atm (normal pressure + 0
.. The atmospheric pressure was adjusted to 2 atm. After the sintering was completed, the temperature of the sintered body was about 80° C. when the argon gas was stopped.

焼結体の外観は、ガスの導入口に一番近いもの1個の表
面が一部灰色である他は全て銀色であった。また、その
磁気特性は、灰色のもの1個がわずかに低く1790で
あったのを除いて他は実施例1と同一レベルで、正規分
布をしているものであった0 実施例3゜ Sm 26 % 、 Fe 20%、 Cu 4.5%
 、 Zr 2.0% 。
The appearance of the sintered body was entirely silver except for the surface of one piece closest to the gas inlet which was partly gray. In addition, the magnetic properties were at the same level as Example 1, except for one gray one, which was slightly lower at 1790, and had a normal distribution.0 Example 3゜Sm 26%, Fe 20%, Cu 4.5%
, Zr 2.0%.

残Co合金を平均粒径3μmとし、同一プレス方法で圧
粉体とした。焼結は第5図のものを用い、水素気流中に
て焼結した。焼結温度は1190℃×2時間で、その後
溶体化処理として1160℃×2時間施した後炉からと
多量した。全ての焼結体は銀色に輝いていた。この焼結
体を800℃で10時間時効処理した後、前記実施例と
同様に表面の磁束密度を測定した結果、やはシ理想的な
正規分布をした磁石特性値が得られた。
The remaining Co alloy was made into a green compact using the same pressing method with an average particle size of 3 μm. The sintering process was performed using the material shown in Figure 5 in a hydrogen stream. The sintering temperature was 1,190° C. for 2 hours, and then a solution treatment was performed at 1,160° C. for 2 hours, followed by a large amount of sintering from the furnace. All the sintered bodies were shining silver. After this sintered body was aged at 800° C. for 10 hours, the surface magnetic flux density was measured in the same manner as in the above example, and as a result, magnetic characteristic values with an ideal normal distribution were obtained.

以上、いづれの実験も用いたガスは、液化ガスから直配
管したもので酸素濃度はO,]ppm以下であった。
The gas used in all of the experiments described above was directly piped from liquefied gas, and the oxygen concentration was less than O, ]ppm.

以上の様に1本発明による焼結方法は高真空排気装置が
不要である為に設備費用の大巾削減が計れると同時に、
希土類コバルト磁石の磁気特性の品質向上に飛躍的効果
をもたらす。勿論5本発明は希土類コバルト以外の金属
粒粉末の焼結全搬に応用が考えられ、その工業的価値は
極めて大きい。
As mentioned above, since the sintering method according to the present invention does not require a high vacuum exhaust device, it is possible to significantly reduce equipment costs, and at the same time,
This has a dramatic effect on improving the quality of the magnetic properties of rare earth cobalt magnets. Of course, the present invention can be applied to the complete sintering of metal particles other than rare earth cobalt, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第]図、第2図はそれぞれ、従来の焼結炉の概略構造を
断面図で示し、第3図、第4図、第5図はそれぞれ1本
発明で使用される焼結炉の第1゜第2.第3の例の概略
構造を断面図で示す。
Figures 1 and 2 each show a cross-sectional view of the schematic structure of a conventional sintering furnace, and Figures 3, 4, and 5 each show a schematic structure of a sintering furnace used in the present invention.゜Second. A schematic structure of a third example is shown in a cross-sectional view.

Claims (1)

【特許請求の範囲】[Claims] 1、酸化反応性に富む希土類コバルト合金圧粉体を焼結
する炉において、炉内を真空にすることなく不活性また
は還元性雰囲気で置換し、かつ有効炉壁を被焼結体と同
一温度またはそれ以上に保ち、かつ該雰囲気を大気圧よ
シやや高めに設定するようにしたことを特徴とする金属
圧粉体用雰囲気焼結方法。
1. In a furnace for sintering rare earth cobalt alloy compacts with high oxidation reactivity, the inside of the furnace is replaced with an inert or reducing atmosphere without creating a vacuum, and the effective furnace wall is kept at the same temperature as the material to be sintered. 1. A method for atmosphere sintering for a metal powder compact, characterized in that the atmosphere is maintained at a pressure slightly higher than atmospheric pressure.
JP15144283A 1983-08-19 1983-08-19 Atmosphere sintering method Pending JPS6070102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15144283A JPS6070102A (en) 1983-08-19 1983-08-19 Atmosphere sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15144283A JPS6070102A (en) 1983-08-19 1983-08-19 Atmosphere sintering method

Publications (1)

Publication Number Publication Date
JPS6070102A true JPS6070102A (en) 1985-04-20

Family

ID=15518692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15144283A Pending JPS6070102A (en) 1983-08-19 1983-08-19 Atmosphere sintering method

Country Status (1)

Country Link
JP (1) JPS6070102A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944843A (en) * 1972-07-31 1974-04-27
JPS52102595A (en) * 1976-02-25 1977-08-27 Hitachi Metals Ltd Method of manufacturing rare earth cobalt magnet
JPS5655533A (en) * 1979-10-08 1981-05-16 Seiko Instr & Electronics Ltd Manufactre of rare earth element magnet
JPS57198228A (en) * 1981-05-30 1982-12-04 Tohoku Metal Ind Ltd Production of permanent magnet material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944843A (en) * 1972-07-31 1974-04-27
JPS52102595A (en) * 1976-02-25 1977-08-27 Hitachi Metals Ltd Method of manufacturing rare earth cobalt magnet
JPS5655533A (en) * 1979-10-08 1981-05-16 Seiko Instr & Electronics Ltd Manufactre of rare earth element magnet
JPS57198228A (en) * 1981-05-30 1982-12-04 Tohoku Metal Ind Ltd Production of permanent magnet material

Similar Documents

Publication Publication Date Title
EP1160820B1 (en) Combination of materials for the low temperature triggering of the activation of getter materials and getter devices containing the same
JPH10324937A (en) Nonevaporation-type getter alloy
CN108149069A (en) A kind of getter alloy material and its application
KR20090023424A (en) Non-evaporable getter alloys based on yttrium for hydrogen sorption
CN107363257A (en) A kind of polycrystalline diamond blank vacuum purification method
JPS589826A (en) Intermetallic compound reversibly able to absorbing hydrogen
CN104651652A (en) Preparation method of hydrogen absorption component
FI59616B (en) SAETT ATT FRAMSTAELLA LEGERINGSPULVER AV SAELLSYNTA JORDMETALLER OCH KOBOLT
US1816830A (en) Preparation of metal hydrides
JP2587476B2 (en) Manufacturing method of silicon nitride molded product
JPS6070102A (en) Atmosphere sintering method
US3177077A (en) Process for the manufacture of compact or fine-pored metallic compositions by agglomerating particulate metals
US3684499A (en) Method for producing intermetallic compound permanent magnet material
CN104308144A (en) Method for enhancing performance of ZrCo alloy to resist CO, CO2 and air poison and anti-pulverization performance of alloy
US3104049A (en) High purity vacuum systems
JP2933293B2 (en) Method for producing fine-grained rare earth / transition metal / boron type magnetic material for corrosion resistant magnet
JPS61256966A (en) Method of fining ceramic part
JP4033587B2 (en) Molded product for getter and method for producing the same
CN108511180A (en) The preparation method of anti-oxidation neodymium iron boron magnetic body
Tsuchiya et al. Preliminary Characterization of Zr9Ni11 Alloy for Its Tritium Gettering Property in In-Ditu Irradiation Test
JPH06116607A (en) Production of sealed fe base sintered alloy parts excellent in airtightness
JPH01156404A (en) Method for sintering rare earth element-contained metal
Park et al. Activation and gas sorption properties of nano-size titanium powder getters
JP3471858B2 (en) Manufacturing method of metal sintered member
CN117926099A (en) Semi-metal Co2Preparation method of MnGa thermoelectric material