JPH01156404A - Method for sintering rare earth element-contained metal - Google Patents

Method for sintering rare earth element-contained metal

Info

Publication number
JPH01156404A
JPH01156404A JP31363087A JP31363087A JPH01156404A JP H01156404 A JPH01156404 A JP H01156404A JP 31363087 A JP31363087 A JP 31363087A JP 31363087 A JP31363087 A JP 31363087A JP H01156404 A JPH01156404 A JP H01156404A
Authority
JP
Japan
Prior art keywords
container
rare earth
sintered
powder
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31363087A
Other languages
Japanese (ja)
Other versions
JPH0663002B2 (en
Inventor
Akio Kiyama
木山 晃男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP31363087A priority Critical patent/JPH0663002B2/en
Publication of JPH01156404A publication Critical patent/JPH01156404A/en
Publication of JPH0663002B2 publication Critical patent/JPH0663002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a sintered body having only a little oxygen contamination bp packing rare earth element-contained metal powder in a metal-made container, air-tightly sealing after charging getter material in a separated chamber spacely communicating with the container and executing hot hydrostatic press at high temp. and high pressure. CONSTITUTION:The rare earth element-contained metal powder is packed in the metal-made container and after vacuum exhausting in the inner part, it is air-tightened. Successively, the container is treated with the hot hydrostatic press at high temp. and high pressure. In the sintering method for the rare earth element-contained metal powder, at the same time of packing the metal powder to be sintered, in the separated chamber spacely communicating with the above powder to be sintered, arranged in the container, target material composing of the rare earth metal, Ti, Zr or alloy powder containing these as main component is charged. This separated chamber is to have a larger strength than the container. By this method, the oxidation at the time of sintering is prevented and the sintered material having only a little contamination is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱間静水圧プレス(以下HIPと略称する)法
によシ、希土類金属を含有する遷移金属粉末の焼結体を
製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing a sintered body of transition metal powder containing a rare earth metal by a hot isostatic pressing (hereinafter abbreviated as HIP) method. It is related to.

〔従来の技術〕[Conventional technology]

近年、光磁気記録に対する関心が著しく高まりて来てお
り、光磁気ディスクの開発が盛んである。
In recent years, interest in magneto-optical recording has increased significantly, and magneto-optical disks have been actively developed.

光磁気記録は、磁性材料に、光と磁 場を当てる事によ
シ、記録を行うものであシディスク面上に形成された、
磁性薄膜が利用される。
Magneto-optical recording is a method of recording by exposing a magnetic material to light and a magnetic field.
A magnetic thin film is used.

磁性薄膜の材料としては、遷移金属−希土類系たとえば
、Fe −Gd 、 Fe −Tb等の2元系、Fe 
−Co −Tb 、 Fe −Gd −Tb等の3元素
が有望とされている。
Materials for the magnetic thin film include transition metal-rare earth systems, binary systems such as Fe-Gd and Fe-Tb, Fe-
Three elements such as -Co-Tb, Fe-Gd-Tb, etc. are considered to be promising.

光磁気ディスクは、合成樹脂などの円形基盤の表面に上
記の磁性薄膜材料をPVD法によシ、形成させる。
Magneto-optical disks are produced by forming the above-mentioned magnetic thin film material on the surface of a circular base made of synthetic resin or the like using the PVD method.

PVD法としては、スパッター装置によシ、成膜するの
が一般的である。このスフ4ツター装置は、磁性薄膜の
組成とほぼ等しい組成の合金ターゲットを必要とし、こ
のターゲット中の遷移金属と希土類金属が前記の円形基
板上に成膜される。
In the PVD method, a film is generally formed using a sputtering device. This 4-Tutter device requires an alloy target having a composition approximately equal to that of the magnetic thin film, and the transition metals and rare earth metals in this target are deposited on the circular substrate.

合金ターゲットは、その製造法から鋳造ターゲットと焼
結ターゲットに分けられる。
Alloy targets are divided into cast targets and sintered targets based on their manufacturing method.

従来、遷移金属−希土類系の合金は非常に脆く、量産に
適した大面積のターゲットを作る事は困難であシ、−度
鋳造した合金を粉末にして、成形。
Traditionally, transition metal-rare earth alloys were extremely brittle, making it difficult to create large-area targets suitable for mass production.

焼結するという粉末冶金法によシ、合金ターグットを製
造するのが一般的であった。粉末冶金法としてはホット
プレス法が一般的であるが、押し型を使用してβ製作す
るためオ圧力に限界があり、緻密でβ形状の複雑なター
グットの製作は困難であった。
It was common to manufacture alloy targuts by a powder metallurgy method called sintering. The hot press method is a common powder metallurgy method, but since it uses a pressing die to produce β-shaped materials, the pressure is limited, making it difficult to manufacture dense and complex targuts with a β-shape.

近年、超硬材料等の開発に利用され、関心の高まってい
るHIP法は、Arガス等を圧媒として高温・高圧処理
を行うため、押し型を用いる事なく容易に1000〜2
000気圧の高圧が得られ、大型状で高密度のターグッ
トが製作可能である。
In recent years, the HIP method, which has been used in the development of superhard materials and has received increasing attention, performs high-temperature and high-pressure processing using Ar gas as a pressure medium.
A high pressure of 0,000 atmospheres can be obtained, and large-sized, high-density targuts can be manufactured.

HIP法は、所定の成分に溶製されたインコ9ットを粉
砕して得られた合金粉末又は合金を形成する素金属の粉
末を、軟鋼又はステンレス製のカプセルに充填し、10
Torr以上の高真空にして300℃以上で加熱し、コ
ンテナ内の水分と残留ガスを除去した後、真空を保持し
つつ、コンテナを密閉する。
The HIP method involves filling a mild steel or stainless steel capsule with an alloy powder obtained by crushing Inco 9t melted to a predetermined composition or a powder of the base metal that forms the alloy.
After creating a high vacuum of Torr or higher and heating at 300° C. or higher to remove moisture and residual gas inside the container, the container is sealed while maintaining the vacuum.

このコンテナを高温・高圧のArガス等の圧媒に入れ、
高密度の焼結体を得る。
This container is placed in a pressure medium such as high-temperature and high-pressure Ar gas,
Obtain a high-density sintered body.

こうして得られたターゲツト材は高密度で、比較的*強
度もあるが、酸素の含有率が高く、磁性薄膜材料として
利用した場合、磁気特性が低下するので好ましくはなか
った。
Although the target material thus obtained has a high density and relatively high strength, it has a high oxygen content, and when used as a magnetic thin film material, the magnetic properties are deteriorated, which is not preferable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

焼結法によるターゲツト材製造工程での酸化は、粉末迄
の工程での酸化と、HIP処理時の酸化がある。
Oxidation in the target material manufacturing process by the sintering method includes oxidation in the process up to powder and oxidation in the HIP process.

これらの酸化の内、本発明では、HIP処理時の酸化(
従来法では、500〜1000 ppm程度の酸素濃度
の上昇が見られた。)を防止しようとするものである。
Among these oxidations, in the present invention, oxidation (
In the conventional method, an increase in oxygen concentration of about 500 to 1000 ppm was observed. ).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の問題点に鑑み、HIP処理の際、使用
するコンテナ中にゲッター材を同時に入れる事により、
焼結体の汚染を防ぐものである。ゲッター材を入れる場
所は、被焼結体と混合する事を防ぐため、空間的につな
がった別室である事が必要である(第1図参照)。
In view of the above problems, the present invention has been developed by simultaneously putting a getter material into the container used during HIP processing.
This prevents contamination of the sintered body. The place where the getter material is placed needs to be in a separate room that is spatially connected to prevent it from mixing with the object to be sintered (see Figure 1).

また、この別室に入ったゲッター材は被焼結体よシ遅く
焼結する事が必要であシ、このため別室の強度は、コン
テナの強度よシも大きい事が必要である。具体的には第
1図に於てコンテナー材よりもはるかに厚い当て板2,
3をコンテナー1内に装着し、底側の当て板3を2枚構
造として2枚の当て板間にくぼみ7を設け、通気路6で
原料粉末と接続する構造をとる。
In addition, the getter material entering this separate chamber must be sintered more slowly than the object to be sintered, and for this reason, the strength of the separate chamber must be greater than that of the container. Specifically, in Figure 1, the patch plate 2, which is much thicker than the container material,
3 is installed in a container 1, the bottom side patch plate 3 has a two-layer structure, a recess 7 is provided between the two patch plates, and the structure is connected to the raw material powder through an air passage 6.

ゲッター材としては、希土類金属、Ti、Zr又は、こ
れらを主成分とする合金粉が使われるが、入手の容易さ
の点から、鉄−希土類合金粉又はTi粉が好ましい。ま
た、ゲッター材の粉末は酸化が少ければ粒度が細かい程
、良い。
As the getter material, rare earth metals, Ti, Zr, or alloy powders containing these as main components are used, but iron-rare earth alloy powder or Ti powder is preferable from the viewpoint of easy availability. Further, the less oxidation and the finer the particle size of the getter material powder, the better.

〔作用〕[Effect]

HIP処理の進行に伴い被焼結体の入ったコンテナには
高温、高圧がかかシ、変形して行く。このとき、コンテ
ナ内部の空間には、コンテナ密閉時の真空引きで取シ除
けなかったガスや、 HIPによる高温加熱で新たに発
生したガスが充満しておシ、これらが、コンテナよシも
強度の高く、変形が最も遅い別室に導かれ、ゲッター材
に吸収される。
As the HIP process progresses, high temperature and pressure are applied to the container containing the objects to be sintered, causing it to deform. At this time, the space inside the container is filled with gas that could not be removed by vacuuming when the container was sealed, and gas that was newly generated due to high-temperature heating by HIP. It is guided to a separate chamber with a high ceiling and where deformation is the slowest, and is absorbed by the getter material.

〔実施例〕〔Example〕

■溶製 タングステン電極を有する真空アーク炉を用いて鉄96
6.9.コバルト118F、テレピウム916Iを溶解
し、Fe −Co −Tb合金1950.9を得た。
■Iron 96 is produced using a vacuum arc furnace with molten tungsten electrodes.
6.9. Cobalt 118F and terepium 916I were melted to obtain Fe-Co-Tb alloy 1950.9.

なお、溶解前に真空アーク炉は高純度Arで置換した。Note that the vacuum arc furnace was replaced with high-purity Ar before melting.

原料の金属としては99.99%の電解鉄、および市販
の99.94Co、99.8%Tbを使用した。
As raw metals, 99.99% electrolytic iron and commercially available 99.94Co and 99.8% Tb were used.

■粉砕 上記Fe −Co −Tb合金をAr雰囲気下でステン
レス製乳鉢で粉砕した。粉砕後ふるい分けを行い粒径3
00〜150μ、150〜100μ、100〜45μ、
45μ下に分級した。
(2) Grinding The above Fe-Co-Tb alloy was ground in a stainless steel mortar under an Ar atmosphere. After pulverization, sieving is performed to obtain a particle size of 3.
00~150μ, 150~100μ, 100~45μ,
It was classified under 45μ.

これらの酸素濃度を分析した結果を第1表に示す。Table 1 shows the results of analyzing these oxygen concentrations.

第1表 粉砕粉の酸素濃度 ■成形 次に、上記合金粉を、各粒度から採取し、第2表に示す
様に配合し、第1図、及び第2図に示す様に充填した。
Table 1: Oxygen concentration of pulverized powder (■) Molding Next, the above alloy powder was sampled from each particle size, mixed as shown in Table 2, and filled as shown in FIGS. 1 and 2.

又、第2表のゲッター材としてのTt粉末は市販品を4
5μ下にふるい分けたものである。
In addition, Tt powder as a getter material in Table 2 is a commercially available product.
It was sieved under 5μ.

第2表 粉末充填後、真空引きパイプから、Arを流しつつ蓋と
コンテナを溶傍し、次いで真空引き・9イブよシ真空引
きし、 3 X 10−’ Torr迄減圧した時点で
200℃に加熱し、5時間保持した後、真空を保持しつ
つ密封した。
Table 2 After filling the powder, the lid and container were melted while flowing Ar from the vacuum pipe, and then vacuumed for 9 days. When the pressure was reduced to 3 x 10-' Torr, the temperature was raised to 200 °C. After heating and holding for 5 hours, the container was sealed while maintaining vacuum.

■焼結 上記コンテナをHIP装置に入れ1000℃×1000
 kg/yr;’の温度、圧力で4時間保持した。
■Sintering Put the above container into a HIP device at 1000℃ x 1000
The mixture was maintained at a temperature and pressure of kg/yr;' for 4 hours.

コンテナをHIP装置よシ取シ出した後開缶し、得られ
た焼結体の一部を分析した。(第3表参照)この後、焼
結体を101.6”X5tの板に仕上げターゲツト板と
した。
After removing the container from the HIP apparatus, it was opened, and a portion of the obtained sintered body was analyzed. (See Table 3) Thereafter, the sintered body was finished into a 101.6" x 5t plate and used as a target plate.

焼結体は、孔のない緻密なものであシ、ヒビ、割れ、等
の欠陥は見られなかった。
The sintered body was dense with no pores, and no defects such as cracks, cracks, or cracks were observed.

(代T−皐 6) 〔効果〕 上記実験の結果よシ、ゲッター材を入れたコンテナのタ
ーゲツト材はHIP処理の前後で酸素濃度がほとんど上
昇していない事が解る。
(Yo T-Ko 6) [Effect] The results of the above experiment show that the oxygen concentration of the target material in the container containing the getter material hardly increases before and after the HIP treatment.

また、この方法は、遷移金属−希土類だけでなく、他の
易酸化性金属のHIPによる焼結にも適用できる。
Furthermore, this method is applicable not only to transition metal-rare earth metals but also to sintering of other easily oxidizable metals by HIP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装填方法を説明する図、第2図は従来
の装填方法を説明する図である。
FIG. 1 is a diagram for explaining the loading method of the present invention, and FIG. 2 is a diagram for explaining the conventional loading method.

Claims (1)

【特許請求の範囲】[Claims] 1、金属製コンテナに金属粉末を充填して密封ししかる
後、そのコンテナを高温・高圧で熱間静水圧プレス処理
する希土類含有金属の焼結法において、被焼結体と同時
に、コンテナ内にこの被焼結体と空間的につながった別
室を設け、この別室の中に希土類金属、Ti、Zr又は
、これらを主成分とする合金粉末からなるゲッター材を
入れて熱間静水圧プレスする事を特徴とする希土類含有
金属の焼結法。
1. In the sintering method for rare earth-containing metals, which involves filling a metal container with metal powder, sealing it, and then subjecting the container to hot isostatic pressing at high temperature and pressure, the sintered object is simultaneously placed inside the container. A separate chamber spatially connected to the sintered body is provided, and a getter material made of rare earth metals, Ti, Zr, or alloy powders containing these as main components is placed in this separate chamber and hot isostatic pressing is performed. A method for sintering rare earth-containing metals.
JP31363087A 1987-12-11 1987-12-11 Sintering method of rare earth metal Expired - Lifetime JPH0663002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31363087A JPH0663002B2 (en) 1987-12-11 1987-12-11 Sintering method of rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31363087A JPH0663002B2 (en) 1987-12-11 1987-12-11 Sintering method of rare earth metal

Publications (2)

Publication Number Publication Date
JPH01156404A true JPH01156404A (en) 1989-06-20
JPH0663002B2 JPH0663002B2 (en) 1994-08-17

Family

ID=18043633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31363087A Expired - Lifetime JPH0663002B2 (en) 1987-12-11 1987-12-11 Sintering method of rare earth metal

Country Status (1)

Country Link
JP (1) JPH0663002B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696015B2 (en) 1999-03-03 2004-02-24 Sumitomo Special Metals Co., Ltd. Method for producing rare-earth magnet
JP2009128301A (en) * 2007-11-27 2009-06-11 Ckd Corp Magnetic linear measuring device
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696015B2 (en) 1999-03-03 2004-02-24 Sumitomo Special Metals Co., Ltd. Method for producing rare-earth magnet
JP2009128301A (en) * 2007-11-27 2009-06-11 Ckd Corp Magnetic linear measuring device
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same

Also Published As

Publication number Publication date
JPH0663002B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US5863398A (en) Hot pressed and sintered sputtering target assemblies and method for making same
JP4860029B2 (en) Method for manufacturing high-density sputter target made of two or more metals
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
JP2017519101A (en) Method for producing cermet or cemented carbide powder
US7135141B2 (en) Method of manufacturing a sintered body
JPH01156404A (en) Method for sintering rare earth element-contained metal
JPS62230967A (en) Method for generating used target
GB2085032A (en) Isostatic Pressing of Chromium Sputtering Targets
US3684499A (en) Method for producing intermetallic compound permanent magnet material
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPS5848608A (en) Production of permanent magnet of rare earths
JPH0678561B2 (en) Method for manufacturing substrate for sputtering target
JPH03173705A (en) Production of high density sintered body
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH0548281B2 (en)
JPH07100629A (en) Production of high-density material
JPS63290272A (en) Production of rare earth element-transition metal target material
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy
JPS63211707A (en) Manufacture of sintered rare-earth magnet
JPS6393802A (en) Hot isostatic press molding method
JPS59205404A (en) Powder solidifying method
JPS63162863A (en) Manufacture of chromium target for sputtering
JP3471858B2 (en) Manufacturing method of metal sintered member
JPS6029406A (en) Manufacture of sintered body
JPH0119449B2 (en)