JPS63290272A - Production of rare earth element-transition metal target material - Google Patents

Production of rare earth element-transition metal target material

Info

Publication number
JPS63290272A
JPS63290272A JP12458487A JP12458487A JPS63290272A JP S63290272 A JPS63290272 A JP S63290272A JP 12458487 A JP12458487 A JP 12458487A JP 12458487 A JP12458487 A JP 12458487A JP S63290272 A JPS63290272 A JP S63290272A
Authority
JP
Japan
Prior art keywords
powder
rare earth
transition metal
earth element
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12458487A
Other languages
Japanese (ja)
Inventor
Shunichiro Matsumoto
俊一郎 松本
Tsutomu Inui
乾 勉
Mutsuo Kazuyasu
一安 六夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12458487A priority Critical patent/JPS63290272A/en
Publication of JPS63290272A publication Critical patent/JPS63290272A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce high density targets by preforming mixed powdery starting materials for a rare earth element-transition metal target material, vacuum- sealing the resulting preforms in a capsule and pressing them by hot isostatic pressing. CONSTITUTION:When rare earth element-transition metal targets having a compsn. consisting of 52.5% Tb, 44% Fe and 3.5% Co are produced, 88% Tb - 12% Fe alloy powder, pure Fe powder and pure Co powder classified to 32 mesh are weighed and mixed so as to provide the compsn. The mixture is filled into hot press molds are presintered under the conditions of >=350kg-f/cm<2> pressure and 10<-4>Torr degree of vacuum to obtain preforms 4. The preforms 4 are put in a mild steel can 1 in a piled state and alumina powder 5 as a pressure medium is filled between the preforms 4 and between the preforms 4 and the can 1. The preforms 4 are then sintered at high temp. and pressure in a hot isostatic press to produce rare earth element-transition metal targets having such high density as 100% relative density and free from adsorbed oxygen and inert gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体として用いられる希土類元素
−遷移金属元素系スパッタリング用ターゲット材の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a rare earth element-transition metal element sputtering target material used as a magneto-optical recording medium.

〔従来の技術〕[Conventional technology]

最近、ガラスあるいは樹脂基板上にスパッタリング法を
用いて所望組成の希土類元素−遷移金属元素系の薄膜を
形成し、これを記録媒体として用いた書き換え可能で高
密度記録が可能な光磁気記録ディスクの開発が行なわれ
ている。このスパッタリングに用いられるターゲットは
、所望組成の合金粉や希土類元素粉末と遷移金属元素粉
末を所望組成に混合した粉体をホットプレスや熱間静水
圧プレスなどで加圧焼結することで製造されてい7一 る。
Recently, a thin film of a rare earth element-transition metal element with a desired composition is formed on a glass or resin substrate using a sputtering method, and this is used as a recording medium to create a magneto-optical recording disk that is rewritable and capable of high-density recording. Development is underway. The target used for this sputtering is manufactured by pressurizing and sintering powder, which is a mixture of alloy powder, rare earth element powder, and transition metal element powder of a desired composition, using a hot press, hot isostatic press, etc. It's seven years old.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、ホットプレスで加圧焼結を行なう場合、
焼結温度が固相温度以下では、得られる焼結体の相対密
度は94〜95%にしか達せず、このため焼結体中の空
孔にとりこまれている不活性ガスや酸素が成膜時に膜表
面に吸着したり、膜中にとりこまれて希土類元素を選択
的に酸化して磁気特性を劣化させる。一方焼結温度が固
相温度以上の場合は、焼結体の相対密度は、はぼ99%
以上にまで達するが、液相が生ずるため焼結体が酸化し
てしまうなどの問題点がある。
However, when performing pressure sintering with a hot press,
When the sintering temperature is below the solidus temperature, the relative density of the resulting sintered body reaches only 94 to 95%, and therefore, the inert gas and oxygen trapped in the pores in the sintered body form a film. Rare earth elements are sometimes adsorbed to the film surface or incorporated into the film, selectively oxidizing the rare earth elements and deteriorating their magnetic properties. On the other hand, when the sintering temperature is higher than the solidus temperature, the relative density of the sintered body is approximately 99%.
Although the above is achieved, there are problems such as the oxidation of the sintered body due to the generation of a liquid phase.

また、熱間静水圧プレスで加圧焼結を行なう場合は、高
密度な焼結体の製造が可能であるが、ホットプレスのよ
うな一軸圧縮ではないため、ターゲット材に適した薄板
の製造が困建であるという問題点があった。
In addition, when pressure sintering is performed using hot isostatic press, it is possible to produce a high-density sintered body, but since it is not uniaxial compression like hot press, it is difficult to produce thin plates suitable for target materials. The problem was that the building was in poor condition.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、ホットプレス、熱間静水圧プレスのそれ
ぞれの特徴と希土類元素−遷移金属元素合金粉末、希土
類元素粉末および遷移金属元素粉末の焼結性を冶金学的
に検討した結果、以下に示す知見を得るに至った。すな
わち。
The present inventors metallurgically investigated the characteristics of hot pressing and hot isostatic pressing and the sinterability of rare earth element-transition metal element alloy powder, rare earth element powder, and transition metal element powder, and found the following. The following findings were obtained. Namely.

(1)熱間静水圧プレスでは、予備成形体の密度が70
%以上であれば、成形体は均一収縮し、固相温度範囲内
で薄板を寸法精度良くかつ高密度に熱開成形することが
可能である。
(1) In hot isostatic pressing, the density of the preform is 70
% or more, the molded body shrinks uniformly, and it is possible to hot-open a thin plate with good dimensional accuracy and high density within the solidus temperature range.

(2)希土類元素−遷移金属元素合金粉末は硬くて脆い
金属間化合物よりなり、冷間での予備成形は困鎧である
が、ホットプレスで加圧焼結すれば密度85−95%の
予備成形体が得られる。
(2) Rare earth element-transition metal element alloy powder is made of a hard and brittle intermetallic compound, and it is difficult to preform it in the cold, but if it is pressure sintered in a hot press, it can have a density of 85-95%. A molded body is obtained.

(3)希土類元素粉末と遷移金属元素粉末の混合物は、
構成粒子自体が可塑性を有するため、常温、かつ成形圧
350)cgf/d以上で密度70%以上の予備成形体
が得られる。
(3) The mixture of rare earth element powder and transition metal element powder is
Since the constituent particles themselves have plasticity, a preform with a density of 70% or more can be obtained at room temperature and at a molding pressure of 350) cgf/d or more.

(4)同相焼結の場合、Tb等の希土類元素の酸化を極
力防止することが可能であり、熱間静水圧プレス後の焼
結体の酸素量を2000ppm以内に抑えることができ
ること等である。
(4) In the case of in-phase sintering, it is possible to prevent oxidation of rare earth elements such as Tb as much as possible, and the amount of oxygen in the sintered body after hot isostatic pressing can be suppressed to within 2000 ppm. .

本発明は、上記知見に基づいて発明されたものであり、
希土類元素−遷移金属元素合金粉末、希土類元素−遷移
金属元素合金粉末と遷移金属元素粉末の混合粉、希土類
元素粉末と遷移金属元素粉末との混合粉または希土類元
素粉末と希土類元素−遷移金属元素合金粉末との混合粉
を熱間あるいは冷間で予備成形し、密度比を70%以上
とした後該予備成形体をカプセルに真空封入し、熱間静
水圧プレスにより同相温度範囲内で加圧成形することを
特徴とする希土類元素−遷移金属元素ターゲット材の製
造方法である。
The present invention was invented based on the above findings,
Rare earth element - transition metal element alloy powder, mixed powder of rare earth element - transition metal element alloy powder and transition metal element powder, mixed powder of rare earth element powder and transition metal element powder, or rare earth element powder and rare earth element - transition metal element alloy The mixed powder is preformed hot or cold to a density ratio of 70% or more, then the preform is vacuum-sealed into capsules, and pressure molded within the same temperature range by hot isostatic pressing. This is a method for producing a rare earth element-transition metal element target material.

〔実施例〕〔Example〕

以下、実施例により、本発明のターゲット材製造方法を
詳しく説明する。
EXAMPLES Hereinafter, the target material manufacturing method of the present invention will be explained in detail with reference to Examples.

実施例1 52.5%T b−44%Fe−3,5%Go(重量%
)の組成を有する合金粉末を32メツシユ以下に分級し
た後、この合金粉末450 gを内径130mmのホッ
トプレスモールド内に充填し、加圧圧力200kg/c
d、温度1000℃、真空度1O−4torrで30分
保持して仮焼結を行なった。
Example 1 52.5%Tb-44%Fe-3,5%Go (wt%
) After classifying the alloy powder having a composition of 32 meshes or less, 450 g of this alloy powder was filled into a hot press mold with an inner diameter of 130 mm, and a pressurizing pressure of 200 kg/cm was applied.
d. Preliminary sintering was performed at a temperature of 1000°C and a vacuum degree of 1O-4 torr for 30 minutes.

前記焼結体の密度は、この時点で90%にまで達してい
る。この仮焼結体を第1図に示す軟鋼製缶体内に8枚重
ねて挿入した。
The density of the sintered body reached 90% at this point. Eight sheets of this temporary sintered body were stacked and inserted into a mild steel can shown in FIG.

なお、仮焼結体間および仮焼結体と缶体の間は、加熱焼
結時の反応防止および圧力媒体として作用するアルミナ
粉によって分離されている。前記缶体を1O−4tor
r、温度250℃で真空加熱して封止した後、熱間静水
圧プレス機中で、温度1100℃、圧力1200気圧で
1時間保持して焼結を行なった。前記焼結体の密度は、
相対密度100%に達しており、また焼結体の寸法も板
厚4±0.1mmという非常に寸法精度の良好な薄板が
成形できた。
Note that the pre-sintered bodies and between the pre-sintered bodies and the can body are separated by alumina powder which acts as a pressure medium and prevents reaction during heating and sintering. The can body is heated to 1O-4torr.
r. After vacuum heating and sealing at a temperature of 250°C, sintering was performed by holding in a hot isostatic press machine at a temperature of 1100°C and a pressure of 1200 atm for 1 hour. The density of the sintered body is
The relative density reached 100%, and the sintered body was molded into a thin plate with very good dimensional accuracy of 4±0.1 mm in thickness.

この薄板をターゲットに加工した後、スパッタ装置に装
着して酸化膜付Si上に膜厚1000人のTb−Fe−
Go膜を成膜し、さらにその上に保護膜として膜厚10
00人のSiNを成膜した。
After processing this thin plate as a target, it was installed in a sputtering device and a Tb-Fe-
A Go film is formed, and a protective film with a thickness of 10
00 people deposited a SiN film.

前記スパッタ膜を温度65℃、相対湿度95%の環境下
で加速寿命試験を行なった。なお本試験では比較品とし
て、同組成で相対密度が94%の焼結ターゲットを用い
て作成したスパッタ膜も同時に評価した。
The sputtered film was subjected to an accelerated life test in an environment of a temperature of 65° C. and a relative humidity of 95%. In this test, a sputtered film created using a sintered target with the same composition and relative density of 94% was also evaluated as a comparative product.

第3図にこの加速寿命試験の評価結果を示す。Figure 3 shows the evaluation results of this accelerated life test.

本発明ターゲットで成膜したスパッタ膜の保磁力は、長
時間にわたって安定しているのに対して、低密度ターゲ
ットで成膜したスパッタ膜はTbの選択酸化進行が原因
と思われる保磁力低下が早期に生ずることがわかる。
The coercive force of the sputtered film formed using the target of the present invention is stable over a long period of time, whereas the coercive force of the sputtered film formed using the low-density target decreases, which is thought to be caused by the progress of selective oxidation of Tb. It can be seen that this occurs early.

実施例2 32メツシユに分級した88%Tb−12%Fe(重量
%)合金粉末と純Fe、純Co粉を52.5%T b−
44%Fe−3,5%Coになるよう秤量した後、V型
混合器で均一な混合粉体になるよう混合した。次に該混
合粉末450gをホットプレス温度および熱間静水圧プ
レス温度を680℃にすること以外は、実施例1と同様
な条件で加圧焼結を行なった。得られた焼結体の相対密
度は100%を示し、板厚も4±0.1nmであった。
Example 2 88% Tb-12% Fe (wt%) alloy powder classified into 32 meshes, pure Fe, and pure Co powder were mixed into 52.5% Tb-
After weighing to give 44% Fe-3,5% Co, the powder was mixed using a V-type mixer to give a uniform mixed powder. Next, 450 g of the mixed powder was subjected to pressure sintering under the same conditions as in Example 1, except that the hot pressing temperature and hot isostatic pressing temperature were set to 680°C. The relative density of the obtained sintered body was 100%, and the plate thickness was 4±0.1 nm.

実施例3 32メツシユに分級した純Tb、純Fe、純Co粉を5
2.5%T b−44%Fe−3,5%Coになるよう
秤量し、V型混合器で均一に混合した。前記混合粉45
0gを内径130mφの金型に充填し、加圧圧力350
kg/d、常温で予備成形した。予備成形体の密度はこ
の時点で70%に達している。この予備成形体を第2図
に示す軟鋼製缶体内に5枚重ねて装入した。
Example 3 Pure Tb, pure Fe, and pure Co powders classified into 32 meshes were
They were weighed to give 2.5%Tb-44%Fe-3,5%Co and mixed uniformly using a V-type mixer. The mixed powder 45
0g was filled into a mold with an inner diameter of 130mφ, and the pressure was 350.
kg/d, and was preformed at room temperature. The density of the preform has reached 70% at this point. Five of these preforms were stacked and charged into a mild steel can shown in FIG.

予備成形体間は、板厚2■の薄いスペーサーを設置した
。また予備成形体とスペーサーおよび缶体の間には、加
圧焼結時の反応防止用としてNbiを設置した。前記缶
体を10−’ torr、温度250℃で真空加熱して
封止した後、熱間静水圧プレス機中で、温度680℃、
圧力1200気圧で1時間保持して焼結を行ない、板厚
精度および平坦度はやや劣るものの、他はほぼ実施例1
と同等な薄板を得た。
A thin spacer with a plate thickness of 2 mm was installed between the preforms. Furthermore, Nbi was placed between the preform, the spacer, and the can body to prevent reaction during pressure sintering. The can body was vacuum heated and sealed at 10-' torr and a temperature of 250°C, and then heated at a temperature of 680°C in a hot isostatic press machine.
Sintering was carried out by holding at a pressure of 1200 atm for 1 hour, and although the plate thickness accuracy and flatness were slightly inferior, other aspects were almost the same as in Example 1.
A thin plate equivalent to that was obtained.

実施例4 32メツシユに分級した純Tb粉と88%Tb−12%
Fe(重量%)合金粉末と純Fe、純CO粉を、52.
5%Tb−44%Fe−3,5%Coになるよう秤量し
た後、■型混合器で均一な混合粉体になるよう混合し、
実施例2と同条件でホットプレス予備成形および熱間静
水圧プレス焼結した。得られた焼結体の密度は、100
%を示し、板厚は4±0.1nmであった。
Example 4 Pure Tb powder classified into 32 meshes and 88% Tb-12%
Fe (wt%) alloy powder, pure Fe, pure CO powder, 52.
After weighing to make 5%Tb-44%Fe-3,5%Co, mix it with a type mixer to make a uniform mixed powder.
Hot press preforming and hot isostatic press sintering were carried out under the same conditions as in Example 2. The density of the obtained sintered body is 100
%, and the plate thickness was 4±0.1 nm.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、希土類元素−遷移金属元素合金粉末
、希土類元素−遷移金属元素合金粉末と遷移金属元素粉
末の混合粉、希土類元素粉末と遷移金属元素粉末との混
合粉または希土類元素粉末と希土類元素−遷移金属元素
合金粉末との混合粉を熱間あるいは冷間で予備成形し、
前記予備成形体を熱間静水圧プレスにより固相温度範囲
内で加圧成形することで、相対密度9g%以上の光磁気
記録用高密度ターゲット材の製造が可能となり、これは
、工業上大きな効果を有するものである。
As mentioned above, rare earth element-transition metal element alloy powder, mixed powder of rare earth element-transition metal element alloy powder and transition metal element powder, mixed powder of rare earth element powder and transition metal element powder, or rare earth element powder and rare earth element powder The mixed powder of element-transition metal element alloy powder is preformed hot or cold,
By press-forming the preform within the solidus temperature range using hot isostatic pressing, it is possible to manufacture a high-density target material for magneto-optical recording with a relative density of 9 g% or more, which is an industrially significant achievement. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わる熱間静水圧プレス用缶体の一
実施例を示す断面図、第2図は本発明による他の実施例
を示す断面図である。第3図は本発明ターゲットの薄膜
評価結果である。 1:軟鋼製缶体、2:メツシュ、3:脱気パイプ、4:
予備成形体、5:アルミナ粉、7:スペ第1図 7 2N−ブーlひ・ 屑11j防d(Nb)    第2図 、3,2
FIG. 1 is a sectional view showing one embodiment of a can for hot isostatic pressing according to the present invention, and FIG. 2 is a sectional view showing another embodiment of the present invention. FIG. 3 shows the thin film evaluation results of the target of the present invention. 1: Mild steel can body, 2: Mesh, 3: Deaeration pipe, 4:
Preformed body, 5: Alumina powder, 7: Spray Fig. 1 7 2N-Bullet Scrap 11j Prevention d (Nb) Fig. 2, 3, 2

Claims (1)

【特許請求の範囲】 1 希土類元素−遷移金属元素合金粉末、希土類元素−
遷移金属元素合金粉末と遷移金属元素粉末の混合粉、希
土類元素粉末と遷移金属元素粉末との混合粉または希土
類元素粉末と希土類元素−遷移金属元素合金粉末との混
合粉を熱間あるいは冷間で予備成形し、密度比を70%
以上とした後該予備成形体をカプセルに真空封入し、熱
間静水圧プレスにより固相温度範囲内で加圧成形するこ
とを特徴とする希土類元素−遷移金属元素ターゲット材
の製造方法。 2 原料粉末は、希土類元素−遷移金属元素合金粉末で
あり、予備成形はホットプレスによるものであることを
特徴とする特許請求の範囲第1項記載の希土類元素−遷
移金属元素ターゲット材の製造方法。 3 原料粉末は、希土類元素粉末と遷移金属元素粉末で
あり、これらを混合後350kgf/cm^2以上の圧
力で常温予備成形するものであることを特徴とする特許
請求の範囲第1項記載の希土類元素−遷移金属元素ター
ゲット材の製造方法。
[Claims] 1. Rare earth elements - transition metal element alloy powder, rare earth elements -
A mixed powder of a transition metal element alloy powder and a transition metal element powder, a mixed powder of a rare earth element powder and a transition metal element powder, or a mixed powder of a rare earth element powder and a rare earth element-transition metal element alloy powder is heated or cold. Preform and density ratio is 70%
A method for producing a rare earth element-transition metal element target material, which comprises vacuum-sealing the preform into a capsule after the above steps, and press-forming the preform within a solidus temperature range by hot isostatic pressing. 2. The method for producing a rare earth element-transition metal element target material according to claim 1, wherein the raw material powder is a rare earth element-transition metal element alloy powder, and the preforming is performed by hot pressing. . 3. The raw material powder is a rare earth element powder and a transition metal element powder, which are mixed and then preformed at room temperature under a pressure of 350 kgf/cm^2 or more. A method for producing a rare earth element-transition metal element target material.
JP12458487A 1987-05-21 1987-05-21 Production of rare earth element-transition metal target material Pending JPS63290272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12458487A JPS63290272A (en) 1987-05-21 1987-05-21 Production of rare earth element-transition metal target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12458487A JPS63290272A (en) 1987-05-21 1987-05-21 Production of rare earth element-transition metal target material

Publications (1)

Publication Number Publication Date
JPS63290272A true JPS63290272A (en) 1988-11-28

Family

ID=14889083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12458487A Pending JPS63290272A (en) 1987-05-21 1987-05-21 Production of rare earth element-transition metal target material

Country Status (1)

Country Link
JP (1) JPS63290272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215972A (en) * 1988-02-25 1989-08-29 Tokin Corp Production of target for magneto-optical medium
JPH02107762A (en) * 1988-10-15 1990-04-19 Sumitomo Metal Mining Co Ltd Alloy target for magneto-optical recording
JPH0422906A (en) * 1990-05-18 1992-01-27 Hitachi Cable Ltd Production of rare earth element-added waveguide
EP1067208A1 (en) * 1999-07-08 2001-01-10 Praxair S.T. Technology, Inc. Method of making sputtering targets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215972A (en) * 1988-02-25 1989-08-29 Tokin Corp Production of target for magneto-optical medium
JPH02107762A (en) * 1988-10-15 1990-04-19 Sumitomo Metal Mining Co Ltd Alloy target for magneto-optical recording
JPH0422906A (en) * 1990-05-18 1992-01-27 Hitachi Cable Ltd Production of rare earth element-added waveguide
EP1067208A1 (en) * 1999-07-08 2001-01-10 Praxair S.T. Technology, Inc. Method of making sputtering targets

Similar Documents

Publication Publication Date Title
JP4405610B2 (en) Manufacturing method of sputtering target
JP4860029B2 (en) Method for manufacturing high-density sputter target made of two or more metals
TW573036B (en) Method of making high density sputtering targets
JP2004517215A (en) Powder metallurgy for producing high density molded parts.
JPS63290272A (en) Production of rare earth element-transition metal target material
JPH1081962A (en) Production of ge-te-sb target for sputtering
JPH02107762A (en) Alloy target for magneto-optical recording
JPH02240201A (en) Forming die for compact body and manufacture of compact body
JPH0119447B2 (en)
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPH0119448B2 (en)
JPH036218B2 (en)
JPS61229314A (en) Target material and manufacture thereof
JPH0344145B2 (en)
JP2000328240A (en) Sputtering target for forming magneto-optical recording medium film and its production
JPS63219548A (en) Production of permanent magnet
JPH0768611B2 (en) Method for manufacturing alloy target for sputtering
JPS63111135A (en) Manufacture of rare earth-transition metal target
JPH0119449B2 (en)
JPS63266066A (en) Alloy target and production thereof
JPS62205556A (en) Sputtering target for forming photoelectromagnetic recording medium
JP2946350B2 (en) Method for producing sintered body made of amorphous alloy powder
JPH01319910A (en) Magnetic substance and manufacture thereof
JPS62263939A (en) Manufacture of alloy target material
JPS63201068A (en) Manufacture of board-form sintered body