JPH0548281B2 - - Google Patents

Info

Publication number
JPH0548281B2
JPH0548281B2 JP10763587A JP10763587A JPH0548281B2 JP H0548281 B2 JPH0548281 B2 JP H0548281B2 JP 10763587 A JP10763587 A JP 10763587A JP 10763587 A JP10763587 A JP 10763587A JP H0548281 B2 JPH0548281 B2 JP H0548281B2
Authority
JP
Japan
Prior art keywords
powder
metal
alloy
rare earth
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10763587A
Other languages
Japanese (ja)
Other versions
JPS63105909A (en
Inventor
Yasuhiro Okajima
Yasuhiro Tsugita
Kenya Ito
Koji Tsuzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JPS63105909A publication Critical patent/JPS63105909A/en
Publication of JPH0548281B2 publication Critical patent/JPH0548281B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は、光磁気蚘録媒䜓の磁性金属薄膜の圢
成をスパツタリングで補造するのに奜適である焌
結合金からなるスパツタリング甚タヌゲツトの補
造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a sputtering target made of a sintered alloy, which is suitable for producing a magnetic metal thin film of a magneto-optical recording medium by sputtering. .

〔埓来の技術〕[Conventional technology]

近幎、情報を高密床で蚘録でき、再生、消去さ
らに再蚘録を容易に行なうこずができる蚘録媒䜓
ずしお光磁気蚘録媒䜓が開発され、その蚘録局を
圢成する磁性金属薄膜ずしお垌土類元玠ず遷移金
属からなる非晶質合金Tb−Fe−Co、Gd−Tb
−Feなどは、蚘録に必芁な゚ネルギヌが少な
くおすむこず、粒界ノむズが珟われないこず、さ
らに比范的容易に倧型のものが䜜成できるこず等
の倚くの利点を持぀ため実甚䞊泚目されおいる。
In recent years, magneto-optical recording media have been developed as recording media that can record information at high density and that can be easily reproduced, erased, and re-recorded.The magnetic metal thin film that forms the recording layer is made of rare earth elements and transition metals. amorphous alloys (Tb−Fe−Co, Gd−Tb
-Fe, etc.) are attracting attention for practical use because they have many advantages, such as requiring less energy for recording, no grain boundary noise, and the ability to relatively easily produce large-sized materials. .

このように、光磁気蚘録媒䜓においお垌土類−
遷移金属合金薄膜が泚目されおいるが、その圢成
方法ずしおは、化孊め぀き法、スパツタリング
法、むオンプレヌテむング法、真空蒞着法等が甚
いられおいる。これらの方法の䞭でも、埗られる
磁性薄膜の品質が良奜であるこずから、スパツタ
リング法が優れおいる。
In this way, in magneto-optical recording media, rare earth
Transition metal alloy thin films are attracting attention, and methods for forming them include chemical plating methods, sputtering methods, ion plating methods, vacuum evaporation methods, and the like. Among these methods, the sputtering method is superior because the quality of the obtained magnetic thin film is good.

スパツタリング法ではタヌゲツトが必芁である
が、歩留が良く、組成倉化が少なくお目的組成の
合金薄膜を埗やすい点で、合金型のタヌゲツトが
有利である。
Although a target is required in the sputtering method, an alloy type target is advantageous in that it has a good yield, little change in composition, and it is easy to obtain an alloy thin film having the desired composition.

さお、タヌゲツトずしお甚いる垌土類元玠−遷
移金属合金の補造方法ずしお、埓来、垌土類元玠
ず遷移金属をアヌク攟電等によ぀お溶解させお合
金化する方法があるが、垌土類元玠が高掻性であ
るため歩留が悪く、たた偏析が起り易く、空孔を
含むむンゎツトが生じ易い䞊、垌土類元玠ず遷移
金属の合金の持぀極めお脆いずいう金属間化合物
に特有な性質が珟われおしたい、特に倧型の合金
塊の䜜成時にヒビ、割れなどが発生し易いずいう
問題がある。
Now, as a method for producing a rare earth element-transition metal alloy used as a target, there is a conventional method of melting rare earth elements and transition metals by arc discharge etc., but since rare earth elements are highly active, it is difficult to process In addition, the property of intermetallic compounds such as poor retention, segregation, and pore-containing ingots, which are extremely brittle of alloys of rare earth elements and transition metals, appears, especially in large alloy lumps. There is a problem in that cracks and cracks are likely to occur during production.

これに察しお、垌土類元玠粉末ず遷移金属粉末
の混合物たたは垌土類元玠ず遷移金属を所芁組成
で含む合金粉末を原料ずし、その原料粉末を粉末
冶金法により焌結する方法によるず、ヒビ、割れ
などを回避するこずができる。
On the other hand, if a mixture of rare earth element powder and transition metal powder or an alloy powder containing the required composition of rare earth element and transition metal is used as a raw material and the raw material powder is sintered using a powder metallurgy method, cracks and cracks may occur. can be avoided.

〔発明が解決しようずする問題点〕[Problem that the invention seeks to solve]

しかし、䞊蚘の粉末冶金法に䟛される原料合金
粉末は、埓来、特開昭60−230903号公報に蚘茉の
ように、成分金属を溶解しお埗られた合金塊を粉
砕しお補造されるものであ぀たが、垌土類元玠は
空気䞭で酞化され易いずいう性質があるので、粉
砕時に埗られる合金粉末の酞玠含有量が増し、そ
の結果、焌結䜓の酞玠含有量も高いものずなるこ
ずは避けられない。この焌結合金䞭の酞玠は、ス
パツタリング法、で䜜成した薄膜の光磁気特性を
著しく䜎䞋させるずいう問題がある。焌結金属䞭
の酞玠含有量を䜎枛するためには、前蚘の粉砕工
皋を有機溶媒䞭たたは䞍掻性雰囲気䞭で行なう必
芁があるが、工皋が繁雑ずなる䞊補造コストが非
垞に高くなるずいう欠点がある。
However, the raw material alloy powder used in the above-mentioned powder metallurgy method is conventionally manufactured by crushing an alloy ingot obtained by melting component metals, as described in Japanese Patent Application Laid-open No. 60-230903. However, since rare earth elements have the property of being easily oxidized in the air, the oxygen content of the alloy powder obtained during crushing increases, and as a result, the oxygen content of the sintered body also increases. is unavoidable. There is a problem in that oxygen in this sintered alloy significantly deteriorates the magneto-optical properties of a thin film produced by sputtering. In order to reduce the oxygen content in the sintered metal, it is necessary to perform the above-mentioned pulverization process in an organic solvent or in an inert atmosphere, but this has the drawbacks that the process is complicated and the manufacturing cost is extremely high. There is.

そこで、本発明の目的は、䞊蚘問題点を解決
し、スパツタリング法により、光磁気蚘録媒䜓の
蚘録局ずしお良奜な特性を有する金属薄膜を圢成
するのに有甚である䜎酞玠含有量の焌結合金補タ
ヌゲツトの補造方法を提䟛するこずにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems and to provide a sintered alloy with a low oxygen content that is useful for forming a metal thin film having good properties as a recording layer of a magneto-optical recording medium by a sputtering method. An object of the present invention is to provide a method for manufacturing a manufactured target.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、プラセオゞムPr、ネオゞム
Nd、サマリりムSm、ガドリりムGd、
テルビりムTb、ゞスプロシりムDy、ホル
ミりムHoおよび゚ルビりムErの少なく
ずも皮を含む垌土類元玠の酞化物粉末ず鉄
Fe、ニツケルNiおよびコバルトCoの
少なくずも皮を含む遷移金属の金属粉末、その
酞化物粉末およびその塩化物粉末から遞ばれる少
なくずも皮ずアルカリ金属、アルカリ土類金
属およびこれらの氎玠化物から遞ばれる少なくず
も皮ずの混合物を、䞍掻性ガス雰囲気䞭たたは
真空䞋で加熱した埌、反応生成混合物を湿匏凊理
しお、垌土類−遷移金属合金粉末を埗、該粉末を
含む金属粉末を粉末冶金法により焌結させるこず
からなる、光磁気蚘録媒䜓の補造に甚いるスパツ
タリング甚焌結合金補タヌゲツトの補造方法を提
䟛するものである。
The present invention includes praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd),
Rare earth element oxide powder containing at least one of terbium (Tb), dysprosium (Dy), holmium (Ho) and erbium (Er); and at least one of iron (Fe), nickel (Ni) and cobalt (Co). A mixture of at least one selected from a metal powder of a transition metal containing a species, an oxide powder thereof, and a chloride powder thereof; and at least one selected from an alkali metal, an alkaline earth metal, and a hydride thereof; magneto-optical method, which consists of wet-processing the reaction product mixture after heating in an active gas atmosphere or under vacuum to obtain a rare earth-transition metal alloy powder, and sintering the metal powder containing the powder by powder metallurgy. The present invention provides a method for manufacturing a sintered alloy target for sputtering used in the manufacture of recording media.

たた、本発明は䞊蚘補造方法においお加熱に䟛
する前蚘混合物に、さらにアルカリ金属塩化物お
よびアルカリ土類金属塩化物から遞ばれる少なく
ずも皮を含有させる焌結合金補タヌゲツトの補
造方法をも提䟛するものである。
The present invention also provides a method for producing a sintered alloy target, in which the mixture subjected to heating in the production method further contains at least one selected from alkali metal chlorides and alkaline earth metal chlorides. It is.

本発明で甚いられる垌土類元玠は、Pr、Nd、
Sm、Gd、Tb、Dy、HoおよびErの少なくずも
皮を含有しなければならないが、特に、Gd、
Tb、Dy、HoおよびErの少なくずも皮を含有
するこずが奜たしい。垌土類元玠ずしおは、これ
ら以倖の垌土類元玠を含有しおもよく、この堎合
埗られる金属薄膜の光磁気特性の点で、Pr、
Nd、Sm、Gd、Tb、Dy、HoおよびErのうちの
甚いられるものの合蚈が、甚いられる垌土類元玠
ず遷移金属元玠の党䜓に察し20〜80重量、特に
30〜60重量であるこずが奜たしい。Pr、Nd、
Sm、Gd、Tb、DyHoおよびEr以倖の垌土類
元玠ずしおは、ランタンLa、セリりムCe、
ナりロピりムEu、ツリりムTm、むツテル
ビりムYb、ルテチりムLu、プロメチりム
Pm、むツトリりム(Y)およびスカンゞりム
Scがあげられおいる。これら垌土類元玠の酞
化物粉末は皮単独でも皮以䞊の混合物ずしお
も甚いるこずができる。これらの粉末の粒床は特
に限定されないが、平均粒埄が〜50Όフむ
ツシダヌ・サブシヌブ・サむザヌ法、以䞋同じ
が奜たしい。
The rare earth elements used in the present invention include Pr, Nd,
It must contain at least one of Sm, Gd, Tb, Dy, Ho and Er, especially Gd,
It is preferable to contain at least one of Tb, Dy, Ho and Er. As the rare earth element, rare earth elements other than these may be contained, and in terms of the magneto-optical properties of the resulting metal thin film, Pr,
The total amount of Nd, Sm, Gd, Tb, Dy, Ho and Er used is 20 to 80% by weight based on the total of rare earth elements and transition metal elements used, especially
It is preferably 30 to 60% by weight. Pr, Nd,
Rare earth elements other than Sm, Gd, Tb, Dy, Ho and Er include lanthanum (La), cerium (Ce),
These include europium (Eu), thulium (Tm), ytterbium (Yb), lutetium (Lu), promethium (Pm), yttrium (Y), and scandium (Sc). These rare earth element oxide powders can be used alone or as a mixture of two or more. The particle size of these powders is not particularly limited, but the average particle size is 1 to 50 ÎŒm (Fitscher subsieve sizer method, the same applies hereinafter).
is preferred.

たた、本発明で甚いられる遷移金属元玠ずしお
は、Fe、CoおよびNiの少なくずも皮を含有し
なければならない。遷移金属ずしおは、Fe、Co
およびNi以倖の遷移金属を含有しおもよい。Fe、
Co、Ni以倖の遷移金属の皮類は特に制限されな
いただし、前蚘垌土類元玠を陀くが、代衚的
な䟋ずしおは、マンガンMn、クロムCr、
バナゞりム(V)、チタンTi等が挙げられる。
Furthermore, the transition metal element used in the present invention must contain at least one of Fe, Co, and Ni. Transition metals include Fe, Co
and may contain transition metals other than Ni. Fe,
The types of transition metals other than Co and Ni are not particularly limited (excluding the rare earth elements mentioned above), but typical examples include manganese (Mn), chromium (Cr),
Examples include vanadium (V) and titanium (Ti).

これらの遷移金属は皮単独でも皮以䞊の混
合物もしくは合金ずしお甚いるこずもできる。遷
移金属の圢態は、金属粉末合金粉末を含む、
酞化物粉末および塩化物粉末のいずれでもよく、
これらの混合物でもよい以䞋単に「遷移金属粉
末等」ずいう。通垞は金属粉末ずしお甚いるこ
ずが奜たしい。酞化物や塩化物を䜿甚する堎合は
金属粉末の䞀郚ずしお甚いるのが奜たしいが、そ
の金属の䜿甚量が少量である堎合にはその金属の
党量を酞化物およびたたは塩化物ずしお甚いる
こずができる。遷移金属粉末等の粒床は特に限定
されないが、埗られる合金粉末の粒床および合金
組成の均䞀性から粒床100メツシナTyler、以
䞋同じ以䞋が望たしい。たた、原料金属粉末の
粒床は、䞀般に目暙粒床の1/2以䞋が望たしい。
したが぀お、䟋えば粉末冶金原料ずしお奜たしい
粒床100メツシナ以䞋の埮现な合金粉末を補造す
るためには、粒床200メツシナ以䞋の金属粉末の
䜿甚が奜たしい。
These transition metals can be used alone or as a mixture or alloy of two or more. The forms of transition metals are metal powders (including alloy powders),
Either oxide powder or chloride powder may be used,
A mixture of these may also be used (hereinafter simply referred to as "transition metal powder etc."). It is usually preferable to use it as a metal powder. When using an oxide or chloride, it is preferable to use it as part of the metal powder, but if the amount of the metal used is small, it is preferable to use the entire amount of the metal as the oxide and/or chloride. can. The particle size of the transition metal powder, etc. is not particularly limited, but it is desirable to have a particle size of 100 mesh (Tyler, hereinafter the same) or less in view of the particle size of the obtained alloy powder and the uniformity of the alloy composition. Furthermore, it is generally desirable that the particle size of the raw metal powder is 1/2 or less of the target particle size.
Therefore, for example, in order to produce a fine alloy powder with a particle size of 100 mesh or less, which is preferable as a raw material for powder metallurgy, it is preferable to use metal powder with a particle size of 200 mesh or less.

本発明に甚いられるアルカリ金属、アルカリ土
類金属およびこれらの氎玠化物以䞋、単に「ア
ルカリ金属等」ずいうは、還元剀ずしおも働く
ものである。具䜓䟋ずしおはリチりム、ナトリり
ム、カリりム、マグネシりムおよびその氎玠化物
が挙げられるが、取扱い䞊の安党性およびコスト
の点からカルシりムが奜たしい。たたこれらの金
属たたは金属氎玠化物は粒状たたは粉末状のもの
が䜿甚されるが、コストの点からは粒床メツシ
ナ以䞋の粒状金属カルシりムが奜たしい。これら
の還元剀の䜿甚量は、反応圓量垌土類酞化物お
よびその他の金属成分の原料ずしお酞化物や塩化
物が甚いられた堎合にはそれらを還元するのに必
芁な化孊量論的量の1.1〜3.0倍量が奜たしく、
1.5〜2.0倍量が特に奜たしい。
The alkali metals, alkaline earth metals, and hydrides thereof (hereinafter simply referred to as "alkali metals, etc.") used in the present invention also function as reducing agents. Specific examples include lithium, sodium, potassium, magnesium, and their hydrides, but calcium is preferred from the viewpoint of handling safety and cost. These metals or metal hydrides may be used in granular or powdered form, but from the viewpoint of cost, granular metallic calcium having a particle size of 4 mesh or less is preferred. The amount of these reducing agents used is based on the reaction equivalent (the stoichiometric amount required to reduce rare earth oxides and other metal components when oxides and chlorides are used as raw materials). 1.1 to 3.0 times the amount is preferable,
Particularly preferred is 1.5 to 2.0 times the amount.

本発明の補造方法においお、加熱に䟛する混合
物に堎合によ぀お含たれるアルカリ金属塩化物お
よびアルカリ土類金属塩化物以䞋「アルカリ金
属塩化物」等ずいうは、原料ずしお甚いられる
金属粉末や生成合金粉末の粒子が互いに溶着、結
合したり、副生するアルカリ金属等の酞化物の粒
子ず結合するのを抑制し、たた塊状混合物ずしお
埗られる反応生成物の湿匏凊理における厩壊を促
す働きをするものである。たたアルカリ金属等、
酞玠、炭玠などの䞍玔物含有量をい぀そう䜎枛す
るこずができる。このアルカリ金属塩化物等ずし
おは、䟋えば、リチりム、ナトリりム、カリり
ム、マグネシりムの塩化物が挙げられ、氎和物を
含んでいない無氎のものが奜たしい。䞭でも、加
熱した際に揮発性をほずんど瀺さず、コストの点
でも有利である無氎塩化カルシりムが特に奜たし
い。これらのアルカリ金属塩化物等の䜿甚量は、
垌土類酞化物の量に察しお〜30重量が奜たし
く、特に生成分である垌土類−遷移金属合金粉末
䞭のカルシりム等のアルカリ金属等の含有量およ
び酞玠含有量を極力䜎くし、か぀、より埮现な合
金粉末の補造を望む堎合には、〜20重量が特
に奜たしい。
In the production method of the present invention, alkali metal chlorides and alkaline earth metal chlorides (hereinafter referred to as "alkali metal chlorides" etc.) that may be contained in the mixture to be heated are metal powders used as raw materials and It prevents particles of alloy powder from welding and bonding with each other and particles of by-product oxides such as alkali metals, and also works to promote disintegration of the reaction product obtained as a lumpy mixture during wet processing. It is something. Also, alkali metals, etc.
The content of impurities such as oxygen and carbon can be reduced at any time. Examples of the alkali metal chlorides include chlorides of lithium, sodium, potassium, and magnesium, and anhydrous ones that do not contain hydrates are preferred. Among these, anhydrous calcium chloride is particularly preferred because it exhibits almost no volatility when heated and is advantageous in terms of cost. The amount of these alkali metal chlorides, etc. used is
The amount is preferably 1 to 30% by weight based on the amount of rare earth oxide, and in particular, the content of alkali metals such as calcium and oxygen content in the rare earth-transition metal alloy powder, which is a product component, should be as low as possible, and 3 to 20% by weight is particularly preferred if it is desired to produce a fine alloy powder.

本発明によれば、たず、䞊述した皀土類酞化物
粉末等原料の混合物が䞍掻性ガス雰囲気䞭たたは
真空䞋、䟋えば10-5Torr以䞋においお加熱に䟛
される。
According to the present invention, first, a mixture of raw materials such as the rare earth oxide powder described above is heated in an inert gas atmosphere or under vacuum, for example, at 10 -5 Torr or less.

各原料は十分に混合されるが、この取扱いは也
燥した䞍掻性ガス雰囲気など吞湿が起らない条件
䞋で実斜される。埗られた混合物は、前蚘のずお
り䞍掻性ガス雰囲気たたは真空䞋で加熱される。
ここで、甚いられる䞍掻性ガス雰囲気ずしおは、
アルゎン、チツ玠等を挙げるこずができる。た
た、このずきの加熱枩床は900〜1300℃、特に950
〜1100℃の範囲が奜たしく、加熱時間は特に制玄
されないが、組成が均䞀な合金粉末が埗られるた
めには〜10時間が奜たしい。この加熱凊理によ
り埗られる反応生成物は、目的ずする垌土類−遷
移金属合金のほか副生するアルカリ金属等の酞化
物、未反応のアルカリ金属等を含む塊状の混合物
である。
Each raw material is thoroughly mixed, but this handling is carried out under conditions where moisture absorption does not occur, such as in a dry inert gas atmosphere. The resulting mixture is heated under an inert gas atmosphere or under vacuum as described above.
Here, the inert gas atmosphere used is:
Examples include argon and nitrogen. Also, the heating temperature at this time is 900 to 1300℃, especially 950℃.
The heating time is preferably in the range of 1100°C to 1100°C, and although the heating time is not particularly limited, the heating time is preferably 1 to 10 hours in order to obtain an alloy powder with a uniform composition. The reaction product obtained by this heat treatment is a lumpy mixture containing the target rare earth-transition metal alloy, by-product oxides such as alkali metals, unreacted alkali metals, and the like.

次に、埗られたこの塊状混合物に湿匏凊理を斜
す。ここで、湿匏凊理は反応生成物混合物を必芁
により氎蒞気䞭に攟眮埌、氎䞭に投入し撹拌する
などの方法で氎ず接觊させればよく、必芁に応じ
お酞凊理を斜す。反応生成混合物を氎ず接觊させ
るず、これに含たれおいる残留アルカリ金属等お
よび副生酞化物は氎ず反応し、䟋えばCaOH2
等のアルカリ金属等の氎酞化物を生成しお溶解す
るので塊状混合物は厩壊する。厩壊によ぀お生じ
たスラリヌを撹拌埌、デカンテヌシペンによ぀お
䞊郚のアルカリ金属等の氎酞化物の懞濁物を陀去
し、泚氎−撹拌−デカンテヌシペンの操䜜を繰り
返すこずによ぀お該氎酞化物を埗られた合金粉末
から陀去するこずができる。たた、䞀郚残留した
氎酞化物は、酢酞あるいは塩酞を甚いおPH〜
、奜たしくはPH〜においお掗浄するこずに
よ぀お完党に陀去するこずができる。このような
湿匏凊理を経お埗られた合金粉末は、䟋えば、氎
掗埌、アルコヌルあるいはアセトン等の有機溶剀
で掗浄、脱氎し、真空也燥すればよい。反応生成
物である塊状の混合物の湿匏凊理における厩壊
は、アルカリ金属塩化物等の有無によ぀お次のよ
うな差がみられる。アルカリ金属塩化物等の混合
がない堎合には、ほが完党に厩壊するのに20〜30
時間を芁するが、アルカリ金属塩化物等を混合し
た堎合には厩壊は〜30分で完結する。
Next, the obtained lump mixture is subjected to wet processing. Here, in the wet treatment, the reaction product mixture may be left in steam if necessary, and then brought into contact with water by a method such as pouring into water and stirring, and acid treatment is performed if necessary. When the reaction product mixture is brought into contact with water, residual alkali metals, etc. and by-product oxides contained therein react with water, such as Ca(OH) 2
Since hydroxides of alkali metals and the like are generated and dissolved, the lumpy mixture disintegrates. After stirring the slurry produced by the disintegration, the suspension of hydroxides such as alkali metals at the top is removed by decantation, and the slurry is removed by repeating the operations of water injection, stirring, and decantation. Hydroxide can be removed from the resulting alloy powder. In addition, some remaining hydroxide can be removed using acetic acid or hydrochloric acid to
6, preferably by washing at pH 4 to 5. The alloy powder obtained through such a wet treatment may be washed with water, washed with an organic solvent such as alcohol or acetone, dehydrated, and dried in vacuum, for example. The disintegration of a lumpy mixture, which is a reaction product, during wet processing differs as follows depending on the presence or absence of an alkali metal chloride. If there is no mixture of alkali metal chlorides, etc., it takes 20 to 30 minutes for almost complete disintegration.
Although it takes time, when an alkali metal chloride or the like is mixed, the disintegration is completed in 5 to 30 minutes.

たた、埗られる合金粉末䞭の䞍玔物含有量重
量の点では、䟋えば、還元剀ずしおカルシり
ムを䜿甚した堎合を䟋に述べるず、アルカリ金属
塩化物等を混合しない堎合は、Ca0.1〜0.2、
0.05〜0.15、O20.2〜0.4ず䞍玔物含有
量が䜎く、光磁気蚘録媒䜓の金属薄膜䜜成に甚い
るスパツタリング甚タヌゲツトの原料粉末ずしお
良奜な玔床を有しおいる。䞀方、アルカリ金属塩
化物等を混合した堎合は、Ca0.1以䞋、
0.02以䞋、O20.2以䞋ず䞍玔物含有量が極
めお䜎く、䞍玔物に察するアルカリ金属塩化物等
の優れた効果が珟われ、前蚘スパツタリング甚タ
ヌゲツトの原料粉末ずしお特に優れたものが埗ら
れる。
In addition, in terms of the impurity content (wt%) in the obtained alloy powder, for example, taking the case where calcium is used as a reducing agent, if an alkali metal chloride etc. is not mixed, Ca: 0.1 ~ 0.2%,
It has a low impurity content of 0.05 to 0.15% for C and 0.2 to 0.4% for O 2 , and has a good purity as a raw material powder for sputtering targets used to create metal thin films for magneto-optical recording media. On the other hand, when alkali metal chlorides etc. are mixed, Ca: 0.1% or less, C:
The impurity content is extremely low, 0.02% or less, O 2 : 0.2% or less, and the alkali metal chloride has an excellent effect on impurities, making it possible to obtain a particularly excellent raw material powder for the sputtering target.

こうしお埗られた合金粉末たたは該合金粉末を
含む金属粉末を、次に、粉末冶金法による焌結に
䟛し、焌結合金を補造する。
The alloy powder thus obtained or the metal powder containing the alloy powder is then subjected to sintering by a powder metallurgy method to produce a sintered alloy.

このずき、焌結に䟛する金属粉末は、䞊蚘で埗
られた合金粉末単独でもよいし、必芁に応じお
Fe、Ni、Co等の遷移金属粉末を適圓量混合しお
組成調敎を行な぀た金属粉末でもよい。
At this time, the metal powder to be subjected to sintering may be the alloy powder obtained above alone, or may be used as necessary.
A metal powder whose composition is adjusted by mixing an appropriate amount of transition metal powder such as Fe, Ni, or Co may also be used.

粉末冶金法による金属粉末の焌結は、䟋えば、
合金粉末又は合金粉末を含む金属粉末を、垞枩で
0.5〜5tcm2の圧力で単玔圧瞮するか、0.5〜2t
cm2の圧力で静氎圧プレスにお成圢した埌、真空あ
るいはAr雰囲気䞭、900〜1300℃の枩床で〜
時間焌結する垞圧焌結法、真空䞭、0.1〜0.5tcm2
の圧力で800〜1200℃の枩床で〜時間焌結す
る熱間加圧法、曎には匟性䜓䞭に封入埌、800〜
1200℃の枩床、0.1〜2tcm2の圧力で〜時間
焌結する熱間静氎圧加圧法等により焌結を行なう
こずができる。
Sintering of metal powder by powder metallurgy is, for example,
Alloy powder or metal powder containing alloy powder at room temperature.
Simple compression with a pressure of 0.5-5t/ cm2 or 0.5-2t/cm2
After molding with a hydrostatic press at a pressure of cm2 , it is molded at a temperature of 900 to 1300℃ in a vacuum or Ar atmosphere for 1 to 5
Pressureless sintering method for time sintering, in vacuum, 0.1-0.5t/cm 2
Hot pressing method involves sintering at a pressure of 800 to 1200℃ for 1 to 5 hours, and furthermore, after sintering in an elastic body,
Sintering can be carried out by a hot isostatic pressing method in which sintering is performed at a temperature of 1200° C. and a pressure of 0.1 to 2 t/cm 2 for 1 to 5 hours.

アルカリ金属塩化物等を甚いる堎合には、これ
は、熱還元反応で生じる熱の吞収剀ずしお働き、
これにより原料の金属粉末および生成合金粉末の
粒子同士が焌結するのを防止し、たた副生する
CaO等アルカリ金属等の酞化物に固溶しお生成合
金粉末ずCaO等アルカリ金属等の酞化物ずの分離
性を高めるものず考えられる。
When using alkali metal chlorides, etc., this acts as an absorber for the heat generated in the thermal reduction reaction,
This prevents particles of raw metal powder and produced alloy powder from sintering with each other, and also prevents by-products from sintering.
It is thought that it dissolves in an oxide of an alkali metal such as CaO and improves the separation between the produced alloy powder and the oxide of an alkali metal such as CaO.

本発明の方法により補造される光磁気蚘録媒䜓
の金属薄膜䜜成甚垌土類−遷移金属合金補タヌゲ
ツトずしおは、Tb−Fe系合金、Dy−Fe系合金、
Gd−Tb−Fe系合金、Gd−Tb−Co系合金、Tb
−Fe−Co系合金、Tb−Co系合金、Tb−Dy−Fe
−Co系合金、Nd−Dy−Fe−Co系合金等が挙げ
られるが、これらに限定されるものではない。
Examples of rare earth-transition metal alloy targets for forming metal thin films of magneto-optical recording media produced by the method of the present invention include Tb-Fe alloys, Dy-Fe alloys,
Gd-Tb-Fe alloy, Gd-Tb-Co alloy, Tb
-Fe-Co alloy, Tb-Co alloy, Tb-Dy-Fe
-Co alloy, Nd-Dy-Fe-Co alloy, etc., but are not limited to these.

〔実斜䟋〕〔Example〕

次に、本発明の方法を実斜䟋により具䜓的に説
明する。
Next, the method of the present invention will be specifically explained using examples.

実斜䟋  Tb−Fe−Co合金粉末目暙組成重量
Tb55、Fe42、Coの補造を目的
ずしお、それぞれ玔床が99.9以䞊の、Tb4O7
平均粒埄3Ό以䞋407.4、鉄粉粒床200メ
ツシナ以䞋250.6、コバルト扮粒床200メツ
シナ以䞋20.4、金属カルシりム粒床メツ
シナ以䞋305.1、および無氎塩化カルシりム
粒床100メツシナ以䞋40.7を配合し、十分に
混合した。混合物をステンレススチヌル補の反応
容噚に入れ、高玔床アルゎンガスの気流䞭で1000
℃たで玄時間で昇枩し、その枩床で時間保持
した埌宀枩たで冷华した。生成した塊状の混合物
1012.3をの氎に投入した。塊状の混合物が
厩壊埌、生じたスラリヌから䞊局のCaOH2懞
濁物をデカンテヌシペンによ぀お分離し泚氎した
埌、スラリヌを分間撹拌し、再びデカンテヌシ
ペンを行぀た。この泚氎−撹拌−デカンテヌシペ
ンの操䜜を繰り返しお合金粉末から酞化カルシり
ムを十分に分離した。合金粉末に氎を加えたスラ
リヌに、PH4.5になるように撹拌しながら垌酢酞
を滎䞋し、これを20分間保持した。これを濟過し
お、埗られた合金粉末を氎掗埌゚タノヌルで数回
掗浄し、50℃、×10-2Torrで12時間真空也燥
した。このようにしお埗られた金属粉末の組成
重量は、Tb55.4、Co3.4、Fe
41.0であり、䞍玔物であるO2は0.10重量ず極
めお埮量であ぀た。埗られた合金粉末の540を
内埄130mmの黒鉛補の成圢品に装入しお熱間加圧
した。熱間加圧の条件ずしお、真空床を×
10-5Torrずし、粉末を加圧するために、0.15t
cm2の圧力を1000℃に昇枩するたで加え、昇枩埌は
圧力を0.25tcm2ずしその枩床を時間保持した。
埗られた焌結䜓を宀枩たで冷华した埌、成圢噚か
ら取り出す際、成圢噚ぞの付着は殆んどなく容易
に取り出せた。目芖にお、焌結合金のヒビ、割れ
を芳察したが党く芋あたらず、透過線を照射し
お内郚を怜査したがヒビ、割れは芳枬されなか぀
た。
Example 1 Tb-Fe-Co alloy powder (target composition (weight%)
Tb 4 O 7 with a purity of 99.9% or more for the purpose of producing Tb: 55%, Fe: 42%, Co: 3%).
(average particle size 3ÎŒm or less) 407.4g, iron powder (particle size 200 mesh or less) 250.6g, cobalt powder (particle size 200 mesh or less) 20.4g, metallic calcium (particle size 4 mesh or less) 305.1g, and anhydrous calcium chloride (particle size 100 mesh or less). 40.7g of the following ingredients were added and mixed thoroughly. The mixture was placed in a stainless steel reaction vessel and heated for 1000 min in a stream of high-purity argon gas.
The temperature was raised to °C in about 1 hour, maintained at that temperature for 5 hours, and then cooled to room temperature. The resulting lumpy mixture
1012.3g was added to the water in Step 5. After the lumpy mixture was broken down, the upper Ca(OH) 2 suspension was separated from the resulting slurry by decantation, water was added, the slurry was stirred for 5 minutes, and decantation was performed again. This operation of pouring water, stirring, and decanting was repeated to sufficiently separate calcium oxide from the alloy powder. Dilute acetic acid was added dropwise to a slurry of alloy powder and water with stirring until the pH reached 4.5, and this was maintained for 20 minutes. This was filtered, and the obtained alloy powder was washed with water and ethanol several times, and vacuum-dried at 50° C. and 1×10 −2 Torr for 12 hours. The composition (wt%) of the metal powder thus obtained was: Tb: 55.4%, Co: 3.4%, Fe:
The amount of O 2 as an impurity was 0.10% by weight, which was extremely small. 540 g of the obtained alloy powder was charged into a graphite molded product with an inner diameter of 130 mm and hot pressed. As a condition for hot pressurization, the degree of vacuum is 5×
10 -5 Torr, and to pressurize the powder, 0.15t/
A pressure of cm 2 was applied until the temperature rose to 1000° C. After the temperature was raised, the pressure was increased to 0.25 t/cm 2 and that temperature was maintained for 1 hour.
After the obtained sintered body was cooled to room temperature, when it was taken out from the molding machine, there was almost no adhesion to the molding machine and it could be easily taken out. The sintered alloy was visually observed for cracks and cracks, but no cracks were found.The interior was inspected by irradiating transmitted X-rays, but no cracks or cracks were observed.

この焌結合金の数ケ所からサンプリングを高玔
床アルゎン雰囲気䞋で行ないO2を分析した結果、
O2含有量は0.11±0.02重量であ぀た。
As a result of sampling the sintered alloy from several locations under a high-purity argon atmosphere and analyzing O 2 ,
The O2 content was 0.11±0.02% by weight.

䞊蚘ず同様にしお埗られた焌結合金内埄130
mm、厚さ4.5mmをタヌゲツトずしお䜿甚し、ス
パツタリング法アルゎンガス圧×
10-5Torr、スパツタリング電力4Wcm2、基
板゜ヌダガラスにより薄膜膜厚3000Å
を䜜補し、光磁気特性を枬定したずころ、次のよ
うな良奜な光磁気特性を有した膜が埗られた。
Sintered alloy obtained in the same manner as above (inner diameter 130
mm, thickness 4.5 mm) as a target, and sputtering method (argon gas pressure: 6×
10 -5 Torr, sputtering power: 4W/cm 2 , substrate: soda glass) to form a thin film (film thickness: 3000Å)
When a film was prepared and its magneto-optical properties were measured, a film with the following good magneto-optical properties was obtained.

極磁気力−回転角ΞK0.30° 保磁力Hc400kA-1 比范䟋  Tb−Fe−Co合金粉末目暙組成重量
Tb55、Fe42、Coの補造を目的
ずしお、Tb−Fe母合金Tb75重量、Fe
25重量680、電解鉄225、電解コバルト27
をアルミナルツボ䞭に装入し高呚波誘導加熱炉
により真空䞭で溶解鋳造した。鋳塊は、アルゎン
雰囲気䞭で粗粉砕埌、゚タノヌルを入れたボヌル
ミル䞭で埮粉砕しお、平均粒埄が25Όの粉末ず
した。このようにしお埗られた合金粉末の組成
重量は、Tb54.6、Co2.98、Fe
41.8であり、䞍玔物であるO2は0.55であ぀
た。埗られた合金粉末を、実斜䟋ず同様にしお
熱間加圧した。埗られた焌結䜓を成圢噚から取り
出す際、成圢噚ぞの付着が若干芳察され、焌結䜓
の衚面芳察によるず䞀郚ザラザラした凹郚が存圚
しおいた。焌結合金のヒビ、割れは、目芖でも透
過線照射でも芳枬されなか぀た。
Polar magnetic force - rotation angle (Ξ K ): 0.30° Coercive force (Hc): 400 kAm -1 Comparative example 1 Tb-Fe-Co alloy powder (target composition (weight %)
For the purpose of producing Tb-Fe master alloy (Tb: 75% by weight, Fe: 3%),
25% by weight) 680g, electrolytic iron 225g, electrolytic cobalt 27
g was charged into an aluminum crucible and melted and cast in a vacuum using a high frequency induction heating furnace. The ingot was coarsely pulverized in an argon atmosphere and then finely pulverized in a ball mill containing ethanol to obtain powder with an average particle size of 25 ÎŒm. The composition (wt%) of the alloy powder thus obtained was: Tb: 54.6%, Co: 2.98%, Fe:
41.8%, and O 2 , an impurity, was 0.55%. The obtained alloy powder was hot pressed in the same manner as in Example 1. When the obtained sintered body was removed from the molding machine, some adhesion to the molding machine was observed, and when the surface of the sintered body was observed, some rough recesses were present. No cracks or cracks in the sintered alloy were observed either visually or by transmitted X-ray irradiation.

この焌結䜓の数ヶ所からサンプリングを高玔床
アルゎン雰囲気䞋で行ないO2を分析した結果、
O2含有量は0.58±0.03重量であ぀た。
As a result of sampling from several locations of this sintered body in a high-purity argon atmosphere and analyzing O 2 ,
The O2 content was 0.58±0.03% by weight.

䞊蚘ず同様にしお別に埗られた焌結合金をタヌ
ゲツトずしお䜿甚し、実斜䟋ず同様にしお薄膜
を䜜補した所、実斜䟋より長時間芁した。埗ら
れた薄膜の光磁気特性は次のようであ぀た。
When a thin film was prepared in the same manner as in Example 1 using a sintered alloy separately obtained in the same manner as above as a target, it took a longer time than in Example 1. The magneto-optical properties of the obtained thin film were as follows.

極磁気力−回転角Ξk0.27° 保磁力Hc250kA-1 〔発明の効果〕 本発明の補法によるず、O2含有量が極めお䜎
い垌土類−遷移金属焌結合金補のスパツタリング
甚タヌゲツトを補造するこずができ、埗られる合
金タヌゲツトは垌土類元玠の偏析、空孔などがな
く均質である。しかが぀お、光磁気蚘録媒䜓の磁
性金属薄膜を補造する際に、スパツタリング法の
タヌゲツトずしお奜適であり、埗られる金属薄膜
は光磁気特性に優れおいる。
Polar magnetic force - rotation angle (Ξ k ): 0.27° Coercive force (Hc): 250 kAm -1 [Effects of the invention] According to the production method of the present invention, a rare earth-transition metal sintered alloy with an extremely low O 2 content is produced. A target for sputtering can be manufactured, and the resulting alloy target is homogeneous without segregation of rare earth elements, pores, etc. Therefore, it is suitable as a target for sputtering when producing a magnetic metal thin film for a magneto-optical recording medium, and the resulting metal thin film has excellent magneto-optical properties.

本発明の補法は、このようなスパツタリング甚
焌結合金補タヌゲツトを任意の目的組成を有する
ものずしお、歩留り良く、容易に補造するこずが
できる。たた、この方法には粉砕工皋が䞍芁であ
り、焌結合金を少ない工皋で目的の圢状を有する
ものずしお容易に補造するこずができる。
According to the manufacturing method of the present invention, such a sintered alloy target for sputtering having any desired composition can be easily manufactured with good yield. Further, this method does not require a pulverization step, and a sintered alloy having a desired shape can be easily produced with a small number of steps.

Claims (1)

【特蚱請求の範囲】  プラセオゞム、ネオゞム、サマリりム、ガド
リニりム、テルビりム、ゞスプロシりム、ホルミ
りムおよび゚リビりムの少なくずも皮を含む垌
土類元玠の酞化物粉末ず鉄、ニツケルおよびコ
バルトの少なくずも皮を含む遷移金属の金属粉
末、その酞化物粉末およびその塩化物粉末から遞
ばれる少なくずも皮ずアルカリ金属、アルカ
リ土類金属およびこれらの氎玠化物から遞ばれる
少なくずも皮ずの混合物を、䞍掻性ガス雰囲気
䞭たたは真空䞋で加熱した埌、反応生成混合物を
湿匏凊理しお、垌土類−遷移金属合金粉末を埗、
該粉末もしくは該粉末を含む金属粉末を粉末冶金
法により焌結させるこずからなる、光磁気蚘録媒
䜓の補造に甚いるスパツタリング甚焌結合金補タ
ヌゲツトの補造方法。  プラセオゞム、ネオゞム、サマリりム、ガド
リニりム、テルビりム、ゞスプロシりム、ホルミ
りムおよび゚ルビりムの少なくずも皮を含む垌
土類元玠の酞化物粉末ず鉄、ニツケルおよびコ
バルトの少なくずも皮を含む遷移金属の金属粉
末、その酞化物粉末およびその塩化物粉末から遞
ばれる少なくずも皮ずアルカリ金属、アルカ
リ土類金属およびこれらの氎玠化物から遞ばれる
少なくずも皮ずアルカリ金属塩化物およびア
ルカリ土類金属塩化物から遞ばれる少なくずも
皮ずの混合物を、䞍掻性ガス雰囲気䞭たたは真空
䞋で加熱した埌、反応生成混合物を湿匏凊理しお
垌土類−遷移金属合金粉末を埗、該粉末もしくは
該粉末を含む金属粉末を粉末冶金法により焌結さ
せるこずからなる、光磁気蚘録媒䜓補造に甚いる
スパツタリング甚焌結合金補タヌゲツトの補造方
法。
[Scope of Claims] 1. A rare earth element oxide powder containing at least one of praseodymium, neodymium, samarium, gadolinium, terbium, dysprosium, holmium, and eribium; and a transition metal oxide powder containing at least one of iron, nickel, and cobalt. A mixture of at least one selected from metal powder, oxide powder thereof, and chloride powder thereof; and at least one selected from alkali metals, alkaline earth metals, and hydrides thereof is heated in an inert gas atmosphere or in vacuum. wet processing the reaction product mixture to obtain a rare earth-transition metal alloy powder;
A method for producing a sintered alloy target for sputtering used in producing a magneto-optical recording medium, the method comprising sintering the powder or a metal powder containing the powder by a powder metallurgy method. 2 Rare earth element oxide powder containing at least one of praseodymium, neodymium, samarium, gadolinium, terbium, dysprosium, holmium and erbium; transition metal metal powder containing at least one of iron, nickel and cobalt, and its oxide At least one selected from powders and their chloride powders; At least one selected from alkali metals, alkaline earth metals, and hydrides thereof; At least one selected from alkali metal chlorides and alkaline earth metal chlorides.
After heating the mixture with seeds in an inert gas atmosphere or under vacuum, the reaction product mixture is wet-processed to obtain a rare earth-transition metal alloy powder, and the powder or a metal powder containing the powder is processed by powder metallurgy. A method of manufacturing a sintered alloy target for sputtering used in manufacturing a magneto-optical recording medium, the method comprising sintering the target.
JP10763587A 1986-04-30 1987-04-30 Production of sintered alloy Granted JPS63105909A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-99808 1986-04-30
JP9980886 1986-04-30

Publications (2)

Publication Number Publication Date
JPS63105909A JPS63105909A (en) 1988-05-11
JPH0548281B2 true JPH0548281B2 (en) 1993-07-21

Family

ID=14257158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10763587A Granted JPS63105909A (en) 1986-04-30 1987-04-30 Production of sintered alloy

Country Status (1)

Country Link
JP (1) JPS63105909A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241104A (en) 1997-12-25 1999-09-07 Nichia Chem Ind Ltd Samarium-iron-nitrogen series alloy powder and its production
JP4491844B2 (en) * 1998-07-24 2010-06-30 東゜ヌ株匏䌚瀟 Sputtering target
JP6601432B2 (en) * 2017-02-03 2019-11-06 株匏䌚瀟豊田䞭倮研究所 Manufacturing method of magnetic powder
JP7137830B2 (en) * 2018-07-18 2022-09-15 囜立研究開発法人産業技術総合研究所 Method for producing alloy particles and alloy particles
CN112134374B (en) * 2020-09-21 2023-07-28 赣州嘉通新材料有限公叞 High-temperature-resistant and oxidation-resistant neodymium iron boron magnetic steel structure for new energy automobile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497296A (en) * 1972-05-27 1974-01-22
CA1020377A (en) * 1973-04-19 1977-11-08 Robert E. Cech Rare earth intermetallic compounds produced by a reduction-diffusion process
CH624193A5 (en) * 1978-05-02 1981-07-15 Tulcea Sa Safety shut-off device for a pressurised fluid circuit or pipeline
JPS5527602A (en) * 1978-08-18 1980-02-27 Fujitsu Ltd Electron beam exposure device
JPS6160809A (en) * 1984-09-03 1986-03-28 Sumitomo Special Metals Co Ltd Production of rare earth alloy powder

Also Published As

Publication number Publication date
JPS63105909A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US4681623A (en) Process for producing alloy powder containing rare earth metals
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JPH09143636A (en) Rare earth-iron-nitrogen magnetic alloy
JPS6063304A (en) Production of alloy powder for rare earth-boron-iron permanent magnet
CN104884649A (en) Method for collecting rare earth element
US4806155A (en) Method for producing dysprosium-iron-boron alloy powder
US4915737A (en) Alloy target for manufacturing a magneto-optical recording medium
JPH0548281B2 (en)
JPH02107762A (en) Alloy target for magneto-optical recording
JPH0549730B2 (en)
JP3141461B2 (en) Method for producing Tb-containing rare earth-transition metal alloy powder
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
JPH0119448B2 (en)
US4767454A (en) Process for the preparation of finely particulate chromium metal powder having a low oxygen content
JP2718314B2 (en) Method for producing alloy powder containing rare earth metal
JPH10261514A (en) Magnetic material
JPS6213506A (en) Production of rare earth metal powder
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JPH08291346A (en) Method for recovering rare earth element from scrap and production of rare earth-transition metal alloy powder
JP2000178721A (en) Ruthenium sputtering target, ruthenium raw material powder for producing the target and production thereof
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JPS60125338A (en) Production of permanent magnet alloy
JPS648063B2 (en)
JP2023077265A (en) Rare earth magnet and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees