JPH10261514A - Magnetic material - Google Patents

Magnetic material

Info

Publication number
JPH10261514A
JPH10261514A JP9085831A JP8583197A JPH10261514A JP H10261514 A JPH10261514 A JP H10261514A JP 9085831 A JP9085831 A JP 9085831A JP 8583197 A JP8583197 A JP 8583197A JP H10261514 A JPH10261514 A JP H10261514A
Authority
JP
Japan
Prior art keywords
powder
magnetic
mnbi
inorganic powder
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9085831A
Other languages
Japanese (ja)
Inventor
Toshio Kanzaki
壽夫 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP9085831A priority Critical patent/JPH10261514A/en
Publication of JPH10261514A publication Critical patent/JPH10261514A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To extremely reduce the deterioration of the amount of saturated magnetization even after storage for al long period of time under a high temperature and a high humidity by carrying inorganic powder in magnetic power mainly comprising Mn and Bi. SOLUTION: As inorganic powder to be carried in magnetic power mainly comprising Mn and Bi, the oxide powder of silica or alumina or metal powder such s nickel, tin or copper is desired to be used. Mn and Bi are made to alloy ingots by a powder metallurgy method, arc furnace, high frequency melting furnace, melt quenching method and so forth and the ingots are crushed and MnBi powder is synthesized. Thereafter, for example, mixed type mixing machines using such as a ball mill, planetary ball mill and so forth. Or the powder is placed in a dry type mixer such as jet mill or Henschel mixer, is mixed in inert gas atmosphere, and inorganic powder is carried by MnBi powder. Because of this, corrosion by moisture or oxygen is restricted by inorganic powder carried by magnetic powder mainly comprising Mn and Bi, and the deterioration of the amount of saturated magnetization can be reduced even through the powder is stored for a long period of time under high temperature and high moisture atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はMnとBiを主体
とした磁性材料に関し、さらに詳しくは、耐食性に優れ
た前記の磁性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material mainly composed of Mn and Bi, and more particularly, to the magnetic material having excellent corrosion resistance.

【0002】[0002]

【従来の技術】磁気記録媒体は、記録再生が容易である
ためビデオテ−プ、フロッピ−ディスク、クレジットカ
−ド等として広く普及している。ところが記録再生が容
易であるため、クレジットカ−ド等では、デ−タが誤っ
て消去されたり、故意に書き換えらるなどの事故や犯罪
が多発しており、特に、クレジットカ−ド、プリペイド
カ−ド等のデ−タを書き換えて不正使用する犯罪が多発
し、大きな社会問題となっている。
2. Description of the Related Art Magnetic recording media are widely used as video tapes, floppy disks, credit cards, and the like because recording and reproduction are easy. However, since recording and reproduction are easy, in credit cards and the like, accidents and crimes such as data being accidentally erased or intentionally rewritten occur frequently. Particularly, credit cards and prepaid cards are used. Crimes that rewrite data and other data and misuse it frequently occur, and this has become a major social problem.

【0003】このため、これを防止する方法として、一
旦記録すると室温では容易に書き換えができないという
特徴を有するMnBi磁性粉末を記録素子として用いた
磁気記録媒体が提案されている。(特公昭57−389
62号、特公昭54−33725号、特公昭52−46
801号、特公昭59−31764号、特公昭54−1
9244号、特公昭57−38963号)
To prevent this, a magnetic recording medium using a MnBi magnetic powder as a recording element, which has the characteristic that once recorded, it cannot be easily rewritten at room temperature, has been proposed. (Special Publication 57-389
No. 62, Japanese Patent Publication No. 54-33725, Japanese Patent Publication No. 52-46
No. 801, JP-B-59-31764, JP-B-54-1
No. 9244, Japanese Patent Publication No. 57-38963)

【0004】[0004]

【発明が解決しようとする課題】ところが、この種の磁
気記録媒体の記録素子として使用されるMnBi磁性粉
末は、水分や酸素により腐食・劣化して磁気特性が低下
するという欠点を有し、このようなMnBi磁性粉末の
腐食を防止するため、各種の防食剤を添加したり、Mn
Bi磁性粉末の粒子表面に腐食防止被膜を設けたりする
ことが試みられている(特公昭60−57127号)
が、これらの方法では、未だ、高温多湿下での耐食性は
充分でない。
However, the MnBi magnetic powder used as a recording element of this type of magnetic recording medium has a drawback that its magnetic properties deteriorate due to corrosion and deterioration due to moisture and oxygen. In order to prevent corrosion of such MnBi magnetic powder, various anticorrosives are added,
Attempts have been made to provide a corrosion prevention coating on the particle surface of Bi magnetic powder (Japanese Patent Publication No. 60-57127).
However, these methods still do not have sufficient corrosion resistance under high temperature and high humidity.

【0005】この発明は、かかる現状に鑑み種々検討を
行った結果なされたもので、MnとBiを主体とした磁
性粉末に無機粉末を担持させることにより、高温、多湿
下に長期間保存しても飽和磁化量の劣化が極めて少ない
MnとBiを主体とした磁性材料を提供しようとするも
のである。
The present invention has been made as a result of various studies in view of the present situation. By supporting an inorganic powder on a magnetic powder mainly composed of Mn and Bi, it can be stored for a long time under high temperature and high humidity. Another object of the present invention is to provide a magnetic material mainly composed of Mn and Bi in which deterioration of the saturation magnetization is extremely small.

【0006】[0006]

【課題を解決するための手段】この発明のMnとBiを
主体とした磁性材料は、MnとBiを主体とした磁性粉
末に無機粉末を担持させている。
The magnetic material mainly comprising Mn and Bi of the present invention has an inorganic powder supported on a magnetic powder mainly composed of Mn and Bi.

【0007】[0007]

【発明の実施の形態】この発明のMnとBiを主体とし
た磁性材料は、MnとBiを主体とした磁性粉末に無機
粉末を担持させているため、水分や酸素による腐食がM
nとBiを主体とした磁性粉末に担持された無機粉末に
よって抑制され、高温、多湿下に長期間保存しても飽和
磁化量の劣化が極めて少ないMnとBiを主体とした磁
性材料が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION In the magnetic material mainly comprising Mn and Bi of the present invention, the inorganic powder is supported on a magnetic powder mainly comprising Mn and Bi.
Suppressed by the inorganic powder supported on the magnetic powder mainly composed of n and Bi, a magnetic material mainly composed of Mn and Bi can be obtained in which the deterioration of the saturation magnetization is extremely small even after long-term storage at high temperature and high humidity. .

【0008】ここで、MnとBiを主体とした磁性材料
とは、磁気特性を改善する目的でNi、FeやCoの遷
移元素およびSm、LaやGdなどの希土類元素を添加
したものが含まれる。
Here, the magnetic material mainly composed of Mn and Bi includes a material to which a transition element of Ni, Fe or Co and a rare earth element such as Sm, La or Gd are added for the purpose of improving magnetic properties. .

【0009】また、MnとBiを主体とした磁性粉末に
担持させる無機粉末としては、シリカ、アルミナ、ゲ−
サイト、酸化チタン、硫酸バリウム、炭酸カルシウム、
酸化アンチモン、酸化ジルコニア、酸化亜鉛、酸化スズ
などの酸化物粉末、ニッケル、スズ、銅などの金属粉末
が好ましく使用され、この他、バリウムフェライト、ス
トロンチウムフェライトなどの六方晶フェライト粉末、
ガンマ酸化鉄、マグネタイト、ガンマ酸化鉄マグネタイ
ト、二酸化クロム、コバルト含有酸化鉄などの酸化磁性
粉末、鉄−コバルト系、鉄−Ni系などの合金系磁性粉
末、サマリウムコバルト、ネオジム鉄ボロンなどの化合
物磁性粉末などを、1種以上単独あるいは混合して用い
ることができる。
Inorganic powders supported on magnetic powders mainly composed of Mn and Bi include silica, alumina,
Site, titanium oxide, barium sulfate, calcium carbonate,
Oxide powders such as antimony oxide, zirconia oxide, zinc oxide and tin oxide, metal powders such as nickel, tin and copper are preferably used.In addition, barium ferrite and hexagonal ferrite powders such as strontium ferrite,
Magnetic oxide powders such as gamma iron oxide, magnetite, gamma iron oxide magnetite, chromium dioxide, cobalt-containing iron oxide, alloy magnetic powders such as iron-cobalt and iron-Ni, compound magnetics such as samarium cobalt and neodymium iron boron One or more powders can be used alone or in combination.

【0010】このような無機粉末の粒子径としては、粉
砕後のMnとBiを主体とした磁性粉末の粒子径の1/
20から1/2の粒子径のものが好ましく使用され、無
機粉末の粒子径をMnとBiを主体とした磁性粉末の1
/20以上とすることにより無機粉末の凝集が抑えられ
て取り扱いが容易となり、1/2以下とすることにより
MnとBiを主体とした磁性粉末表面を均一に覆うこと
ができる。
The particle diameter of such an inorganic powder is 1/1 / the particle diameter of the magnetic powder mainly composed of Mn and Bi after pulverization.
Particles having a particle diameter of 20 to 1/2 are preferably used, and the particle diameter of the inorganic powder is one of that of the magnetic powder mainly composed of Mn and Bi.
When the ratio is / 20 or more, the aggregation of the inorganic powder is suppressed and the handling becomes easy. When the ratio is 1/2 or less, the surface of the magnetic powder mainly composed of Mn and Bi can be uniformly covered.

【0011】また、担持させる無機粉末の量としては、
MnとBiを主体とした磁性粉末に対して1〜100重
量%とすることが好ましく、1重量%以上とすることに
よりMnとBiを主体とした磁性粉末本来の特性を十分
に発揮でき、100重量%以下とすることにより無機粉
末の担持による優れた耐食性を得ることができる。な
お、この比はXMA分析による測定で、MnとBiを主
体とした磁性粉末のMnの強度と他の無機粉末の強度か
ら求めることが可能である。
The amount of the inorganic powder to be supported is as follows:
The content is preferably 1 to 100% by weight based on the magnetic powder mainly containing Mn and Bi, and when the content is 1% by weight or more, the original characteristics of the magnetic powder mainly containing Mn and Bi can be sufficiently exhibited. By setting the content to not more than the weight%, excellent corrosion resistance due to the support of the inorganic powder can be obtained. This ratio can be determined by XMA analysis from the Mn strength of the magnetic powder mainly composed of Mn and Bi and the strength of other inorganic powders.

【0012】このようにしてMnとBiを主体とした磁
性粉末に無機粉末を担持させた磁性材料の大きさとして
は、0.01μm〜20μmの範囲内のものがが好ましく使
用され、0.01μm以上とすることにより粒子の安定性が
向上し、20μm以下とすることにより磁気記録媒体と
した場合に良好な表面性を得ることができる。
The size of the magnetic material in which the inorganic powder is supported on the magnetic powder mainly composed of Mn and Bi is preferably in the range of 0.01 μm to 20 μm. By doing so, the stability of the particles is improved, and when the particle size is 20 μm or less, good surface properties can be obtained when a magnetic recording medium is used.

【0013】このようなMnとBiを主体とした磁性粉
末に無機粉末を担持させた磁性材料は、まずMnとBi
を粉末冶金法、ア−ク炉、高周波溶解炉、溶融急冷法等
により合金インゴットとし、これを粉砕することにより
MnBi粉末を合成し、その後、そのMnBi粉末上に
無機粉末を担持させてつくられる。
A magnetic material in which an inorganic powder is supported on such a magnetic powder mainly composed of Mn and Bi is firstly made of Mn and Bi.
Into an alloy ingot by powder metallurgy, an arc furnace, a high-frequency melting furnace, a melting and quenching method, and the like. .

【0014】たとえば、100〜300メッシュのMn
粉およびBi粉を不活性雰囲気中にて充分混合する。M
nとBiの比率は、モル比で45:55から60:40
であることが好ましく、原料とするBi粉としては、あ
らかじめ粉砕してあるものを用いてもよいし、フレ−ク
あるいはショット等の塊を粉砕により微粉化して用いて
もよい。また、焼結反応により合成する場合には、原料
の表面性に大きく反応が左右されるため、原料表面の酸
化被膜を除去しておくことが好ましく、このためあらか
じめ酸等により表面をエッチングしたり、溶剤により脱
脂するなど、粉末冶金法で行われている表面処理を施し
ておくことが好ましい。なお、混合は自動乳鉢、ボ−ル
ミル等任意の手段により行うことができる。
For example, Mn of 100 to 300 mesh
The powder and Bi powder are mixed well in an inert atmosphere. M
The ratio of n to Bi is from 45:55 to 60:40 in molar ratio.
The Bi powder used as a raw material may be one that has been pulverized in advance, or a lump such as flakes or shots may be pulverized and pulverized. In the case of synthesis by a sintering reaction, the reaction is greatly affected by the surface properties of the raw material. Therefore, it is preferable to remove the oxide film on the surface of the raw material. It is preferable to perform a surface treatment performed by powder metallurgy, such as degreasing with a solvent. The mixing can be performed by any means such as an automatic mortar and a ball mill.

【0015】混合が終わった原料は、加圧プレスを用い
て成型体とされ、これにより焼結反応が促進され、均一
なMnBiインゴットが作製される。このときの加圧力
としては、1〜8t/cm2 とするのが好ましく、加圧
力が低ければMnBiインゴットの均一性が得られず、
高すぎる場合には、加圧装置が高価となる割りにMnB
iインゴットの特性が向上しない。
The raw material after mixing is formed into a molded body by using a pressure press, whereby the sintering reaction is promoted, and a uniform MnBi ingot is produced. The pressing force at this time is preferably 1 to 8 t / cm 2. If the pressing force is low, uniformity of the MnBi ingot cannot be obtained.
If the pressure is too high, MnB
The characteristics of the i ingot do not improve.

【0016】また成形体を作製する別の方法として高周
波溶解炉を用いて不活性雰囲気中で溶解し均一成形する
のも良く、さらに高周波溶解炉とアトマイズ噴霧装置を
組合わせて球状のMnBiインゴット粉体を作製しても
良い。
Further, as another method for producing a molded body, it is preferable to dissolve in an inert atmosphere using a high-frequency melting furnace and uniformly mold the same, and to combine a high-frequency melting furnace and an atomizing spray device to form a spherical MnBi ingot powder. A body may be made.

【0017】得られた成型体は、ガラス容器あるいは金
属容器に密封され、容器内は真空あるいは不活性ガス雰
囲気として熱処理中の酸化が防止されて、電気炉に入れ
られ、260〜350℃で2〜500時間熱処理が行わ
れる。この熱処理の温度が低いと熱処理に時間がかか
り、また、得られるMnBiインゴットの磁化量も低く
なる。反対に熱処理温度が高すぎると、Biが融解し、
均一なMnBiインゴットが得られなくなる。
The obtained molded body is sealed in a glass container or a metal container, and the inside of the container is placed in a vacuum or an inert gas atmosphere to prevent oxidation during the heat treatment. Heat treatment is performed for up to 500 hours. When the temperature of this heat treatment is low, the heat treatment takes a long time, and the amount of magnetization of the obtained MnBi ingot also becomes low. Conversely, if the heat treatment temperature is too high, Bi will melt,
A uniform MnBi ingot cannot be obtained.

【0018】このようにして作製されたMnBiインゴ
ットは、取り出されて自動乳鉢等により不活性ガス雰囲
気中で粗粉砕され、粒子径を500μm以下とした後、
ボ−ルミル、遊星ボ−ルミル等を用いた湿式粉砕、ある
いはジエットミル等の乾式粉砕により微粒子化される。
元々、MnBiは六方晶構造を有するため、薄片状に劈
開する性質を示し、このため高いエネルギ−をかけて粉
砕する必要はない。湿式粉砕の場合の液体としては、ト
ルエン等の水分を含まない溶剤を用い、乾式粉砕の場合
は不活性ガス雰囲気にして行われる。粉砕後の粒子径は
約0.05〜10μmであり、粉砕条件によりコントロ−
ルできる。粒子径が0.05μmより小さいと、最終的に
得られる磁性材料の飽和磁化が低下してしまい、10μ
mを越えると、最終的に得られる磁性材料の保磁力が低
くまたこの磁性材料を粉末を用いた磁気記録媒体の表面
平滑性が低下し、充分な記録が行えない。
The MnBi ingot thus produced is taken out and roughly pulverized in an inert gas atmosphere using an automatic mortar or the like to reduce the particle diameter to 500 μm or less.
Fine particles can be formed by wet pulverization using a ball mill, a planetary ball mill, or the like, or dry pulverization such as a jet mill.
Originally, MnBi has a hexagonal structure, and thus has a property of being cleaved in a flaky shape, so that it is not necessary to pulverize with high energy. As a liquid in the case of wet pulverization, a solvent containing no water such as toluene is used, and in the case of dry pulverization, an inert gas atmosphere is used. The particle size after pulverization is about 0.05 to 10 μm, and the control depends on the pulverization conditions.
Can be If the particle size is smaller than 0.05 μm, the saturation magnetization of the finally obtained magnetic material is reduced, and
If it exceeds m, the coercive force of the magnetic material finally obtained is low, and the surface smoothness of a magnetic recording medium using this magnetic material as a powder is reduced, so that sufficient recording cannot be performed.

【0019】このようにして得られたMnBi粉に無機
粉末を担持する方法は特に限定されないが、生産性を考
慮すれば機械的作用による方法が好ましく、たとえば、
ボ−ルミル、遊星ボ−ルミル等を用いた湿式混合機、あ
るいはジェットミルやヘンシェルミキサ−等の乾式混合
機に投入し不活性ガス雰囲気中で混合することでMnB
i粉上に無機粉末を担持することができる。
The method of supporting the inorganic powder on the MnBi powder thus obtained is not particularly limited, but a method based on mechanical action is preferable in consideration of productivity.
MnB is charged into a wet mixer using a ball mill, a planetary ball mill or the like, or a dry mixer such as a jet mill or a Henschel mixer and mixed in an inert gas atmosphere.
An inorganic powder can be supported on the i-powder.

【0020】なお、無機粉末をMnBi粉上に担持する
工程とMnBiインゴットの粉砕の工程とを同時あるい
は連続的に行っても同一の効果が得られる。
The same effect can be obtained by simultaneously or continuously performing the step of supporting the inorganic powder on the MnBi powder and the step of pulverizing the MnBi ingot.

【0021】このようにして得られたMnとBiを主体
とした磁性粉末に無機粉末を担持させた磁性材料は優れ
た耐食性を反映して、温度60℃、湿度90%の雰囲気
に1週間保持した時の飽和磁化の劣化率が30%以下と
なる。
The magnetic material obtained by carrying the inorganic powder on the magnetic powder mainly composed of Mn and Bi thus obtained is kept in an atmosphere at a temperature of 60 ° C. and a humidity of 90% for one week, reflecting the excellent corrosion resistance. The deterioration rate of the saturation magnetization at this time is 30% or less.

【0022】さらに、一定量の酸素を含有する不活性ガ
ス、たとえば、酸素を100ppmから10000pp
m程度含有する窒素ガスやアルゴンガスもしくは空気
を、上記粉体に徐々に接触させる工程や空気中加熱など
の安定化処理を行うほうが好ましい。
Further, an inert gas containing a certain amount of oxygen, for example, oxygen is supplied from 100 ppm to 10,000 pp.
It is preferable to perform a stabilizing treatment such as a step of gradually contacting the powder with a nitrogen gas, an argon gas, or air containing about m or heating in air.

【0023】[0023]

【実施例】次に、この発明の実施例について説明する。 実施例1 Mnフレ−ク(フルウチ化学社製;純度99.9%)、B
iショット(フルウチ化学社製;純度99.9%)を乳鉢
を用いて粉砕し、100メッシュのふるい掛けをした
後、Mn粉を30.3重量部、Bi粉を94.0重量部秤量し、
乳鉢を用いて充分に混合した。
Next, an embodiment of the present invention will be described. Example 1 Mn flake (Fluuchi Chemical Co .; purity 99.9%), B
The i-shot (Furuuchi Chemical Co., Ltd .; purity 99.9%) was pulverized using a mortar, sieved with 100 mesh, weighed 30.3 parts by weight of Mn powder and 94.0 parts by weight of Bi powder,
Mix well using a mortar.

【0024】次に、これを加圧プレス機を用いて4t/
cm2 の圧力で、直径×長さが6cm×10cmの円柱
状に成型し、この成型体をパイレックスガラス管に真空
封入し、電気炉中にて265℃で10日間熱処理して、
MnBiインゴットを作製した。
Next, this was subjected to 4 t /
At a pressure of cm 2 , a cylinder was molded into a column having a diameter × length of 6 cm × 10 cm, and the molded body was vacuum-sealed in a Pyrex glass tube and heat-treated at 265 ° C. for 10 days in an electric furnace.
An MnBi ingot was produced.

【0025】次いで、得られたMnBiインゴットをグ
ロ−ボックスを使用し、不活性雰囲気中で乳鉢を用いて
粗粉砕し、さらに、篩により500μm以下にした。こ
れを遊星ボ−ルミルを用いてトルエン中にて、200r
pmで2時間粉砕した。
Next, the obtained MnBi ingot was roughly pulverized using a mortar in an inert atmosphere using a glove box, and further reduced to 500 μm or less by a sieve. This was stirred for 200 r in toluene using a planetary ball mill.
Milled for 2 hours at pm.

【0026】次に、トルエンに浸した状態でMnBi粉
を取り出し、処理容器に移して80℃で約2時間真空乾
燥した。乾燥後、チッソガス雰囲気中で粒径 2.0μmの
MnBi粉80重量部と粒径 0.2μmのTiO2 粉20
重量部をヘンシェルミキサ−に入れ、チッソガス中で4
時間混合して真空にできる容器にとりだした。
Next, the MnBi powder was taken out in a state of being immersed in toluene, transferred to a processing vessel, and vacuum dried at 80 ° C. for about 2 hours. After drying, 80 parts by weight of MnBi powder having a particle diameter of 2.0 μm and TiO 2 powder having a particle diameter of 0.2 μm in a nitrogen gas atmosphere were used.
Put the parts by weight in a Henschel mixer and add 4 parts in nitrogen gas.
The mixture was taken for a period of time and vacuumed.

【0027】次いで、同じ容器に入れたまま真空減圧
し、粉体の温度が30℃以上にならないように徐々に空
気を入れていき大気圧まで戻して取り出し、MnBi粉
上にTiO2 を担持させた磁性材料を製造した。
Next, the pressure is reduced in vacuum with the container kept in the same container, air is gradually introduced so that the temperature of the powder does not reach 30 ° C. or more, the pressure is returned to the atmospheric pressure, and TiO 2 is supported on the MnBi powder. Magnetic materials were manufactured.

【0028】実施例2 実施例1における無機粉末の担持工程において、TiO
2 粉に代えて粒径が 0.3μmバリウムフェライト粉を同
量使用した以外は、実施例1と同様の方法で、MnBi
粉上にバリウムフェライトを担持させた磁性材料を製造
した。
Example 2 In the step of supporting the inorganic powder in Example 1, TiO 2 was used.
MnBi was prepared in the same manner as in Example 1 except that the same amount of barium ferrite powder having a particle size of 0.3 μm was used instead of the two powders.
A magnetic material having barium ferrite supported on powder was produced.

【0029】実施例3 Mnフレ−ク(フルウチ化学社製;純度99.9%)、B
iショット(フルウチ化学社製;純度99.9%)を乳鉢
を用いて粉砕し、100メッシュのふるい掛けをした
後、Mn粉を30.2重量部、Bi粉を94.0重量部秤量し、
乳鉢を用いて充分に混合した。
Example 3 Mn flake (manufactured by Furuuchi Chemical Co .; purity 99.9%), B
The i-shot (Furuuchi Chemical Co .; purity 99.9%) was pulverized using a mortar, sieved with 100 mesh, and 30.2 parts by weight of Mn powder and 94.0 parts by weight of Bi powder were weighed.
Mix well using a mortar.

【0030】次に、これをムライト磁器製のるつぼ内に
入れ、周波数3kHz、出力20kWの高周波誘導加熱
にて加熱混合し炉冷することで成型体を得た。この成型
体をアルゴンガス雰囲気の電気炉中で280℃、2日間
熱処理することによりMnBiインゴットを作製した。
次いで、実施例2と同様にしてMnBiインゴットを粉
砕し、さらに無機粉末を担持させて、粒径 1.8μmのM
nBi粉に粒径 0.3μmのバリウムフェライトを担持さ
せた磁性材料を製造した。
Next, this was placed in a crucible made of mullite porcelain, heated and mixed by high-frequency induction heating at a frequency of 3 kHz and an output of 20 kW, and cooled in a furnace to obtain a molded body. The molded body was heat-treated at 280 ° C. for 2 days in an electric furnace in an argon gas atmosphere to produce a MnBi ingot.
Next, the MnBi ingot was pulverized in the same manner as in Example 2, and further an inorganic powder was supported thereon.
A magnetic material having barium ferrite having a particle size of 0.3 μm supported on nBi powder was manufactured.

【0031】実施例4 Mnフレ−ク(フルウチ化学社製;純度99.9%)、B
iショット(フルウチ化学社製;純度99.9%)を乳鉢
を用いて粉砕し、100メッシュのふるい掛けをした
後、Mn粉を30.2重量部、Bi粉を94.0重量部秤量し、
乳鉢を用いて充分に混合した。
Example 4 Mn flake (manufactured by Furuuchi Chemical Co .; purity 99.9%), B
The i-shot (Furuuchi Chemical Co., Ltd .; purity 99.9%) was pulverized using a mortar, sieved with 100 mesh, and 30.2 parts by weight of Mn powder and 94.0 parts by weight of Bi powder were weighed.
Mix well using a mortar.

【0032】次に、これをムライト磁器製のるつぼ内に
入れ、周波数3kHz、出力20kWの高周波誘導加熱
を行うことによりMn−Bi系の金属溶湯を溶製した。
次いで、るつぼ下部より金属溶湯を流下させると共に金
属溶湯に向けてアルゴンガスを噴出することにより噴霧
急冷を行い、球状の成形体を得た。この成形体をアルゴ
ンガス雰囲気の電気炉中で280℃で8時間熱処理する
ことによりMnBiインゴットを作製した。
Next, this was put into a crucible made of mullite porcelain and subjected to high-frequency induction heating at a frequency of 3 kHz and an output of 20 kW to melt a Mn-Bi-based molten metal.
Next, the molten metal was allowed to flow down from the lower part of the crucible, and spray quenching was performed by ejecting argon gas toward the molten metal to obtain a spherical molded body. This compact was heat-treated at 280 ° C. for 8 hours in an electric furnace in an argon gas atmosphere to produce a MnBi ingot.

【0033】得られたMnBiインゴットを篩により5
00μm以下にし、その後MnBi粉80重量部と粒径
0.3μmのバリウムフェライト粉20重量部をジェット
ミル粉砕機に入れ、チッソガス雰囲気中でチッソガス圧
6.0Kg/cm・fの圧力で混合粉砕を同時に行い、真
空にできる容器に取り出した。
The obtained MnBi ingot was sifted through a sieve.
00 μm or less, then 80 parts by weight of MnBi powder and particle size
20 parts by weight of barium ferrite powder of 0.3 μm is put into a jet mill pulverizer, and a nitrogen gas pressure is applied in a nitrogen gas atmosphere.
Mixing and pulverization were performed simultaneously at a pressure of 6.0 Kg / cm · f, and the mixture was taken out into a container that could be evacuated.

【0034】次に、同じ容器に入れたまま真空減圧し、
粉体の温度が30℃以上にならないように徐々に空気を
入れていき大気圧まで戻して、MnBi粉上にバリウム
フェライトを担持させた磁性材料を製造した。なお、こ
の磁性材料のMnBi粉のみの大きさはおよそ 2.5μm
であった。
Next, the pressure is reduced in vacuum with the container kept in the same container.
Air was gradually introduced so that the temperature of the powder did not reach 30 ° C. or higher, and the pressure was returned to the atmospheric pressure to produce a magnetic material in which barium ferrite was supported on MnBi powder. The size of the magnetic material of only MnBi powder is about 2.5 μm.
Met.

【0035】実施例5 実施例4における無機粉末を表面に担持する工程におい
て、MnBi粉を60重量部と、粒径 0.3μmのバリウ
ムフェライト粉を40重量部用いた以外は、実施例4と
同様にして、MnBi粉上にバリウムフェライトを担持
させた磁性材料を製造した。なお、この磁性材料のMn
Bi粉のみの大きさはおよそ 2.5μmであった。
Example 5 Same as Example 4 except that in the step of supporting the inorganic powder on the surface in Example 4, 60 parts by weight of MnBi powder and 40 parts by weight of barium ferrite powder having a particle size of 0.3 μm were used. Thus, a magnetic material having barium ferrite supported on MnBi powder was produced. In addition, Mn of this magnetic material
The size of the Bi powder alone was about 2.5 μm.

【0036】比較例1 実施例1と同様にしてMnBiインゴットを作製し、さ
らにMnBiインゴットの粉砕を行った後、真空にでき
る容器にとりだした。次に、同じ容器で80℃減圧乾燥
を行い室温になるまで放冷し、その後粉体の温度が30
℃以上にならないように徐々に空気を入れていき大気圧
まで戻した。
Comparative Example 1 A MnBi ingot was prepared in the same manner as in Example 1, and the MnBi ingot was further pulverized and then taken out into a vacuum vessel. Next, the mixture is dried under reduced pressure at 80 ° C. in the same container and allowed to cool to room temperature.
Air was gradually introduced so that the temperature did not exceed ℃, and the pressure was returned to atmospheric pressure.

【0037】各実施例および比較例で得られた磁性材料
について、組成、粒子径、磁気特性、および温度60
℃、相対湿度90%の雰囲気に1週間保持した時の飽和
磁化量の劣化率を調べた。下記表1はその結果である。
With respect to the magnetic materials obtained in each of the examples and comparative examples, the composition, particle size, magnetic characteristics, and temperature
The deterioration rate of the saturation magnetization when kept in an atmosphere at 90 ° C. and a relative humidity of 90% for one week was examined. Table 1 below shows the results.

【0038】 [0038]

【0039】また、図1に実施例4で得られた磁性材料
の電子顕微鏡写真を示し、図2に比較例1で得られた磁
性材料の電子顕微鏡写真を示す。図1は、MnとBiを
主体とした磁性粉末のまわりに 0.3μmのバリウムフェ
ライトが担持しており、水や酸素による腐食を防止でき
る。図2は、MnBiを主体とした磁性粉末であり、裸
の状態で耐食性がわるい。
FIG. 1 shows an electron micrograph of the magnetic material obtained in Example 4, and FIG. 2 shows an electron micrograph of the magnetic material obtained in Comparative Example 1. FIG. 1 shows that 0.3 μm barium ferrite is carried around a magnetic powder mainly composed of Mn and Bi, so that corrosion by water or oxygen can be prevented. FIG. 2 shows a magnetic powder mainly composed of MnBi, which has poor corrosion resistance in a bare state.

【0040】[0040]

【発明の効果】表1および図1、2から明らかなよう
に、この発明で得られたMnBiを主体とする磁性粉の
表面に他の酸化物等の無機粉末が担持された磁性材料
は、高い飽和磁化、保磁力を維持しながら、高温、多湿
下に保持しても飽和磁化の劣化が少なく、このことから
優れた耐食性を示すことがわかる。
As is clear from Table 1 and FIGS. 1 and 2, the magnetic material obtained by the present invention in which the inorganic powder such as another oxide is supported on the surface of the magnetic powder mainly composed of MnBi is as follows. Even when maintained at high temperature and high humidity while maintaining high saturation magnetization and coercive force, there is little deterioration of saturation magnetization, which indicates that excellent corrosion resistance is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例4で得られた磁性材料の電子顕微鏡写真
である。
FIG. 1 is an electron micrograph of a magnetic material obtained in Example 4.

【図2】比較例1で得られた磁性材料の電子顕微鏡写真
である。
FIG. 2 is an electron micrograph of the magnetic material obtained in Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MnとBiを主体とした磁性粉末に無機
粉末を担持させたことを特徴とする磁性材料
1. A magnetic material comprising an inorganic powder supported on a magnetic powder mainly composed of Mn and Bi.
【請求項2】 無機粉末が酸化物粉末または金属粉末の
少なくとも1種である請求項1記載の磁性材料
2. The magnetic material according to claim 1, wherein the inorganic powder is at least one of an oxide powder and a metal powder.
【請求項3】 無機粉末が粒子径がMnとBiを主体と
した磁性粉末の粒子径の1/20〜1/2の無機粉末で
ある請求項1記載の磁性材料
3. The magnetic material according to claim 1, wherein the inorganic powder is an inorganic powder having a particle diameter of 1/20 to 1/2 of a particle diameter of a magnetic powder mainly composed of Mn and Bi.
JP9085831A 1997-03-19 1997-03-19 Magnetic material Withdrawn JPH10261514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9085831A JPH10261514A (en) 1997-03-19 1997-03-19 Magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9085831A JPH10261514A (en) 1997-03-19 1997-03-19 Magnetic material

Publications (1)

Publication Number Publication Date
JPH10261514A true JPH10261514A (en) 1998-09-29

Family

ID=13869807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9085831A Withdrawn JPH10261514A (en) 1997-03-19 1997-03-19 Magnetic material

Country Status (1)

Country Link
JP (1) JPH10261514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240810A (en) * 2011-06-24 2011-11-16 北京工业大学 Method for preparing high-coercivity manganese bismuth magnetic powder
JP2016162873A (en) * 2015-03-02 2016-09-05 Tdk株式会社 Manganese-based magnet
WO2017119386A1 (en) * 2016-01-07 2017-07-13 戸田工業株式会社 Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
CN111230127A (en) * 2020-02-25 2020-06-05 中国计量大学 Preparation method of composite magnetic powder
CN115106534A (en) * 2022-08-30 2022-09-27 西安稀有金属材料研究院有限公司 Preparation method of multi-powder uniformly-dispersed sintered anode foil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240810A (en) * 2011-06-24 2011-11-16 北京工业大学 Method for preparing high-coercivity manganese bismuth magnetic powder
JP2016162873A (en) * 2015-03-02 2016-09-05 Tdk株式会社 Manganese-based magnet
WO2017119386A1 (en) * 2016-01-07 2017-07-13 戸田工業株式会社 Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
CN108780688A (en) * 2016-01-07 2018-11-09 户田工业株式会社 MnBi based magnetic powders and its manufacturing method and bonded permanent magnet mixture, bonded permanent magnet, MnBi systems metallic magnet and its manufacturing method
CN111230127A (en) * 2020-02-25 2020-06-05 中国计量大学 Preparation method of composite magnetic powder
CN115106534A (en) * 2022-08-30 2022-09-27 西安稀有金属材料研究院有限公司 Preparation method of multi-powder uniformly-dispersed sintered anode foil

Similar Documents

Publication Publication Date Title
JP6963251B2 (en) Rare earth iron nitrogen-based magnetic powder
JPH11241104A (en) Samarium-iron-nitrogen series alloy powder and its production
JP7364158B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP3482420B2 (en) Graphite-coated metal particles and method for producing the same
JPH10261514A (en) Magnetic material
JPH0257663A (en) Magnetic anisotropy material and its manufacture
JP2023048129A (en) METHOD FOR MANUFACTURING SmFeN-BASED RARE EARTH MAGNET
US5221322A (en) Method of making ferromagnetic ultrafine particles
US5256479A (en) Ferromagnetic ultrafine particles, method of making, and recording medium using the same
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JP2007327101A (en) Method for producing rare earth-iron-nitrogen based magnet fine powder
JP2708568B2 (en) Magnetic material
JP2018014341A (en) Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JP2001257110A (en) Magnetic material and magnetic recording medium formed by use thereof
JP3770734B2 (en) Method for producing Sm-Fe-N alloy powder
JPS63105909A (en) Production of sintered alloy
JPH02180003A (en) Ferromagnetic ultrafine particle and manufacture thereof, and magnetic recording medium and thermo magnetic recording medium
JP2004115921A (en) Sm-Fe-N BASED ALLOY POWDER AND METHOD FOR MANUFACTURING THE SAME
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
JPS59229461A (en) Magnetic alloy powder for magnetic recording
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
JP3141461B2 (en) Method for producing Tb-containing rare earth-transition metal alloy powder
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601