JP2016162873A - Manganese-based magnet - Google Patents

Manganese-based magnet Download PDF

Info

Publication number
JP2016162873A
JP2016162873A JP2015039798A JP2015039798A JP2016162873A JP 2016162873 A JP2016162873 A JP 2016162873A JP 2015039798 A JP2015039798 A JP 2015039798A JP 2015039798 A JP2015039798 A JP 2015039798A JP 2016162873 A JP2016162873 A JP 2016162873A
Authority
JP
Japan
Prior art keywords
manganese
calcium
magnesium
electrical resistivity
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015039798A
Other languages
Japanese (ja)
Other versions
JP6511862B2 (en
Inventor
泰直 三浦
Yasunao Miura
泰直 三浦
佐藤 卓
Taku Sato
卓 佐藤
入江 周一郎
Shuichiro Irie
周一郎 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015039798A priority Critical patent/JP6511862B2/en
Publication of JP2016162873A publication Critical patent/JP2016162873A/en
Application granted granted Critical
Publication of JP6511862B2 publication Critical patent/JP6511862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manganese-based magnet having both a high electrical resistivity and good magnetic characteristics.SOLUTION: A manganese-based magnet includes MnX (where, X represents at least one of Al, B, Bi, C, Co, Cr, F, Ir, Ga, N, Ni, Rh, Pt and Pd) crystal grains, and contains 0.01-11 mass% of calcium or magnesium at the inside thereof. Thus, an oxide of calcium or magnesium having a high electrical resistivity is formed at the inside of a manganese-based magnet.SELECTED DRAWING: None

Description

本発明は、高い電気抵抗率を有するマンガン系磁石に関するものである。 The present invention relates to a manganese-based magnet having a high electrical resistivity.

現在、フェライト磁石よりも磁気特性が高く、希土類磁石よりも安価な磁石が求められている。このため希土類を含まないマンガン系磁石が注目されている。 Currently, there is a demand for magnets that have higher magnetic properties than ferrite magnets and that are less expensive than rare earth magnets. For this reason, manganese-based magnets that do not contain rare earths have attracted attention.

マンガン系磁石の中でもマンガンアルミニウム磁石は有望であり、鋳造の後に熱間塑性加工というプロセスにより作製されており(特公昭54−31448)、高い磁気特性や機械的強度を有する異方性磁石として知られている。 Among manganese-based magnets, manganese aluminum magnets are promising, and are produced by a process called hot plastic working after casting (Japanese Examined Patent Publication No. Sho 54-31448), and are known as anisotropic magnets with high magnetic properties and mechanical strength. It has been.

磁石は使用環境下で時間変化する磁場にさらされると、その磁場を打ち消すために磁石内部に渦電流が流れ、この渦電流がジュール熱を発生させて渦電流損になる。マンガン系磁石では電流が流れ易いため、渦電流損が大きい。 When a magnet is exposed to a time-varying magnetic field in a use environment, an eddy current flows inside the magnet to cancel the magnetic field, and this eddy current generates Joule heat and becomes an eddy current loss. Manganese magnets have a large eddy current loss because current flows easily.

特許文献1ではマンガン系磁石の電気抵抗率を十分に高めることができていないので、渦電流損を低減できない。
特公昭54−31448
In Patent Document 1, since the electrical resistivity of the manganese-based magnet cannot be sufficiently increased, eddy current loss cannot be reduced.
Japanese Patent Publication 54-31448

本発明は、このような実情に鑑みてなされ、その目的は、高い電気抵抗率を有するとともに、良好な磁気特性を併せ持つマンガン系磁石を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a manganese-based magnet having high electrical resistivity and good magnetic properties.

本発明に係るマンガン系磁石は、カルシウムもしくはマグネシウムを0.01mass%〜11mass%含むことを特徴とする。 The manganese-based magnet according to the present invention is characterized by containing 0.01 mass% to 11 mass% of calcium or magnesium.

マンガン系磁石内の隣り合う2つ以上の主相粒子によって形成された粒界にカルシウムもしくはマグネシウムが存在することで、電子伝導を妨げ、渦電流損を低減できると共に、良好な磁気特性を有することができる。本発明は、かかる知見に基づいて完成されたものである。 The presence of calcium or magnesium at the grain boundaries formed by two or more adjacent main phase particles in a manganese-based magnet can prevent electronic conduction, reduce eddy current loss, and have good magnetic properties. Can do. The present invention has been completed based on such findings.

カルシウムやマグネシウムは酸素と結合し易いため、それらの酸化物である酸化カルシウムや酸化マグネシウムがマンガン系磁石内部に安定して存在でき、マンガン系磁石の電気抵抗率を上げることができると考えられる。 Since calcium and magnesium are easily bonded to oxygen, it is considered that calcium oxide and magnesium oxide, which are oxides thereof, can exist stably inside the manganese-based magnet, and the electrical resistivity of the manganese-based magnet can be increased.

マンガン系磁石に含まれるカルシウムもしくはマグネシウムが0.01mass%未満では電気抵抗率を高くすることができない。また、マンガン系磁石に含まれるカルシウムもしくはマグネシウムが11mass%を超えると磁気特性の低下が大きい。本発明では、マンガン系磁石に含まれるカルシウムもしくはマグネシウムを0.01〜11mass%の割合で構成したので、電気抵抗率の増大と磁気特性の維持の両立を図ることができる。 If calcium or magnesium contained in the manganese-based magnet is less than 0.01 mass%, the electrical resistivity cannot be increased. Moreover, when calcium or magnesium contained in the manganese-based magnet exceeds 11 mass%, the magnetic characteristics are greatly deteriorated. In the present invention, since calcium or magnesium contained in the manganese-based magnet is configured at a ratio of 0.01 to 11 mass%, both increase in electrical resistivity and maintenance of magnetic properties can be achieved.

本発明によれば、高い電気抵抗率を有するとともに、良好な磁気特性を併せ持つマンガン系磁石を得ることができる。 According to the present invention, it is possible to obtain a manganese-based magnet having high electrical resistivity and good magnetic properties.

以下、本発明の好適な実施形態について説明する。なお、本発明は以下に記載の実施形態および実施例の内容により限定されるものではない。また、以下に記載の実施形態および実施例にて示された構成要素は適宜組み合わせてもよいし、適宜選択してもよい。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited by the contents of the embodiments and examples described below. In addition, the constituent elements shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.

本発明の実施形態に係るマンガン系磁石の実施形態について説明する。本実施形態に係るマンガン系磁石はMnX(ここで、XはAl、B、Bi、C、Co、Cr、F、Ir、Ga、N、Ni、Rh、Pt、Pdの少なくとも1種である。)結晶粒を有するマンガン系磁石であり、内部にカルシウムやマグネシウムを含んでいる。高電気抵抗率を有するカルシウムやマグネシウムの酸化物がマンガン系磁石内部に含まれることで、電子伝導を妨げることができ、交流磁場にさらされたときに誘起される渦電流損を低減することができる。一方、マンガン系磁石の磁気特性が高いのはカルシウムもしくはマグネシウム量が低い割合で構成している場合である。 An embodiment of a manganese-based magnet according to an embodiment of the present invention will be described. The manganese-based magnet according to this embodiment is MnX (where X is at least one of Al, B, Bi, C, Co, Cr, F, Ir, Ga, N, Ni, Rh, Pt, and Pd. ) Manganese magnet with crystal grains, containing calcium and magnesium inside. The inclusion of calcium or magnesium oxides with high electrical resistivity inside the manganese-based magnets can hinder electronic conduction and reduce eddy current loss induced when exposed to alternating magnetic fields. it can. On the other hand, the magnetic properties of manganese-based magnets are high when they are configured with a low proportion of calcium or magnesium.

マンガン系磁石に含まれるカルシウムもしくはマグネシウムが0.01mass%未満になるとカルシウムもしくはマグネシウムが少ないため、十分に主相粒子間の電子伝導を妨げることができず、高い電気抵抗率を得られない。また、マンガン系磁石に含まれるカルシウムもしくはマグネシウムが11%を超えてしまうとMnX相の比率が小さくなり過ぎて、十分な磁化を得ることができない。そこで、マンガン系磁石に含まれるカルシウムもしくはマグネシウムを0.01〜11mass%とすることで、電気抵抗率の向上と磁化の維持の両立を図るようにした。 If the calcium or magnesium contained in the manganese-based magnet is less than 0.01 mass%, the calcium or magnesium is small, so that the electron conduction between the main phase particles cannot be sufficiently prevented, and a high electrical resistivity cannot be obtained. In addition, if calcium or magnesium contained in the manganese-based magnet exceeds 11%, the ratio of the MnX phase becomes too small to obtain sufficient magnetization. Therefore, by making calcium or magnesium contained in the manganese-based magnet 0.01 to 11 mass%, both improvement in electric resistivity and maintenance of magnetization are achieved.

また、本発明に係るマンガン系磁石に含まれるカルシウムは、CaO、Ca−X−O、Ca−Mn−O、Ca−X−Mn−O化合物またはそれらの化合物として存在し、マグネシウムはMgO、Mg−X−O、Mg−Mn−O、Mg−X−Mn−O化合物またはそれらの混合物として存在する。 In addition, calcium contained in the manganese-based magnet according to the present invention exists as a CaO, Ca—X—O, Ca—Mn—O, Ca—X—Mn—O compound or a compound thereof, and magnesium is MgO, Mg. -X-O, Mg-Mn-O, Mg-X-Mn-O compound or a mixture thereof.

マンガン系磁石の主相粒子であるMnX結晶粒の粒径は1.0μm未満であることが好ましい。粒径が1.0μm以下であると主相粒子内の電子伝導が起こりにくくなるので、電気抵抗率を十分に上げることが容易となる。カルシウムもしくはマグネシウムはマンガン系磁石全体に均一に分布していることが好ましい。 The particle size of the MnX crystal grains that are the main phase particles of the manganese-based magnet is preferably less than 1.0 μm. When the particle size is 1.0 μm or less, electron conduction in the main phase particles is unlikely to occur, so that it is easy to sufficiently increase the electrical resistivity. Calcium or magnesium is preferably distributed uniformly throughout the manganese-based magnet.

本発明に係るマンガン系磁石の製造方法を説明する。本発明に係るマンガン系磁石は、マンガン合金粉末を製造し、得られたマンガン系合金粉体とカルシウム源もしくはマグネシウム源を、混合・粉砕し、得られた粉体を圧縮成型し、温間押出加工する事により得られる。 A method for producing a manganese-based magnet according to the present invention will be described. The manganese-based magnet according to the present invention produces manganese alloy powder, mixes and pulverizes the obtained manganese-based alloy powder and calcium source or magnesium source, compresses the obtained powder, and performs warm extrusion. Obtained by processing.

本発明におけるマンガン系合金粉末はMnX(ここで、XはAl、B、Bi、C、Co、Cr、F、Ir、Ga、N、Ni、Rh、Pt、Pdの少なくとも1種である。)を主相とし、ガスアトマイズ法にて製造される。 The manganese-based alloy powder in the present invention is MnX (where X is at least one of Al, B, Bi, C, Co, Cr, F, Ir, Ga, N, Ni, Rh, Pt, and Pd). Is produced by gas atomization method.

このマンガン系合金粉末とカルシウム源もしくはマグネシウム源を所定量秤量し混合する。カルシウム源としてCaO、Ca(OH)、CaCOなどが挙げられるが、特にCaOが好ましい。マグネシウム源としてMgO、Mg(OH)、MgCOなどが挙げられるが、特にMgOが好ましい。 A predetermined amount of this manganese-based alloy powder and calcium source or magnesium source are weighed and mixed. Examples of the calcium source include CaO, Ca (OH) 2 , and CaCO 3, and CaO is particularly preferable. Examples of the magnesium source include MgO, Mg (OH) 2 , and MgCO 3, and MgO is particularly preferable.

本発明におけるカルシウム源およびマグネシウム源の粒子形状は特に限定はないが、球状、針状、粒状、紡錘状、直方体状などいずれでもよい。本発明におけるカルシウム源およびマグネシウム源の粒径は100μm以下が好ましい。粒径が100μm以下のカルシウムもしくはマグネシウムは磁石内部で偏らずに存在するため、十分高い電気抵抗率を得ることが容易となる。 The particle shape of the calcium source and the magnesium source in the present invention is not particularly limited, but may be any of spherical shape, needle shape, granular shape, spindle shape, rectangular parallelepiped shape, and the like. In the present invention, the particle size of the calcium source and the magnesium source is preferably 100 μm or less. Since calcium or magnesium having a particle size of 100 μm or less is present in the magnet without any deviation, it is easy to obtain a sufficiently high electrical resistivity.

次にマンガン系合金粉末とカルシウム源およびマグネシウム源を混合して微粉砕を行う。粉砕時間などの条件を適宜調整しながら、ジェットミル、ボールミル、振動ミルなどの微粉砕機を用いて粉砕を行うことで実施される。 Next, the manganese-based alloy powder is mixed with a calcium source and a magnesium source and pulverized. It is carried out by performing pulverization using a fine pulverizer such as a jet mill, a ball mill, and a vibration mill while appropriately adjusting conditions such as pulverization time.

マンガン合金粉体とカルシウム源およびマグネシウム源の粉砕時間は5時間以上が好ましい。粉砕時間が5時間未満の場合には、マンガン合金粉体とカルシウム源およびマグネシウム源の混合度が不十分となり、十分な電気抵抗率を有するマンガン系磁石を得ることができない。 The pulverization time of the manganese alloy powder, calcium source and magnesium source is preferably 5 hours or more. When the pulverization time is less than 5 hours, the mixing degree of the manganese alloy powder, the calcium source and the magnesium source becomes insufficient, and a manganese-based magnet having a sufficient electric resistivity cannot be obtained.

振動ミルを使用する場合、マンガン合金粉体とカルシウム源およびマグネシウム源の振動ミルの使用する容器とボールは特に限定しないが、ステンレス、アルミナ、メノウ製が好ましい。さらにはFe不純物の混入を避けることができるアルミナ、メノウ製が特に好ましい。 In the case of using a vibration mill, the container and ball used in the vibration mill of the manganese alloy powder, calcium source, and magnesium source are not particularly limited, but stainless steel, alumina, and agate are preferable. Further, alumina and agate products that can avoid mixing of Fe impurities are particularly preferable.

混合で得られる混合粉末を所定量計量し、ダイスに投入し油圧プレスにて圧縮成形する。圧縮成型温度は600℃〜700℃が好ましい。圧縮成型温度が600℃未満では十分な密度が得られない。圧縮成型圧力は10kg/mm以上であることが好ましい。10kg/mm未満では十分な密度が得られない。 A predetermined amount of the mixed powder obtained by mixing is weighed, put into a die, and compression molded with a hydraulic press. The compression molding temperature is preferably 600 ° C to 700 ° C. If the compression molding temperature is less than 600 ° C., sufficient density cannot be obtained. The compression molding pressure is preferably 10 kg / mm 2 or more. If it is less than 10 kg / mm 2 , sufficient density cannot be obtained.

得られたビレットを700℃〜800℃、押出比R(押出加工前後のビレットの断面積比)2〜4で温間押出加工する事により、目的とするマンガン系磁石が得られる。 By subjecting the obtained billet to a warm extrusion process at a temperature of 700 ° C. to 800 ° C. and an extrusion ratio R (cross-sectional area ratio of the billet before and after the extrusion process) of 2 to 4, the intended manganese-based magnet is obtained.

<評価方法>
本実施例と比較例の測定方法について説明する。作製したマンガン系磁石の電気抵抗率は4探針法にて測定した。4探針法とは4つの探針を試料表面に接触させ、外側の探針に電流を流した時に内側の探針に生じる電圧から電気抵抗率を求める方法である。試料の形状は2mm×2mm×5mmに成形した。評価は100μΩ・cm以上を合格とした。
<Evaluation method>
The measuring method of a present Example and a comparative example is demonstrated. The electrical resistivity of the produced manganese-based magnet was measured by a 4-probe method. The four-probe method is a method for obtaining the electrical resistivity from the voltage generated in the inner probe when four probes are brought into contact with the sample surface and a current is passed through the outer probe. The shape of the sample was molded to 2 mm × 2 mm × 5 mm. Evaluation set 100 microhm * cm or more as the pass.

マンガン系磁石の磁化は玉川製作所のVSM(振動試料型磁力測定:Vibrating Sample Magnetometer)で測定した。磁場範囲は0〜33000Oeであり、温度は25℃である。飽和磁化の評価はマンガンアルミニウム系磁石では80emu/g以上、マンガンビスマス系磁石では40emu/g以上を合格とした。 Magnetization of the manganese-based magnet was measured with a VSM (Vibrating Sample Magnetometer) from Tamagawa Seisakusho. The magnetic field range is 0-33000 Oe, and the temperature is 25 ° C. The saturation magnetization was evaluated to be 80 emu / g or more for a manganese aluminum magnet and 40 emu / g or more for a manganese bismuth magnet.

マンガン系磁石に含まれる相をX線回折法で同定した。マンガン系磁石のカルシウムおよびマグネシウムの含有量は誘導結合プラズマ質量分析法(ICP−MS法)で測定した。 The phase contained in the manganese-based magnet was identified by the X-ray diffraction method. The contents of calcium and magnesium in the manganese-based magnet were measured by inductively coupled plasma mass spectrometry (ICP-MS method).

実施例1
Mn(純度99.9mass%以上)、Al(純度99.9mass%以上)をMn:Al=71:29mass%の割合で秤量し、ガスアトマイズ法でマンガンアルミニウム合金粉末を作製した。得られた粉体にCaOを0.02mass%添加し、ボールミルで6時間混合・粉砕を行った。
Example 1
Mn (purity 99.9 mass% or more) and Al (purity 99.9 mass% or more) were weighed at a ratio of Mn: Al = 71: 29 mass%, and a manganese aluminum alloy powder was produced by a gas atomization method. 0.02 mass% of CaO was added to the obtained powder, and mixed and pulverized with a ball mill for 6 hours.

この粉体を所定量計量後、ダイスに投入し油圧プレスにて温度600℃、30kg/mmの条件で圧縮成型し、温間押し出し加工を行い、マンガンアルミニウム系磁石を得た。 A predetermined amount of this powder was weighed, put into a die, and compression molded with a hydraulic press under conditions of a temperature of 600 ° C. and 30 kg / mm 2 , and subjected to warm extrusion to obtain a manganese aluminum magnet.

得られたマンガンアルミニウム系磁石のXRD測定を行うとMnAl相のピークとわずかなCaOのピークが観測された。製造された磁石の主相粒子がMnAl相になっており、カルシウムはCaOとして存在していることが分かる。ICP−MS法でカルシウム量を測定すると添加したCaOの仕込み比から換算した値と一致していた。 When the XRD measurement of the obtained manganese aluminum-based magnet was performed, a peak of MnAl phase and a slight CaO peak were observed. It can be seen that the main phase particles of the manufactured magnet are MnAl phases, and calcium exists as CaO. When the amount of calcium was measured by the ICP-MS method, it was consistent with the value converted from the charged ratio of added CaO.

得られたマンガンアルミニウム系磁石の測定を行ったところ電気抵抗率ρが102μΩ・cm、飽和磁化Msが95.2emu/gであり、十分な電気抵抗率と磁気特性が得られた。 When the obtained manganese aluminum magnet was measured, the electrical resistivity ρ was 102 μΩ · cm, the saturation magnetization Ms was 95.2 emu / g, and sufficient electrical resistivity and magnetic properties were obtained.

実施例2〜5ではCaOの添加量のみを変えたこと以外は実施例1と同様にしてマンガンアルミニウム系磁石を作製した。ICP−MS法で測定したカルシウム量は添加したCaOの仕込み比から換算した値と一致していた。実施例2〜5では、XRD測定を行ったところMnAlとCaOのピークが観測された。電気抵抗率と飽和磁化を測定すると、十分な電気抵抗率と飽和磁化を有することが分かった。 In Examples 2 to 5, manganese aluminum-based magnets were produced in the same manner as in Example 1 except that only the amount of CaO added was changed. The amount of calcium measured by the ICP-MS method was consistent with the value converted from the charged ratio of added CaO. In Examples 2 to 5, when XRD measurement was performed, MnAl and CaO peaks were observed. When the electrical resistivity and saturation magnetization were measured, it was found to have sufficient electrical resistivity and saturation magnetization.

実施例6、7では添加剤をCaOからMgOに変えたこと以外は実施例1と同様にしてマンガンアルミニウム系磁石を作製した。ICP−MS法で測定したマグネシウム量は添加したMgOの仕込み比から換算した値と一致していた。XRD測定を行ったところ、MnAlとMgOのピークが観測された。電気抵抗率と飽和磁化を測定すると、十分な電気抵抗率と飽和磁化を有することが分かった。 In Examples 6 and 7, manganese aluminum-based magnets were produced in the same manner as in Example 1 except that the additive was changed from CaO to MgO. The amount of magnesium measured by the ICP-MS method was consistent with the value converted from the charged ratio of added MgO. When XRD measurement was performed, peaks of MnAl and MgO were observed. When the electrical resistivity and saturation magnetization were measured, it was found to have sufficient electrical resistivity and saturation magnetization.

実施例8ではCaOのみではなくCaOとMgOを添加したこと以外は実施例1と同様にしてマンガンアルミニウム系磁石を作製した。ICP−MS法で測定したカルシウム量およびマグネシウム量は添加したCaOおよびMgOの仕込み比から換算した値と一致していた。XRD測定を行ったところ、MnAl、CaOおよびMgOのピークが観測された。電気抵抗率と飽和磁化を測定すると、十分な電気抵抗率と飽和磁化を有することが分かった。 In Example 8, a manganese aluminum-based magnet was produced in the same manner as in Example 1 except that not only CaO but also CaO and MgO were added. The amounts of calcium and magnesium measured by the ICP-MS method agreed with the values converted from the charged ratios of added CaO and MgO. When XRD measurement was performed, peaks of MnAl, CaO and MgO were observed. When the electrical resistivity and saturation magnetization were measured, it was found to have sufficient electrical resistivity and saturation magnetization.

実施例1〜8で添加したCaOとMgOの量とICP−MS分析で検出したCaとMg量を表1に示す。
実施例1〜8で電気抵抗率と磁化の測定を行った結果を表2に示す。
Table 1 shows the amounts of CaO and MgO added in Examples 1 to 8 and the amounts of Ca and Mg detected by ICP-MS analysis.
Table 2 shows the results of measuring electrical resistivity and magnetization in Examples 1-8.

比較例1では添加剤を入れなかったこと以外は実施例1と同様にしてマンガンアルミニウム系磁石を作製した。 In Comparative Example 1, a manganese aluminum-based magnet was produced in the same manner as in Example 1 except that no additive was added.

比較例2ではCaOを0.01mass%添加し、比較例3ではCaOを18mass%添加したこと以外は実施例1と同様にしてマンガンアルミニウム系磁石を得た。 In Comparative Example 2, 0.01 mass% of CaO was added, and in Comparative Example 3, a manganese aluminum magnet was obtained in the same manner as in Example 1 except that 18 mass% of CaO was added.

比較例4ではCaOの代わりにMgOを0.01mass%添加し、比較例5ではMgOを18mass%添加したこと以外は実施例1と同様にしてマンガンアルミニウム系磁石を得た。 In Comparative Example 4, 0.01 mass% of MgO was added instead of CaO, and in Comparative Example 5, a manganese aluminum magnet was obtained in the same manner as in Example 1 except that 18 mass% of MgO was added.

比較例1〜5で電気抵抗率と磁化の測定を行った結果を表1に示す。

Figure 2016162873
Figure 2016162873
Table 1 shows the results of measurement of electrical resistivity and magnetization in Comparative Examples 1-5.
Figure 2016162873
Figure 2016162873

電気抵抗率測定および磁化測定いずれの評価でも合格と評価できるマンガンアルミニウム系磁石は実施例1〜8であるといえる。カルシウムもしくはマグネシウムの添加量が多いほど電気抵抗率の増大の効果が強くなっていることが分かる。また、実施例1〜8のカルシウムもしくはマグネシウム量の範囲では十分な飽和磁化を持つことが分かる。 It can be said that the manganese aluminum system magnet which can be evaluated as passing in any evaluation of electrical resistivity measurement and magnetization measurement is Examples 1-8. It can be seen that the greater the amount of calcium or magnesium added, the stronger the effect of increasing electrical resistivity. Moreover, it turns out that it has sufficient saturation magnetization in the range of the calcium or magnesium amount of Examples 1-8.

一方、比較例1、2のようにカルシウムの添加量が0.01mass%未満ではカルシウム量が少ないため主相粒子間の電子伝導を抑えられず、電気抵抗率を十分に高めることができなかったと考えられる。また、比較例3のようにカルシウム量が11mass%を超えると磁石の飽和磁化が低くなる。 On the other hand, when the added amount of calcium is less than 0.01 mass% as in Comparative Examples 1 and 2, the amount of calcium is so small that electronic conduction between the main phase particles cannot be suppressed, and the electrical resistivity cannot be sufficiently increased. Conceivable. Moreover, when the amount of calcium exceeds 11 mass% as in Comparative Example 3, the saturation magnetization of the magnet is lowered.

比較例4のようにマグネシウム量が0.01mass%未満では十分電気抵抗を高めることができず、比較例5のようにマグネシウム量が11mass%を超えると磁石の飽和磁化が低くなる。 If the amount of magnesium is less than 0.01 mass% as in Comparative Example 4, the electrical resistance cannot be sufficiently increased. If the amount of magnesium exceeds 11 mass% as in Comparative Example 5, the saturation magnetization of the magnet is lowered.

実施例9
Mn(純度99.9mass%以上)、Bi(純度99.9mass%以上)をそれぞれMnを17mass%、Biを83mass%の割合で秤量し、ガスアトマイズ法でマンガンビスマス合金粉末を作製し、Ar雰囲気中270℃で3日間加熱した。
Example 9
Mn (purity 99.9 mass% or more) and Bi (purity 99.9 mass% or more) were weighed in a ratio of 17 mass% Mn and Bi were 83 mass%, respectively, and a manganese bismuth alloy powder was prepared by a gas atomization method in an Ar atmosphere. Heated at 270 ° C. for 3 days.

得られた粉体にCaOを0.02mass%添加し、振動ミルで6時間混合・粉砕を行い、100μm以下の粉体を得た。 0.02 mass% of CaO was added to the obtained powder and mixed and pulverized with a vibration mill for 6 hours to obtain a powder of 100 μm or less.

この粉体を所定量計量後、ダイスに投入し油圧プレスにて温度600℃、30kg/mmの条件で圧縮成型し、温間押し出し加工によりマンガンビスマス系磁石を得た。 After weighing a predetermined amount of this powder, it was put into a die and compression molded with a hydraulic press at a temperature of 600 ° C. and 30 kg / mm 2, and a manganese bismuth magnet was obtained by warm extrusion.

XRD測定を行うとMnAl相のピークとわずかなCaOのピークが観測された。製造されたマンガン系磁石では、主相粒子がMnBiになっており、カルシウムはCaOとして存在していることが分かる。ICP−MS法でカルシウム量を測定すると添加したCaOの仕込み比から換算した値と一致していた。 When XRD measurement was performed, a peak of MnAl phase and a slight peak of CaO were observed. In the manufactured manganese-based magnet, it can be seen that the main phase particles are MnBi and calcium is present as CaO. When the amount of calcium was measured by the ICP-MS method, it was consistent with the value converted from the charged ratio of added CaO.

得られた磁石の測定を行ったところ電気抵抗率ρが102μΩ・cm、飽和磁化Msが50.0emu/gであり、十分な電気抵抗率と磁気特性が得られた。 When the obtained magnet was measured, the electrical resistivity ρ was 102 μΩ · cm, the saturation magnetization Ms was 50.0 emu / g, and sufficient electrical resistivity and magnetic properties were obtained.

実施例10〜13ではCaOの添加量のみを変えたこと以外は実施例9と同様にしてマンガン系磁石を作製した。ICM−MS法で測定したカルシウム量は添加したCaOの仕込み比から換算した値と一致していた。実施例10〜13では、XRD測定を行ったところMnBiとCaOのピークが観測された。電気抵抗率と飽和磁化を測定すると、十分な電気抵抗率と飽和磁化を有することが分かった。 In Examples 10 to 13, manganese-based magnets were produced in the same manner as in Example 9 except that only the amount of CaO added was changed. The amount of calcium measured by the ICM-MS method was consistent with the value converted from the charged ratio of added CaO. In Examples 10 to 13, when XRD measurement was performed, MnBi and CaO peaks were observed. When the electrical resistivity and saturation magnetization were measured, it was found to have sufficient electrical resistivity and saturation magnetization.

実施例14、15では添加剤をCaOからMgOに変えたこと以外は実施例9と同様にしてマンガンビスマス系磁石を作製した。ICP−MS法で測定したマグネシウム量は添加したMgOの仕込み比から換算した値と一致していた。実施例14、15ではXRD測定を行ったところ、MnBiとMgOのピークが観測された。電気抵抗率と飽和磁化を測定すると、十分な電気抵抗率と飽和磁化を有することが分かった。 In Examples 14 and 15, manganese bismuth magnets were produced in the same manner as in Example 9 except that the additive was changed from CaO to MgO. The amount of magnesium measured by the ICP-MS method was consistent with the value converted from the charged ratio of added MgO. In Examples 14 and 15, when XRD measurement was performed, peaks of MnBi and MgO were observed. When the electrical resistivity and saturation magnetization were measured, it was found to have sufficient electrical resistivity and saturation magnetization.

実施例9〜16で添加したCaOとMgOの量とICP−MS分析で検出したCaとMg量を表3に示す。
実施例9〜16で電気抵抗率と磁化の測定を行った結果を表4に示す。
Table 3 shows the amounts of CaO and MgO added in Examples 9 to 16 and the amounts of Ca and Mg detected by ICP-MS analysis.
Table 4 shows the results of measuring electrical resistivity and magnetization in Examples 9-16.

比較例6では添加剤を入れなかったこと以外は実施例9と同様にしてマンガンビスマス系磁石を作製した。 In Comparative Example 6, a manganese bismuth-based magnet was produced in the same manner as in Example 9 except that no additive was added.

比較例7ではCaOを0.01mass%添加し、比較例8ではCaOを18mass%添加したこと以外は実施例1と同様にしてマンガンビスマス系磁石を得た。 In Comparative Example 7, 0.01 mass% of CaO was added, and in Comparative Example 8, a manganese bismuth-based magnet was obtained in the same manner as in Example 1 except that 18 mass% of CaO was added.

比較例9ではCaOの代わりにMgOを0.01mass%添加し、比較例10ではMgOを18mass%添加したこと以外は実施例9と同様にしてマンガンビスマス系磁石を得た。 In Comparative Example 9, a manganese bismuth-based magnet was obtained in the same manner as in Example 9 except that 0.01 mass% of MgO was added instead of CaO, and 18 mass% of MgO was added in Comparative Example 10.

比較例6〜10で電気抵抗率と磁化の測定を行った結果を表4に示す。

Figure 2016162873
Figure 2016162873
電気抵抗率測定および磁化測定いずれの評価でも合格と評価できるマンガンビスマス系磁石は実施例9〜16であるといえる。カルシウムもしくはマグネシウムの添加量が多いほど電気抵抗率の増大の効果が強くなっていることが分かる。また、実施例9〜16のカルシウムもしくはマグネシウム量の範囲では十分な飽和磁化を持つことが分かる。 Table 4 shows the results of measurement of electrical resistivity and magnetization in Comparative Examples 6 to 10.
Figure 2016162873
Figure 2016162873
It can be said that the manganese bismuth magnets that can be evaluated as passing in any of the electrical resistivity measurement and the magnetization measurement are Examples 9 to 16. It can be seen that the greater the amount of calcium or magnesium added, the stronger the effect of increasing electrical resistivity. Moreover, it turns out that it has sufficient saturation magnetization in the range of the amount of calcium or magnesium of Examples 9-16.

一方、比較例6、7のようにカルシウムの添加量が0.01mass%未満ではカルシウム量が少ないため主相粒子間の電子伝導を抑えられず、電気抵抗率を十分に高めることができなかったと考えられる。また、比較例8のようにカルシウム量が11mass%を超えると磁石の飽和磁化が低くなる。 On the other hand, when the amount of calcium added is less than 0.01 mass% as in Comparative Examples 6 and 7, the amount of calcium is so small that electronic conduction between the main phase particles cannot be suppressed, and the electrical resistivity cannot be sufficiently increased. Conceivable. Moreover, when the amount of calcium exceeds 11 mass% as in Comparative Example 8, the saturation magnetization of the magnet becomes low.

比較例9のようにマグネシウム量が0.01mass%未満では十分電気抵抗を高めることができず、比較例10のようにマグネシウム量が11mass%を超えると磁石の飽和磁化が低くなる。 If the amount of magnesium is less than 0.01 mass% as in Comparative Example 9, the electrical resistance cannot be sufficiently increased, and if the amount of magnesium exceeds 11 mass% as in Comparative Example 10, the saturation magnetization of the magnet is lowered.

本発明はマンガン系磁石においてカルシウムもしくはマグネシウムを含むことで渦電流損を低減することができる。よって、本発明のマンガン系磁石は交流磁界を受けたときの渦電流損を抑え、渦電流に伴う発熱を抑えることができ、磁石モータなどの回転機に使用することができる。 The present invention can reduce eddy current loss by including calcium or magnesium in a manganese-based magnet. Therefore, the manganese-based magnet of the present invention can suppress eddy current loss when subjected to an alternating magnetic field, suppress heat generated by the eddy current, and can be used for a rotating machine such as a magnet motor.

Claims (1)

マンガン系磁石であって、カルシウムもしくはマグネシウムを0.01mass%〜11mass%含むことを特徴とするマンガン系磁石。
A manganese-based magnet comprising 0.01 mass% to 11 mass% of calcium or magnesium.
JP2015039798A 2015-03-02 2015-03-02 Manganese magnet Active JP6511862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039798A JP6511862B2 (en) 2015-03-02 2015-03-02 Manganese magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039798A JP6511862B2 (en) 2015-03-02 2015-03-02 Manganese magnet

Publications (2)

Publication Number Publication Date
JP2016162873A true JP2016162873A (en) 2016-09-05
JP6511862B2 JP6511862B2 (en) 2019-05-15

Family

ID=56845599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039798A Active JP6511862B2 (en) 2015-03-02 2015-03-02 Manganese magnet

Country Status (1)

Country Link
JP (1) JP6511862B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955309A (en) * 1995-08-10 1997-02-25 Sanyo Special Steel Co Ltd Manganese-aluminum magnet having far infrared radiation effect
JPH09186010A (en) * 1995-08-23 1997-07-15 Hitachi Metals Ltd Large electric resistance rare earth magnet and its manufacture
JPH10261514A (en) * 1997-03-19 1998-09-29 Hitachi Maxell Ltd Magnetic material
JP2001257110A (en) * 2000-03-09 2001-09-21 Hitachi Maxell Ltd Magnetic material and magnetic recording medium formed by use thereof
JP2003022905A (en) * 2001-07-10 2003-01-24 Daido Steel Co Ltd High resistance rare earth magnet and its manufacturing method
JP2007208017A (en) * 2006-02-02 2007-08-16 Nec Tokin Corp Permanent magnet and its manufacturing method
JP2011030341A (en) * 2009-07-24 2011-02-10 Hitachi Ltd Rotating electrical machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955309A (en) * 1995-08-10 1997-02-25 Sanyo Special Steel Co Ltd Manganese-aluminum magnet having far infrared radiation effect
JPH09186010A (en) * 1995-08-23 1997-07-15 Hitachi Metals Ltd Large electric resistance rare earth magnet and its manufacture
JPH10261514A (en) * 1997-03-19 1998-09-29 Hitachi Maxell Ltd Magnetic material
JP2001257110A (en) * 2000-03-09 2001-09-21 Hitachi Maxell Ltd Magnetic material and magnetic recording medium formed by use thereof
JP2003022905A (en) * 2001-07-10 2003-01-24 Daido Steel Co Ltd High resistance rare earth magnet and its manufacturing method
JP2007208017A (en) * 2006-02-02 2007-08-16 Nec Tokin Corp Permanent magnet and its manufacturing method
JP2011030341A (en) * 2009-07-24 2011-02-10 Hitachi Ltd Rotating electrical machine

Also Published As

Publication number Publication date
JP6511862B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP7379362B2 (en) Low B content R-Fe-B sintered magnet and manufacturing method
JP6411630B2 (en) Quenched alloy for rare earth magnet and method for producing rare earth magnet
KR101287719B1 (en) R-t-b-c type rare earth sintered magnet and making method
CN107622854B (en) R-T-B based rare earth element permanent magnet
CN107622853B (en) R-T-B based rare earth element permanent magnet
JP6828027B2 (en) A method for producing an R-Fe-B-based rare earth sintered magnet containing a composite of Pr and W.
CN111009369B (en) Rare earth permanent magnetic material and preparation method and application thereof
WO2012003702A1 (en) R-fe-b based magnet having gradient electric resistance and method for producing the same
CN109935432A (en) R-T-B system permanent magnet
JP4702543B2 (en) R-T-B-C type rare earth sintered magnet
JP2020161660A (en) Ferrite sintered magnet and electrical rotating machine having the same
US11626222B2 (en) Ferrite sintered magnet and rotary electrical machine comprising the same
Moon et al. Structural and magnetic properties of Ca-Mn-Zn-substituted M-type Sr-hexaferrites
Moon et al. Synthesis and magnetic properties of MnBi (LTP) magnets with high-energy product
Hua et al. Microstructure and magnetic properties of Ni-Zn ferrites doped with MnO2
US11532413B2 (en) Ferrite sintered magnet and rotary electrical machine comprising the same
CN111599564A (en) R-T-B magnetic material and preparation method thereof
Hegedűs et al. Energy losses in composite materials based on two ferromagnets
JP6511862B2 (en) Manganese magnet
JPWO2018101409A1 (en) Rare earth sintered magnet
CN108389674A (en) R-T-B systems sintered magnet
CN104464998B (en) A kind of high energy product sintered Nd-Fe-B permanent magnetic material and preparation method
Mahmoudi et al. The effect of nano-SiO2 on magnetic and dielectric properties of Li–Zn ferrite
JP2011210838A (en) Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JP2016162872A (en) Manganese-based magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6511862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150