JPS59229461A - Magnetic alloy powder for magnetic recording - Google Patents

Magnetic alloy powder for magnetic recording

Info

Publication number
JPS59229461A
JPS59229461A JP58104714A JP10471483A JPS59229461A JP S59229461 A JPS59229461 A JP S59229461A JP 58104714 A JP58104714 A JP 58104714A JP 10471483 A JP10471483 A JP 10471483A JP S59229461 A JPS59229461 A JP S59229461A
Authority
JP
Japan
Prior art keywords
powder
magnetic
coercive force
less
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58104714A
Other languages
Japanese (ja)
Other versions
JPH0461041B2 (en
Inventor
Michio Yamashita
三千雄 山下
Masato Sagawa
佐川 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58104714A priority Critical patent/JPS59229461A/en
Publication of JPS59229461A publication Critical patent/JPS59229461A/en
Publication of JPH0461041B2 publication Critical patent/JPH0461041B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily and inexpensively titled powder having high coercive force and high satd. magnetization by forming a magnetic alloy consisting essentially of R (rare earth elements including Y), B and Fe into pulverous powder having a specific grain size. CONSTITUTION:Titled powder consists of an R-B-Fe magnetic alloy consisting essentially of 5-20atom% R (>=1 kind among rare earth elements including Y), 5-20atom% B and 60-90atom% Fe, consists of the compd. of tetragonal system contg. R, B and Fe as a main phase and has <=10mu grain size. Since such powder utilizes crystal magnetic anisotropy as a mechanism for developing coercive force, the powder is easily obtd. by grinding, etc. without the need for forming accular and ultrafine powder as in the prior art. The powder has excellent satd. magnetization and coercive force and the coercive force is adjustable freely within a certain range; moreover the powder has a high squareness ratio with the magnetization curve and is excellent for not only recording in a longitudinal direction but recording in a perpendicular direction as well.

Description

【発明の詳細な説明】 この発明は、すぐれた磁気特性を有する磁気記録用磁性
合金粉末に係り、希土類金属(Yを包含する希土類元素
のうち少なくとも1種)とボロンと鉄とを主成分とする
磁気記録用磁性合金粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording magnetic alloy powder having excellent magnetic properties, which mainly contains a rare earth metal (at least one rare earth element including Y), boron, and iron. The present invention relates to a magnetic alloy powder for magnetic recording.

磁気記録用磁性粉末として、針状晶γ−Fe103、針
状Cr Op、6被着型針状酸化鉄等の酸化物微粉末が
、一般に多用されている。
As magnetic powder for magnetic recording, fine oxide powders such as acicular γ-Fe103, acicular Cr Op, and 6-coated acicular iron oxide are commonly used.

また、今日、磁気記録媒体には高出力並びに高密度化が
強く要求されており、高保磁力、高飽和磁化の特性を有
する磁性粉末が必要となってきた。
Furthermore, today, there is a strong demand for high output and high density in magnetic recording media, and magnetic powders having characteristics of high coercive force and high saturation magnetization have become necessary.

かかる磁性粉末として、針状酸化鉄を還元処理して針状
鉄微粒子としたもの、金属を蒸発させて数百への超微粉
としたFeあるいはFe−Gを主成分とする合金微粉末
等が提案され、改良開発が進められている。
Examples of such magnetic powder include acicular iron fine particles obtained by reducing acicular iron oxide, and alloy fine powders mainly composed of Fe or Fe-G, which are made into ultrafine powder by evaporating metal into hundreds of particles. A proposal has been made and improvements and development are underway.

しかしながら、上記の針状鉄微粒子は、その保磁力発生
機構として、形状異方性を利用しているため、針状比5
以上の細長い微粒子が必要であるが、還元処理工程のシ
ンタリング等のため針状性が損われやすい問題があり、
また、還元処理、シンタリングや酸化防止対策のために
コストが嵩み高価になり、その保磁力も15000e程
度が限界である等種々の問題があり、さらに後者の超微
粉末の場合、針状性は必要ないが、数百人の超微粉とす
る蒸発工程において多大のコストを要するため、特殊な
用途に限定され、その保磁力も25000e程度が限界
である等種々の問題があった。
However, since the above-mentioned acicular iron fine particles utilize shape anisotropy as their coercive force generation mechanism, the acicular iron particle has an acicular ratio of 5.
Although the above-mentioned elongated fine particles are necessary, there is a problem that the acicularity is easily lost due to sintering in the reduction treatment process, etc.
In addition, reduction treatment, sintering, and oxidation prevention measures increase the cost, and there are various problems such as the coercive force being limited to about 15,000 e. Although it does not require a high degree of strength, it requires a large amount of cost in the evaporation process that involves hundreds of people to turn it into ultra-fine powder, so it is limited to special uses, and its coercive force is limited to about 25,000 e, which poses various problems.

また、飽和磁化についても、結晶磁気異方性を利用した
磁性材料としてBa0 ・ 6Fe203や5rO−・
6Fe203で表わされるハードフェライトが知られて
いるが、その飽和磁化は60〜708mu10と低く、
希土類金属と6を主成分とするRCo5やR2O)+7
で表わされる金属間化合物も高い結晶磁気異方性のため
、高保磁力を有することが知られているが、Smや6が
主成分であるために原料コストが嵩み、飽和磁化も80
〜958ml+/(]と低いものであった。
Regarding saturation magnetization, Ba0 6Fe203 and 5rO-
Hard ferrite represented by 6Fe203 is known, but its saturation magnetization is low at 60 to 708 mu10.
RCo5 and R2O whose main components are rare earth metals and 6) +7
The intermetallic compound represented by is also known to have a high coercive force due to its high magnetocrystalline anisotropy, but since Sm and 6 are the main components, the raw material cost increases, and the saturation magnetization is also 80.
It was as low as ~958ml+/(].

この発明は、高保磁力でかつ高飽和磁化である新規な磁
気記録用磁性粉末を目的とし、このすぐれた磁気特性が
製造容易で安価に得られる磁気記録用磁性粉末を目的と
している。
The object of the present invention is to provide a novel magnetic recording magnetic powder that has high coercive force and high saturation magnetization, and which can provide such excellent magnetic properties easily and inexpensively.

すなわち、この発明は、R(RはYを包含する希土類元
素のうち少なくとも1種) 5原子%〜20原子%、B
55原子〜20原子%、Fe60原子%〜90原子%を
主成分とするR−B−Fe系磁性合金粉末からなり、R
、B 、Feを含む正方品化合物を主相とし、粒度が1
0ρ以下であることを特徴とする磁気記録用磁性合金粉
末である。
That is, this invention provides R (R is at least one kind of rare earth elements including Y) 5 at.% to 20 at.%, B
Consisting of R-B-Fe-based magnetic alloy powder whose main components are 55 to 20 at% and Fe60 to 90 at%, R
, B, the main phase is a tetragonal compound containing Fe, and the particle size is 1
The present invention is a magnetic alloy powder for magnetic recording, characterized in that it is 0ρ or less.

R,B、Feを主成分とする磁性合金は、本発明者らが
先(特願昭57−145072号、特願昭57i666
63号、特願昭58−5813号)に焼結永久磁石とし
てすぐれた磁気特性を有することを見い出したもので、
かかる合金の微粉末としての性質を種々検討した結果、
磁気記録用磁性粉末としてもすぐれた特性を有すること
を知見したものである。
Magnetic alloys containing R, B, and Fe as main components were developed by the present inventors (Japanese Patent Application No. 57-145072, Japanese Patent Application No. 57-i666).
No. 63, Japanese Patent Application No. 58-5813), it was discovered that it has excellent magnetic properties as a sintered permanent magnet.
As a result of various studies on the properties of such alloys as fine powder,
It was discovered that this material has excellent properties as a magnetic powder for magnetic recording.

この発明による磁気記録用磁性合金粉末は、保磁力発現
の機構として、結晶磁気異方性を利用するため、前記従
来の剣状性や超微粉化の必要がなく製造が容易であり、
かつすぐれた飽和磁化(σS)、保磁力(+HC)が得
られ、この保磁力も数1000eから約100000e
まで自由に調整可能であり、さらには、磁化曲線での角
形比(飽和磁化と残留磁化の比σr/σS)もすぐれて
おり、長手方向記録用のみならず、垂直方向記録用とし
てもすぐれた特性を有する。
The magnetic alloy powder for magnetic recording according to the present invention utilizes magnetocrystalline anisotropy as a mechanism for expressing coercive force, so it is easy to manufacture without the need for the conventional sword-like property or ultra-fine pulverization.
Excellent saturation magnetization (σS) and coercive force (+HC) can be obtained, and this coercive force also ranges from several thousand e to about 100,000 e.
It can be freely adjusted up to have characteristics.

次に、成分並びに成分組成を限定した理由を説明する。Next, the reason for limiting the components and component composition will be explained.

希土類元素Rは、イツトリウム(Y)を包含し軽希土類
及び重希土類を包含する希土類元素であり、これらのう
ち少なくとも1種、好ましくはNd、pr等の軽希土類
を主体として、あるいはNd、Pr等との混合物を用い
る。
The rare earth element R is a rare earth element that includes yttrium (Y), light rare earths, and heavy rare earths, and is mainly composed of at least one of these, preferably light rare earths such as Nd and pr, or Nd, Pr, etc. Use a mixture of

すなわち、Rとしては、 ネオジム(Nd>、プラセオジム(Pr)。That is, as R, Neodymium (Nd>, Praseodymium (Pr).

ランタン(La)、セリウム(Ce)。Lanthanum (La), cerium (Ce).

テルビウム(Tb)、ジスプロシウム(Dy)。Terbium (Tb), dysprosium (Dy).

ホルミウム(HO)、エルビウム(Er)。Holmium (HO), erbium (Er).

ユウロピウム(El)、サマリウム(Sm)。europium (El), samarium (Sm).

カドリニウム(Gd)、プロメチウム(PI)。Cadolinium (Gd), promethium (PI).

ツリウム(Tlll)、イッテルビウム(Yb)。Thulium (Tllll), Ytterbium (Yb).

ルテチウム(LIJ)、及びイツトリウム(Y)が包含
される。
Included are lutetium (LIJ) and yttrium (Y).

Rとしては、軽希土類をもって足り、特にNd。As R, a light rare earth element is sufficient, especially Nd.

prが好ましい。又通例Rのうち1種をもって足りるが
、実用上は2種以上の混合物(ミツシュメタル、ジジム
等)を入手上の便宜等の理由により用イルことができ、
Sm、Y、La、Ce、Gd。
pr is preferred. Also, one type of R is usually sufficient, but in practice, a mixture of two or more types (Mitushmetal, dididim, etc.) can be used for reasons such as convenience of availability.
Sm, Y, La, Ce, Gd.

等は他のR1特にNd、pr等との混合物として用いる
ことができる。なお、このRは純希土類元素でなくても
よく、工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差支えない。
etc. can be used as a mixture with other R1, especially Nd, pr, etc. Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rが5原子%未満であると、α鉄と同一構造の立方晶組
織が存在することになり、良好な保磁力。
When R is less than 5 atomic %, a cubic crystal structure having the same structure as α iron exists, and a good coercive force is obtained.

飽和磁化が得られなくなり、また、Rが20原子%を越
え、Feが60原子%未渦になると、Rリッチな非磁性
相が多くなりすぎて、飽和磁化が小さくなり、磁気記録
用磁性粉末として実用的でなくなるため、Rは5原子%
〜20原子%とする。
Saturation magnetization cannot be obtained, and when R exceeds 20 at% and Fe becomes unvortexed at 60 at%, R-rich non-magnetic phase becomes too large, saturation magnetization decreases, and the magnetic powder for magnetic recording R is 5 atom% because it is not practical as
~20 atomic%.

Bは、5原子%未渦になると、菱面体組織となり、良好
な保磁力、飽和磁化が得られなくなり、20原子%を越
えると飽和磁化が低下してしまうため、5原子%〜20
原子%とする。
When B becomes unvortexed by 5 at%, it becomes a rhombohedral structure, making it impossible to obtain good coercive force and saturation magnetization, and when it exceeds 20 at%, the saturation magnetization decreases.
Defined as atomic %.

Feは、Feが60原子%未溝になると、Rリッチな非
磁性相が多くなりすぎて、飽和磁化が小さくなり、磁気
記録用磁性粉末として実用的でなくなり、90原子%を
越えると、保磁力が低下し、磁気記録用磁性材料として
不適であるため、60原子%〜90原子%とする。
When Fe is 60 atomic % ungrooved, the R-rich nonmagnetic phase becomes too large and the saturation magnetization becomes small, making it impractical as a magnetic recording magnetic powder. Since the magnetic force decreases and it is unsuitable as a magnetic material for magnetic recording, the content is set at 60 at % to 90 at %.

上記の組成を有する合金粉1末が、高い結晶磁気異方性
と高い飽和磁化を示すためには、その組織構造として、
R,[3,Feを含む正方品化合物を主相とし、残部は
実質的にRリッチな非磁性相を有する組織であることが
不可欠である。また、この組織内に、酸化物相及びBリ
ンチ相が少量存在しても良好な特性を示す。
In order for the alloy powder 1 having the above composition to exhibit high magnetocrystalline anisotropy and high saturation magnetization, its structure must be as follows:
It is essential that the structure has a tetragonal compound containing R, [3, Fe as the main phase, and the remainder is a substantially R-rich nonmagnetic phase. Further, even if a small amount of oxide phase and B Lynch phase are present in this structure, good characteristics are exhibited.

この発明において、主成分であるFaの一部を6で置換
すると、R−B−Fe系合金粉末の磁気特性を損うこと
なく、温度特性を改善向上させるのに有効であるが、6
置換量がFeの50%を越えると、合金粉末の磁気特性
を逆に劣化させるので好ましくない。
In this invention, replacing a part of the main component Fa with 6 is effective in improving the temperature characteristics of the R-B-Fe alloy powder without impairing its magnetic properties.
If the amount of substitution exceeds 50% of Fe, the magnetic properties of the alloy powder will deteriorate, which is not preferable.

また、この発明において、Co置換、さらに下記元素の
添加および原料や製造工程での混入する不純物元素を含
む合金粉末であっても、R,B、Feを含む正方晶化合
物であり、磁気記録用磁性粉末としてすぐれた特性を示
す。
In addition, in the present invention, even if the alloy powder contains Co substitution, addition of the following elements, and impurity elements mixed in raw materials or manufacturing processes, it is a tetragonal compound containing R, B, and Fe, and is suitable for magnetic recording. Shows excellent properties as a magnetic powder.

TL  4,5%以下、NL  4.5%以下、BL 
 5  %以下、■ 9.5%以下、m  12.5%
以下、Ta  10.5%以下、Cr  8,5%以下
、−9,5%以下、W9.5%以下、13.5%以下、 M9.5%以下、Sb  2.5%以下、Ce7%以下
、ST+  3 、5 % JJ 下、Zy  5,5
%以下、■ 5.5%以下、Cu  3,5%以下、S
  20. %以下、C4%以下、 Ca  8%以下
、 −8%以下、 SL  8%以下、 P3.5%以下 また、1%以下の、H、Li 、Na 、K 、Be 
、Sr 。
TL 4.5% or less, NL 4.5% or less, BL
5% or less, ■ 9.5% or less, m 12.5%
Below, Ta 10.5% or less, Cr 8.5% or less, -9.5% or less, W 9.5% or less, 13.5% or less, M 9.5% or less, Sb 2.5% or less, Ce 7% Below, ST+ 3, 5% JJ lower, Zy 5,5
% or less, ■ 5.5% or less, Cu 3.5% or less, S
20. % or less, C4% or less, Ca 8% or less, -8% or less, SL 8% or less, P3.5% or less, and 1% or less, H, Li, Na, K, Be
, Sr.

Ba  、AA、Zn  、 N 、F  、Se  
、To  、Pb。
Ba, AA, Zn, N, F, Se
, To , Pb.

この発明の合金粉末の粒度をiolIm以下に限定した
理由は、10虜を越える粒子径になると、磁気テープ等
に塗布した場合、磁気ヘッドの損傷やノイズの原因とな
り、磁気記録用磁性粉末として不適となるためであり、
望ましくは2〜3加以下の粒度である。
The reason why the particle size of the alloy powder of this invention is limited to iolIm or less is that if the particle size exceeds 10 μm, it will cause damage to the magnetic head and noise when applied to a magnetic tape, etc., making it unsuitable as a magnetic powder for magnetic recording. This is because
The particle size is preferably 2 to 3 or less.

また、合金粉末の酸素含有量は少ないほうが望ましいが
、2%以下であれば、保磁力を著しく低下させることが
ない。
Further, although it is desirable that the oxygen content of the alloy powder is low, if it is 2% or less, the coercive force will not be significantly reduced.

次に、この発明による磁気記録用磁性合金粉末の製造方
法を説明すると、一般的には、真空溶解によりインゴッ
トを作製し、インゴットを機械的に粉砕して、数ρ以下
の微粉末が得られるが、水素を含有させて粉砕すればよ
り容易に粉砕することができる。また、溶湯を噴霧する
アトマイズ法や酸化物を還元することにより粉末化した
り、アーク放電や高温加熱によって蒸発させたり、飛散
させることにより粉末化することも可能であり、さらに
、化学的に電解や還元によって粉末化してもよい。
Next, to explain the method for producing magnetic alloy powder for magnetic recording according to the present invention, generally, an ingot is produced by vacuum melting, and the ingot is mechanically crushed to obtain a fine powder of several ρ or less. However, if it is pulverized in the presence of hydrogen, it can be pulverized more easily. It is also possible to make powder by atomization method, which involves spraying molten metal, by reducing oxides, by evaporation by arc discharge or high-temperature heating, by scattering, and by chemical electrolysis. It may also be powdered by reduction.

上記の各種製法により粉末の粒度を調整したり、水素含
有量を変えることにより、種々特性レベルの粉末を得る
ことができる。
Powders with various levels of properties can be obtained by adjusting the particle size of the powder or changing the hydrogen content using the various manufacturing methods described above.

また、この発明による合金粉末を磁器記録用磁性粉末と
して記録媒体に適用する際に重要なことは、合金粉末表
面の安定化であり、例えば、粉末粒子の表面に酸化被膜
を被着させたり、無機物や有機物で表面を被着したり、
あるいは表面処理層を作製する方法等が適用でき、特に
、水素を含有させて粉砕した場合、200℃〜300℃
に加熱処理したのち、上記の表面処即することが有効で
ある。
Furthermore, when applying the alloy powder according to the present invention to a recording medium as a magnetic powder for magnetic recording, it is important to stabilize the surface of the alloy powder. For example, by depositing an oxide film on the surface of the powder particles, Covering the surface with inorganic or organic matter,
Alternatively, a method of creating a surface treatment layer can be applied, especially when pulverized with hydrogen at 200°C to 300°C.
It is effective to perform the above-mentioned surface treatment after heat treatment.

以下に、この発明による実施例を示しその効果を明らか
にする。
Examples according to the present invention will be shown below to clarify its effects.

実施例1 純鉄、金属11&l、Fe−B合金(820%)を原料
として、1Vk110原子%−813原子%−Fe77
原子%の組成となるように配合し、真空およびアルゴン
雰囲気で鋳込んだインゴットをショークラッシャー。
Example 1 Using pure iron, metal 11&l, and Fe-B alloy (820%) as raw materials, 1Vk110 at%-813 at%-Fe77
The ingot is blended to have an atomic percent composition and cast in a vacuum and argon atmosphere using a show crusher.

ディスクミルで粗粉砕し、さらにボールミルで5〜20
0時間と粉砕時間を種々変えて微粉砕した。
Coarsely grind with a disc mill, and then grind with a ball mill to 5 to 20
Fine pulverization was carried out by varying the 0 hour and pulverization times.

得られた合金粉末の平均粒度並びに磁気特性を測定した
ところ、第1表の結果を得た。また、粉砕時間5時間で
平均粒度3加の粉末の水素含有量は3000pm以下で
あった。
The average particle size and magnetic properties of the obtained alloy powder were measured, and the results shown in Table 1 were obtained. Moreover, the hydrogen content of the powder with an average particle size of 3 was 3000 pm or less when the grinding time was 5 hours.

実施例2 純鉄、金属11&l、Fa−B合金(820%)を原料
として、1Vk113原子%−B8原子%−Fe79原
子%の組成となるように配合し、真空およびアルゴン雰
囲気で鋳込んだインゴットを、15気圧の水素中で5時
間保持し、さらに真空中で20時間水素を除去し、その
後ショークラッシャー、ディスクミルで粗粉砕し、さら
にボールミルで種々の平均粒度となるように粉砕時間を
変えて微粉砕した。得られた合金粉末の平均粒度並びに
磁気特性を測定したところ、第2表の結果を得た。また
、粉砕時間5時間で平均粒度3ρの粉末の水素含有量は
1500ppm以下であった。
Example 2 Ingot made of pure iron, metal 11&l, and Fa-B alloy (820%) as raw materials, blended to have a composition of 1Vk113 at% - B8 at% - Fe79 at%, and cast in vacuum and argon atmosphere. was held in hydrogen at 15 atm for 5 hours, hydrogen was further removed in vacuum for 20 hours, and then coarsely pulverized using a show crusher and a disk mill, and further pulverized for various average particle sizes using a ball mill. It was finely ground. When the average particle size and magnetic properties of the obtained alloy powder were measured, the results shown in Table 2 were obtained. In addition, the hydrogen content of the powder with an average particle size of 3ρ was 1500 ppm or less when the grinding time was 5 hours.

実施例3 純鉄、金属陽、Fe−8合金(B20%)を原料として
、さらに、種々の添加物を加え、第3表の組成となるよ
うに配合し、真空およびアルゴン雰囲気で鋳込んだイン
ゴットをショークラッシャー。
Example 3 Using pure iron, metal oxide, and Fe-8 alloy (B20%) as raw materials, various additives were added, the compositions were blended to have the composition shown in Table 3, and cast in a vacuum and argon atmosphere. Show crusher for ingots.

ディスクミルで粗粉砕し、さらにボールミルで5時間微
粉砕した。得られた合金粉末の平均粒度並びに磁気特性
を測定したところ、第3表の結果を得た。
The mixture was coarsely ground using a disk mill and further finely ground using a ball mill for 5 hours. When the average particle size and magnetic properties of the obtained alloy powder were measured, the results shown in Table 3 were obtained.

実施例4 純鉄、金属陽、Fe −8合金(820%)を原料と 
   ゛して、Nd18原子%−B6原子%−Fθ76
原子%の組成となるように配合し、真空およびアルゴン
雰囲気中で溶解し、3mmφのノズルより溶湯を落下さ
せ、100気圧のアルゴンガスによりアトマイズし、得
られた合金粉末を更にボールミルで150時間微粉砕し
た。
Example 4 Using pure iron, metal oxide, and Fe-8 alloy (820%) as raw materials
Then, Nd18 atomic%-B6 atomic%-Fθ76
The composition was blended to have a composition of atomic%, melted in vacuum and argon atmosphere, the molten metal was dropped from a 3 mm diameter nozzle, and atomized with argon gas at 100 atm. The obtained alloy powder was further micromilled in a ball mill for 150 hours. Shattered.

また、この微粉末を、ix 10−3mmH(]の真空
中で600℃×30分の熱処理し、露点 20℃のwe
tN2中で600℃×30分の熱処理し、表面処理合金
粉末を得た。得られた2種の粉末の磁気特性を測定した
ところ第4表の結果を得た。
In addition, this fine powder was heat-treated in a vacuum at ix 10-3 mmH () for 30 minutes at 600°C, and at a dew point of 20°C.
A heat treatment was performed at 600° C. for 30 minutes in tN2 to obtain a surface-treated alloy powder. When the magnetic properties of the two types of powders obtained were measured, the results shown in Table 4 were obtained.

結果から明らかな如く、表面処理しない合金粉末も従来
粉末より高い保持力を示し、さらに表面処理したものは
保持力(if−1c)が1ioooと著しく向上してい
る。
As is clear from the results, the alloy powder without surface treatment also showed a higher holding power than the conventional powder, and the surface-treated powder had a significantly improved holding power (if-1c) of 1iooo.

以下余白 −13−−274− −i’t−−Margin below -13--274- -i’t--

Claims (1)

【特許請求の範囲】[Claims] IR(RはYを包含する希土類元素のうち少なくとも1
種)5原子%〜20原子%、B5原子%〜20原子%、
Fe60原子%〜90原子%を主成分とするR−B−F
e系磁性合金粉末からなり、R9B 、Feを含む正方
晶化合物を主相とし、粒度が10ρ以下であることを特
徴とする磁気記録用磁性合金粉末。
IR (R is at least one rare earth element including Y
species) 5 atom% to 20 atom%, B5 atom% to 20 atom%,
R-B-F whose main component is Fe 60 atomic % to 90 atomic %
1. A magnetic alloy powder for magnetic recording, comprising an e-based magnetic alloy powder, having a main phase of a tetragonal compound containing R9B and Fe, and having a particle size of 10ρ or less.
JP58104714A 1983-06-10 1983-06-10 Magnetic alloy powder for magnetic recording Granted JPS59229461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104714A JPS59229461A (en) 1983-06-10 1983-06-10 Magnetic alloy powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104714A JPS59229461A (en) 1983-06-10 1983-06-10 Magnetic alloy powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS59229461A true JPS59229461A (en) 1984-12-22
JPH0461041B2 JPH0461041B2 (en) 1992-09-29

Family

ID=14388145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104714A Granted JPS59229461A (en) 1983-06-10 1983-06-10 Magnetic alloy powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS59229461A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921551A (en) * 1986-01-29 1990-05-01 General Motors Corporation Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
JPH03272104A (en) * 1990-03-22 1991-12-03 Mitsubishi Materials Corp Magnetic recording powder
JPH04183803A (en) * 1990-11-16 1992-06-30 Mitsui Mining & Smelting Co Ltd Magnetic metal powder for magnetic recording
US5211770A (en) * 1990-03-22 1993-05-18 Mitsubishi Materials Corporation Magnetic recording powder having a high coercive force at room temperatures and a low curie point
US5545266A (en) * 1991-11-11 1996-08-13 Sumitomo Special Metals Co., Ltd. Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211701A (en) * 1981-06-24 1982-12-25 Toshiba Corp Magnetic recording media

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211701A (en) * 1981-06-24 1982-12-25 Toshiba Corp Magnetic recording media

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921551A (en) * 1986-01-29 1990-05-01 General Motors Corporation Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
JPH03272104A (en) * 1990-03-22 1991-12-03 Mitsubishi Materials Corp Magnetic recording powder
US5211770A (en) * 1990-03-22 1993-05-18 Mitsubishi Materials Corporation Magnetic recording powder having a high coercive force at room temperatures and a low curie point
JPH04183803A (en) * 1990-11-16 1992-06-30 Mitsui Mining & Smelting Co Ltd Magnetic metal powder for magnetic recording
US5545266A (en) * 1991-11-11 1996-08-13 Sumitomo Special Metals Co., Ltd. Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods

Also Published As

Publication number Publication date
JPH0461041B2 (en) 1992-09-29

Similar Documents

Publication Publication Date Title
KR900001477B1 (en) Permanent magnetic alloy and method of manufacturing the same
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JPS609852A (en) High energy stored rare earth-iron magnetic alloy
JP2003293008A (en) Rare-earth sintered magnet and manufacturing method
JP5681839B2 (en) Magnetic material and method for manufacturing magnetic material
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6017905A (en) Permanent magnet alloy powder
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS59229461A (en) Magnetic alloy powder for magnetic recording
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPS61221353A (en) Material for permanent magnet
JPH0559165B2 (en)
JPH062929B2 (en) Permanent magnet material
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JPH0766021A (en) Permanent magnet
JP3090401B2 (en) Manufacturing method of rare earth sintered magnet
JP2868963B2 (en) Permanent magnet material, bonded magnet raw material, bonded magnet raw material powder, and method for producing bonded magnet
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JPH06112019A (en) Nitride magnetic material
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JP2975333B2 (en) Raw material for sintered permanent magnet, raw material powder for sintered permanent magnet, and method for producing sintered permanent magnet
JP4585691B2 (en) Fe-BR type permanent magnet material containing Ce and Nd and / or Pr and method for producing the same
JPH0815123B2 (en) permanent magnet
JPS62257704A (en) Permanent magnet
JPH01238001A (en) Manufacture of rare earth permanent magnet