JPS5852332B2 - Impurity diffusion method - Google Patents

Impurity diffusion method

Info

Publication number
JPS5852332B2
JPS5852332B2 JP14615977A JP14615977A JPS5852332B2 JP S5852332 B2 JPS5852332 B2 JP S5852332B2 JP 14615977 A JP14615977 A JP 14615977A JP 14615977 A JP14615977 A JP 14615977A JP S5852332 B2 JPS5852332 B2 JP S5852332B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxide film
semiconductor
diffusion method
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14615977A
Other languages
Japanese (ja)
Other versions
JPS5478970A (en
Inventor
光男 大式
衡 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP14615977A priority Critical patent/JPS5852332B2/en
Publication of JPS5478970A publication Critical patent/JPS5478970A/en
Publication of JPS5852332B2 publication Critical patent/JPS5852332B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 近年半導体集積回路装置の生産能率の向上及び製造コス
ト低減の為、半導体製造装置の改良と共に、製造ライン
で使用する半導体基板の大型化が進み従来の2インチ径
から3インチ径となり、更に半導体基板の4インチ径比
が検討されようとしている。
Detailed Description of the Invention In recent years, in order to improve production efficiency and reduce manufacturing costs of semiconductor integrated circuit devices, semiconductor manufacturing equipment has been improved and semiconductor substrates used in manufacturing lines have become larger. inch diameter, and a 4-inch diameter ratio for semiconductor substrates is about to be considered.

従来半導体基板の直径が2インチ程度であると半導体回
路装置の製造工程時の半導体基板の反りは目立たなかっ
たが、今日の様に半導体基板の直径が大きくなると拡散
処理を繰返す事により生じる半導体基板の反りを無視で
きなくなり、フォトリン工程時、ガラスマスクと半導体
基板間に生じるすきまはパターン精度を著しく悪化させ
る。
Conventionally, if the diameter of the semiconductor substrate was about 2 inches, the warping of the semiconductor substrate during the manufacturing process of semiconductor circuit devices was not noticeable, but as the diameter of the semiconductor substrate becomes larger as it is today, the warpage of the semiconductor substrate is caused by repeated diffusion treatments. Warpage cannot be ignored, and the gap created between the glass mask and the semiconductor substrate during the photolithography process significantly deteriorates pattern accuracy.

又、半導体基板の反りは半導体内部の格子構造に歪を与
える為、半導体素子の電流増幅率のバラツキや雑音増加
等により特性を悪化させ製品歩留低下の一原因となって
いる。
Further, warping of the semiconductor substrate causes distortion to the lattice structure inside the semiconductor, which deteriorates the characteristics due to variations in the current amplification factor of the semiconductor element, increases noise, etc., and is one of the causes of reduced product yield.

特にバイポーラ型半導体集積回路装置の製造に於いて、
素子の動作スピード改善の為に行う金拡散工程では半導
体基板の裏面より拡散した金が冷却時再び裏面に析出し
ない様に1000〜1200℃の処理温度から室内温度
に、鉄の焼入れの如く、急冷するので、半導体基板の反
りが極めて顕著に現われる。
Especially in the production of bipolar semiconductor integrated circuit devices,
In the gold diffusion process, which is performed to improve the operating speed of devices, rapid cooling is performed from a processing temperature of 1000 to 1200°C to room temperature, similar to hardening iron, so that the gold diffused from the back surface of the semiconductor substrate does not precipitate on the back surface again during cooling. Therefore, the warpage of the semiconductor substrate becomes extremely noticeable.

半導体基板にシリコンを使用した場合を考慮すると、シ
リコンの熱膨張係数が2.5×1O−60C″、熱酸化
膜S io 2ノ熱膨張係数が0.35 X 10−’
℃−1程度である為、半導体基板を急冷した時シリコン
の収縮がS io 2膜に比べ大きく、この収縮歪の残
った状態で維持される為半導体基板が反ると考えられる
Considering the case where silicon is used for the semiconductor substrate, the thermal expansion coefficient of silicon is 2.5 x 1O-60C'', and the thermal expansion coefficient of the thermal oxide film Sio2 is 0.35 x 10-'.
Since the temperature is approximately −1° C., when the semiconductor substrate is rapidly cooled, the shrinkage of silicon is greater than that of the S io 2 film, and it is thought that the semiconductor substrate is warped because this shrinkage strain remains.

従来半導体基板の反り防止方法として1975年6月3
0日発行日経エレクトロニクス誌の36頁〜41頁記載
の如く、S 102膜を形成したシリコン半導体基板上
にシリコン基板とほぼ熱膨張係数の等しい窒化シリコン
膜513N4(熱膨張係数3.9 X 10” ’C”
−1)を適当な厚みに形成するとS i02膜を挟んで
シリコン基板と、5i3N4膜が同程度に縮むので反り
を減少できる。
June 3, 1975 as a conventional method for preventing warpage of semiconductor substrates
As described on pages 36 to 41 of the Nikkei Electronics magazine published on the 0th, a silicon nitride film 513N4 (thermal expansion coefficient 3.9 x 10") having almost the same coefficient of thermal expansion as the silicon substrate is placed on a silicon semiconductor substrate on which an S102 film is formed. 'C'
-1) is formed to an appropriate thickness, the silicon substrate and the 5i3N4 film with the Si02 film in between will shrink to the same extent, so that warping can be reduced.

しかしこの方法ではS i3 N4膜の蒸着及びエツチ
ング工程が増加する欠点を有している。
However, this method has the disadvantage that the steps of depositing and etching the Si3N4 film are increased.

本発明は半導体装置に於ける熱処理工程数を増加させな
いで、前述の如き半導体基板の反り現象の少ない不純物
拡散方法に関するものである。
The present invention relates to an impurity diffusion method that does not increase the number of heat treatment steps in a semiconductor device and reduces the warpage of a semiconductor substrate as described above.

第1図は本発明による一実施例であり、バイポーラ型集
積回路の製造に於いて、半導体基板に対して特に急熱と
急冷による温度変化の大きい金拡散工程を示す。
FIG. 1 is an embodiment of the present invention, and shows a gold diffusion process in which a semiconductor substrate undergoes a large temperature change due to rapid heating and cooling, in the production of bipolar integrated circuits.

厚み400μ程度のシリコン基板1の両面に熱酸化膜5
1022を0.5μ程度形成する(第1図a)。
A thermal oxide film 5 is formed on both sides of a silicon substrate 1 with a thickness of approximately 400μ.
1022 is formed to a thickness of about 0.5μ (FIG. 1a).

S 102膜2を選択的にエツチングしてダイス分割用
のグリッドライン3を形成する。
The S102 film 2 is selectively etched to form grid lines 3 for dividing the dice.

グリッドライン3は第2図に示す形状であり、この部分
酸化膜は完全に除去される。
The grid lines 3 have the shape shown in FIG. 2, and this partial oxide film is completely removed.

又グリッドライン3を形成時シリコン基板1の裏面のS
s 02膜も同時に除去される(第1図b)。
Also, when forming the grid lines 3, S on the back surface of the silicon substrate 1 is
The s02 film is also removed at the same time (FIG. 1b).

次に第1図Cの如くシリコン基板1の裏面全面に金4を
蒸着し、該基板をN2ガス雰囲気中で1000〜120
0℃の処理温度にて10〜40分程度保持して金拡散を
行う(第1図d)。
Next, gold 4 is deposited on the entire back surface of the silicon substrate 1 as shown in FIG.
Gold diffusion is carried out by holding the treatment temperature at 0° C. for about 10 to 40 minutes (FIG. 1d).

拡散した金が再びシリコン基板表面に析出しない様に、
拡散炉からすばやく該シリコン基板を取出して急冷させ
る。
To prevent the diffused gold from depositing on the silicon substrate surface again,
The silicon substrate is quickly removed from the diffusion furnace and rapidly cooled.

以上第1図の如く金拡散処理前に半導体基板の各ダイス
間のグリッドラインのシリコン酸化膜を完全に除去する
と、急冷時に半導体基板とシリコン酸化膜の膨張率の差
により生じる応力をそれぞれのダイス内で吸収する為、
半導体基板全体に各ダイスの歪の影響を伝達するのを防
止する事ができ、従って半導体基板全体の反りを減少さ
せる事が可能となる。
As shown in Figure 1, if the silicon oxide film on the grid lines between each die of the semiconductor substrate is completely removed before the gold diffusion process, the stress caused by the difference in expansion coefficient between the semiconductor substrate and the silicon oxide film during rapid cooling can be reduced between each die. Because it is absorbed within the
It is possible to prevent the influence of distortion of each die from being transmitted to the entire semiconductor substrate, and therefore it is possible to reduce warpage of the entire semiconductor substrate.

第3図は3インチ径のシリコンウェハを使用して金拡散
工程を行った場合の、シリコン基板の反りの変化量の絶
対値+41のバラツキを示している。
FIG. 3 shows the variation of the absolute value +41 in the amount of change in warpage of the silicon substrate when a gold diffusion process is performed using a silicon wafer with a diameter of 3 inches.

Aはグリッドラインの酸化膜を除去しないで金拡散を作
った場合の反りのバラツキであり、Bは本発明による金
拡散前にグリッドラインの酸化膜を除去した場合の反り
のバラツキを示しており、本発明による方法を実施する
と、従来方法に比べ基板の反りが1/4程度に改善され
る。
A shows the variation in warpage when the gold diffusion is made without removing the oxide film on the grid lines, and B shows the variation in warpage when the oxide film on the grid lines is removed before gold diffusion according to the present invention. When the method according to the present invention is implemented, the warpage of the substrate is improved to about 1/4 compared to the conventional method.

本発明は実施例での金拡散工程のみでなく、半導体素子
製造工程に於ける熱変化の大きな処理工程の際に実施し
て極めて有効である。
The present invention is extremely effective when implemented not only in the gold diffusion step in the embodiments, but also in processing steps that involve large thermal changes in the semiconductor device manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図は半導体基板のグリ
ッドライン上の酸化膜除去後の上面図、第3図は熱処理
後の半導体基板の反りの変化量の絶対値を示す。 1・・・・・・シリコン基板、2・・・・・・酸化膜、
3・・・・・・グリッドライン、4・・・・・・金蒸着
膜。
FIG. 1 shows an embodiment of the present invention, FIG. 2 shows a top view after removing an oxide film on the grid lines of a semiconductor substrate, and FIG. 3 shows the absolute value of the amount of change in warpage of the semiconductor substrate after heat treatment. 1... Silicon substrate, 2... Oxide film,
3... Grid line, 4... Gold vapor deposited film.

Claims (1)

【特許請求の範囲】 1 半導体基板の一表面に酸化膜を施す工程と、ダイス
分割を行うべき網目状に構成したグリッドライン上の前
記酸化膜をエツチングにより除去する工程と、前記半導
体基板裏面より拡散すべき不純物を付着させる工程と、
拡散炉内で加熱処理を行う事により前記不純物を前記半
導体基板内に拡散させる工程と、前記拡散炉より前記半
導体基板を取り出して急冷却させる工程とより成る不純
物拡散方法。 2 半導体基板がシリコン基板であることを特徴とする
特許請求の範囲第1項記載の不純物拡散法。 3 不純物が金である事を特徴とする特許請求の範囲第
1項記載の不純物拡散方法。
[Scope of Claims] 1. A step of applying an oxide film to one surface of the semiconductor substrate, a step of removing the oxide film on the mesh-like grid lines on which the dice are to be divided by etching, and a step of etching the oxide film from the back surface of the semiconductor substrate. a step of attaching impurities to be diffused;
An impurity diffusion method comprising the steps of diffusing the impurity into the semiconductor substrate by performing heat treatment in a diffusion furnace, and taking out the semiconductor substrate from the diffusion furnace and rapidly cooling it. 2. The impurity diffusion method according to claim 1, wherein the semiconductor substrate is a silicon substrate. 3. The impurity diffusion method according to claim 1, wherein the impurity is gold.
JP14615977A 1977-12-07 1977-12-07 Impurity diffusion method Expired JPS5852332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14615977A JPS5852332B2 (en) 1977-12-07 1977-12-07 Impurity diffusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14615977A JPS5852332B2 (en) 1977-12-07 1977-12-07 Impurity diffusion method

Publications (2)

Publication Number Publication Date
JPS5478970A JPS5478970A (en) 1979-06-23
JPS5852332B2 true JPS5852332B2 (en) 1983-11-22

Family

ID=15401456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14615977A Expired JPS5852332B2 (en) 1977-12-07 1977-12-07 Impurity diffusion method

Country Status (1)

Country Link
JP (1) JPS5852332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567827B2 (en) * 1983-08-04 1993-09-27 Shoyo Giken Kogyo Kk

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206032A (en) * 1981-06-15 1982-12-17 Oki Electric Ind Co Ltd Device for manufacturing semiconductor
JPS6349233U (en) * 1987-05-21 1988-04-04
JP5935254B2 (en) * 2011-07-21 2016-06-15 日立化成株式会社 Impurity diffusion layer forming composition, method for producing impurity diffusion layer, method for producing solar cell element, and method for producing solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567827B2 (en) * 1983-08-04 1993-09-27 Shoyo Giken Kogyo Kk

Also Published As

Publication number Publication date
JPS5478970A (en) 1979-06-23

Similar Documents

Publication Publication Date Title
JPS5852332B2 (en) Impurity diffusion method
JPS5815225A (en) Semiconductor device substrate
JPS5922373B2 (en) Semiconductor wafer processing method
JPS6118348B2 (en)
JPS5926607Y2 (en) semiconductor pressure transducer
JP2739593B2 (en) Semiconductor device manufacturing method
JP3076628B2 (en) Method for manufacturing semiconductor device
JP3128904B2 (en) Method of forming polycrystalline silicon pattern
JPH07201842A (en) Manufacturing for semiconductor device
JPH01291430A (en) Manufacture of semiconductor device
JPS6224617A (en) Epitaxial growth method
JPS61136233A (en) Manufacture of semiconductor device
JPS6068656A (en) Manufacture of semiconductor device
JPH0312773B2 (en)
JPH0336751A (en) Manufacture of semiconductor device
JPS60257124A (en) Manufacture of semiconductor device
JPH03250729A (en) Manufacture of semiconductor element
JPH01289165A (en) Manufacture of semiconductor device
JPH0116019B2 (en)
JPS5815935B2 (en) hand tai souchi no seizou houhou
JPS6011459B2 (en) Method for manufacturing a diffused semiconductor device
JPH0334322A (en) Manufacture of semiconductor device
JPS6410106B2 (en)
JPS63248137A (en) Manufacture of semiconductor device
JPS5823927B2 (en) hand tai souchi no seizou houhou