JPH0334322A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0334322A
JPH0334322A JP16950889A JP16950889A JPH0334322A JP H0334322 A JPH0334322 A JP H0334322A JP 16950889 A JP16950889 A JP 16950889A JP 16950889 A JP16950889 A JP 16950889A JP H0334322 A JPH0334322 A JP H0334322A
Authority
JP
Japan
Prior art keywords
film
bpsg
contact hole
pattern
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16950889A
Other languages
Japanese (ja)
Inventor
Fujiki Tokuyoshi
徳吉 藤樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16950889A priority Critical patent/JPH0334322A/en
Publication of JPH0334322A publication Critical patent/JPH0334322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make a contact hole in the maximum pattern width at the top thereof taking a gentle shape by a method wherein the first glassy film formed on a semiconductor substrate by vapor deposition process is heat-treated and then the second glassy film is formed on the surface region using the same process again. CONSTITUTION:A silicon oxide film 12 is formed on a semiconductor substrate 11; a polycrystalline silicon film pattern 14 for gate electrode is formed on the silicon oxide film 12; and the first BPSG film 13 around 1mum thick is formed on the said pattern 14. Next, the whole body is heat-treated in oxidative atmosphere to flatten the stepped part 15. Next, the surface of the first BPSG film 13 is etched away by the film thickness of 2000-4000Angstrom using an HF base etchant. Later, the second BPSG film 16 around 2000Angstrom thick is formed again by vapor deposition process. Finally, a contact hole 17 is made in the first and second BPSG films 13, 16 by photo processing. Through these procedures, the pattern width is maximized at the top of the contact hole 17 taking a gentle shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、開維縁膜の形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an open fiber edge film.

〔従来の技術〕[Conventional technology]

特に層 従来、半導体装置の製造工程における眉間絶縁膜の形成
方法は、半導体基板上に気相成長法により、ボロン及び
リン又はそれらのいずれかを含むガラス膜を形成し、次
に段差形状改善の為の熱処理工程を行ない、その後にコ
ンタクト孔を形成する為のパターン形成工程を有してい
た。
In particular, the conventional method for forming a glabella insulating film in the manufacturing process of semiconductor devices is to form a glass film containing boron and/or phosphorus on a semiconductor substrate by vapor phase growth, and then to improve the step shape. A heat treatment process was performed for the purpose of forming the contact hole, followed by a pattern forming process for forming the contact hole.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法は、ガラス膜を形
成した後に熱処理工程を行ない、その後にコンタクト孔
形成の為のパターン形成工程を有していた。この熱処理
工程においては、ガラス膜表面近傍で、リンやボロン等
の原子の外方向拡散が生じるため、これらの原子の濃度
が薄くなる。
The conventional semiconductor device manufacturing method described above includes a heat treatment process after forming a glass film, and then a pattern forming process for forming contact holes. In this heat treatment step, outward diffusion of atoms such as phosphorus and boron occurs near the surface of the glass film, so that the concentration of these atoms becomes thinner.

その結果、ガラス膜中のリンやボロン原子の分布は表面
近傍で濃度が薄いこととなる。
As a result, the concentration of phosphorus and boron atoms in the glass film is low near the surface.

ガラス膜のエツチング速度は、一般にその膜中のリンや
ボロン濃度に影響され、濃度が薄くなるとエツチング速
度が遅くなる傾向がある。この為、ガラス膜に開孔を設
けた場合、その開孔の形状は、孔の上部で狭く、中部で
広い形状となり、なだらかさのない形状となる。従って
、その後の内部配線形成工程で、配線層の被覆性が悪く
なるため、断線等が生じ信頼性が低下するという欠点が
ある。
The etching rate of a glass film is generally influenced by the concentration of phosphorus or boron in the film, and as the concentration becomes thinner, the etching rate tends to slow down. For this reason, when a hole is provided in a glass membrane, the shape of the hole is narrow at the top and wide at the middle, resulting in an uneven shape. Therefore, in the subsequent process of forming internal wiring, the coverage of the wiring layer deteriorates, resulting in wire breakage and the like, resulting in a reduction in reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上に少く
ともリンまたはボロンを含む第1のガラス膜を気相成長
法により形成する工程と、前記第1のガラス膜を熱処理
して平坦化したのち湿式エツチング法によりその表面を
エツチングし除去する工程と、表面がエツチングされた
前記第1のガラス膜上に少くともリンまたはボロンを含
む第2のガラス膜を形成する工程とを含んで構成される
The method for manufacturing a semiconductor device of the present invention includes a step of forming a first glass film containing at least phosphorus or boron on a semiconductor substrate by a vapor phase growth method, and heat-treating the first glass film to planarize it. The method further comprises the steps of etching and removing the surface by a wet etching method, and forming a second glass film containing at least phosphorus or boron on the first glass film whose surface has been etched. Ru.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図であり、特に
本発明をMO3型トランジスタに適用した場合を示して
いる。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention, and particularly show the case where the present invention is applied to an MO3 type transistor.

第2図は本発明の一実施例によるBPSG膜の深さ方向
の、膜中のエツチング速度の分布を示した図である6参
考として従来例のエツチング速度も並記した。
FIG. 2 is a diagram showing the distribution of etching rates in the depth direction of a BPSG film according to an embodiment of the present invention.6 The etching rates of a conventional example are also shown for reference.

まず第1図(a)に示すように、半導体基板11上にゲ
ート用のシリコン酸化膜12を200〜600人の膜厚
で形成し、ゲート電極用多結晶シリコン膜パターン14
を形成し、その上に第■のBPSGII!]3を約1μ
mの膜厚で形成する。
First, as shown in FIG. 1(a), a silicon oxide film 12 for a gate is formed on a semiconductor substrate 11 to a thickness of 200 to 600 layers, and a polycrystalline silicon film pattern 14 for a gate electrode is formed.
BPSGII! is formed on top of it. ]3 to about 1μ
Formed with a film thickness of m.

次に、第(図(b)に示すように、 800〜950℃
の温度の酸化性雰囲気中で熱処理を行ない、段差部■5
を平坦化する。
Next, as shown in Figure (b), 800-950℃
Heat treatment is performed in an oxidizing atmosphere at a temperature of
flatten.

次に第1図(c)に示すように、第1のBPSG膜13
の表面を、HF系のエツチング液で2000〜4000
人の膜厚だけエツチング除去する。その後に再び、気相
成長法により、第2のBPSG膜16全16000人の
膜厚で形成する。このとき、第2のBPSG膜16全1
6は、第1のBPSGwA13と全く同一である必要は
無く、所望の改質で良い。又、その膜厚は第1のBPS
G113の残膜の膜厚よりは薄い方が良い。これは、次
工程でのコンタクト用の開孔17を形成した時の形状が
良くなるがらである。
Next, as shown in FIG. 1(c), the first BPSG film 13 is
The surface of
Etching removes only the thickness of the human body. Thereafter, the second BPSG film 16 is formed again using the vapor phase growth method to a total thickness of 16,000 wafers. At this time, the second BPSG film 16 is entirely 1
6 does not need to be exactly the same as the first BPSGwA13, and may be modified as desired. Moreover, the film thickness is the same as that of the first BPS.
It is better to be thinner than the remaining film thickness of G113. This is because the shape of the opening 17 for contact in the next step is improved.

次に第1図(d)に示すように、フォトプロセス法によ
り、第1及び第2のBPSG膜1316にコンタクト用
の開孔17を形成する。表面の第2のBPSG膜16全
16チング速度は第2図の曲線Aで示したように最大と
なる為に、コンタクト用の開孔17の上部で最もパター
ン幅が大きくなり、なだらかな形状となる。従ってこの
コンタクト用開孔17に内部配線を形成した場合、被覆
性が良くなるため、配線の断線は極めて少いものとなる
Next, as shown in FIG. 1(d), contact openings 17 are formed in the first and second BPSG films 1316 by photoprocessing. Since the total 16-chiking speed of the second BPSG film 16 on the surface is at its maximum as shown by curve A in FIG. Become. Therefore, when an internal wiring is formed in this contact opening 17, the coverage is improved, and the occurrence of disconnection of the wiring is extremely reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板上に形成され
た気相成長法による第1のガラス膜に熱処理を加えた後
に、この第1のガラス膜の表面領域をエツチングし、再
び同じ方法でその表面に第2のガラス膜を形成すること
により、コンタクト用開孔を形成するときに、これらガ
ラス膜の表面近傍でエツチング速度が速い為に、開孔の
上端で最もパターン幅が広くなめらがな開孔を形成する
ことができる。その結果、内部配線を形成した時に、コ
ンタクト孔での配線層の被覆性が良好になり断線がなく
なるため、信頼性及び歩留が向上するという効果がある
As explained above, the present invention applies heat treatment to a first glass film formed on a semiconductor substrate by vapor phase growth, then etches the surface area of this first glass film, and etches it again by the same method. By forming a second glass film on the surface, when forming contact holes, the etching rate is high near the surface of these glass films, so the pattern width is widest and smooth at the top of the hole. A large aperture can be formed. As a result, when internal wiring is formed, the coverage of the wiring layer in the contact hole is improved and there is no disconnection, which has the effect of improving reliability and yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための半導体チッ
プの断面図、第2図は本発明の一実施例と従来例のそれ
ぞれのガラス膜の深さ方向のエツチング速度の分布を示
した図である。 11・・・半導体基板、12・・・シリコン酸化膜、1
3・・・第■のBPSG膜、14・・・多結晶シリコン
膜、15・・・段差部、16・・・第2のBPSG膜、
17・・・コンタクト用の開孔。
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining an embodiment of the present invention, and FIG. 2 shows the distribution of etching rates in the depth direction of the glass film of an embodiment of the present invention and a conventional example. This is a diagram. 11... Semiconductor substrate, 12... Silicon oxide film, 1
3... ■th BPSG film, 14... Polycrystalline silicon film, 15... Step portion, 16... Second BPSG film,
17... Opening hole for contact.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に少くともリンまたはボロンを含む第1の
ガラス膜を気相成長法により形成する工程と、前記第1
のガラス膜を熱処理して平坦化したのち湿式エッチング
法によりその表面をエッチングし除去する工程と、表面
がエッチングされた前記第1のガラス膜上に少くともリ
ンまたはボロンを含む第2のガラス膜を形成する工程と
を含むことを特徴とする半導体装置の製造方法。
a step of forming a first glass film containing at least phosphorus or boron on a semiconductor substrate by a vapor phase growth method;
a second glass film containing at least phosphorus or boron on the first glass film whose surface has been etched; A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP16950889A 1989-06-29 1989-06-29 Manufacture of semiconductor device Pending JPH0334322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16950889A JPH0334322A (en) 1989-06-29 1989-06-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16950889A JPH0334322A (en) 1989-06-29 1989-06-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0334322A true JPH0334322A (en) 1991-02-14

Family

ID=15887813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16950889A Pending JPH0334322A (en) 1989-06-29 1989-06-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0334322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269853A (en) * 1990-12-19 1992-09-25 Samsung Electron Co Ltd Reflow method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269853A (en) * 1990-12-19 1992-09-25 Samsung Electron Co Ltd Reflow method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS6140035A (en) Manufacture of semiconductor device
CA1131796A (en) Method for fabricating mos device with self-aligned contacts
JPH0334322A (en) Manufacture of semiconductor device
JPS5812732B2 (en) Manufacturing method for semiconductor devices
KR950013791B1 (en) Making method of gate electrode on the buried contact
JPS5885529A (en) Manufacture of semiconductor device
JPS62260320A (en) Manufacture of semiconductor device
JPS6142169A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPS6188543A (en) Manufacture of semiconductor device
JPS6134255B2 (en)
JPS63217663A (en) Manufacture of semiconductor device
JPS6077460A (en) Manufacture of semiconductor device
JPS6279625A (en) Manufacture of semiconductor device
JPS6118348B2 (en)
JPS6148935A (en) Manufacture of semiconductor device
JPS58115834A (en) Manufacture of semiconductor device
JPH08236475A (en) Formation of contact window
JPS63293948A (en) Forming method for interlayer insulating film
JPS61147575A (en) Manufacture of semiconductor device
JPS62206873A (en) Manufacture of semiconductor device
JPH0287621A (en) Manufacture of semiconductor device
JPS6028142B2 (en) Manufacturing method of semiconductor device
JPH061803B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0216019B2 (en)