JPS5851536A - Master slice chip - Google Patents

Master slice chip

Info

Publication number
JPS5851536A
JPS5851536A JP14932281A JP14932281A JPS5851536A JP S5851536 A JPS5851536 A JP S5851536A JP 14932281 A JP14932281 A JP 14932281A JP 14932281 A JP14932281 A JP 14932281A JP S5851536 A JPS5851536 A JP S5851536A
Authority
JP
Japan
Prior art keywords
gate
region
width
gate width
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14932281A
Other languages
Japanese (ja)
Inventor
Toshio Seto
瀬戸 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14932281A priority Critical patent/JPS5851536A/en
Publication of JPS5851536A publication Critical patent/JPS5851536A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To simultaneously satisfy the difficult compatible conditions such as low power consumption, high speed and high density by providing a plurality of gate arrays having different gate widths on the same chip. CONSTITUTION:A master slice 1 has the first gate width region 3, the second gate width region 4 and the third gate width region 5, and the gate widths of the gate arrays formed on the respective regions are, for example, set to the relationship of (the first gate array width)<(the second gate array width)<(the third gate array width). The respective gate regions can be formed of an element region 1a and a wiring region 1b. In this case, the gate widths between the regions 1a in each gate width region can be set to different values.

Description

【発明の詳細な説明】 本発明はゲートアレイ集積回路に関するもので%%にゲ
ート幅の異なったゲートアレイを有するマスクスライス
チップに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gate array integrated circuit, and more particularly to a mask sliced chip having gate arrays with gate widths of %% different.

集積回路のうち、最後の金属蒸着による配線までは全く
同じに作っておき、最後の金属蒸着による配線のみ會違
えて異なった機能を有する集積回路を製造するマスタス
ライス方式は公知である。この様なiスタスライス集積
回路では。
A master slicing method is known in which integrated circuits are made exactly the same up to the last metal evaporated wiring, and integrated circuits having different functions are manufactured by changing only the last metal evaporated wiring. In such an i-star slice integrated circuit.

lテップ上に電子回路素子を配列させた素子領域とこれ
ら素子間の配at行なう為の配線領域とが予め定められ
ており、拡散工程(ウニハエ程)の終了したマスクスラ
イスを品種毎に異なった配線パターンで相互配線してL
sI會形酸形成。従って、マスタスライスは最適集積度
の要請を満足すると共に、顧客の注文に応じて回路設計
が可能てありその融通性が高い点に%色を有する。
The element area where electronic circuit elements are arranged on the l-step and the wiring area for wiring between these elements are determined in advance, and the mask slices after the diffusion process (sea urchin fly level) are different for each product. Wire each other using the wiring pattern
sI acid formation. Therefore, the master slice satisfies the requirement for optimum integration density, and has the advantage of being highly flexible in that circuit design can be made according to customer orders.

典型的なマスタスライステップ1の構造を第1図に示し
である。図示した如く、マスタスライスチップIFi、
大略、索子領域1mと、配線領域1bと、I10バッフ
ァ拳ノぐラド部としての周辺領域1cとを有するもので
、これら各領域−半導体基板上に区画形成されてiる。
The structure of a typical master slice step 1 is shown in FIG. As shown, the master slice chip IFi,
Roughly, it has a cable region 1m, a wiring region 1b, and a peripheral region 1c as an I10 buffer radial portion, and each of these regions is divided and formed on the semiconductor substrate.

lA子領領域1aK:#1MO8)ランジスタ等の電子
回路素子が列状に多数配設されており、MOS)ランジ
スタのゲートてゲートアレイが構成されている。
1A child area 1aK: #1 MO8) A large number of electronic circuit elements such as transistors are arranged in a row, and the gates of the MOS transistors constitute a gate array.

配線領域1b#i、素子領域la内の素子を相互に接続
し機能ブロックを構成する為の配線を施す区域で、そこ
には横方向に延びたアンダーパス(埋設配線層)2が複
数個1列プレイ状忙設けられている@これらのアンダー
バス2は1通常。
Wiring area 1b#i is an area where wiring is performed to connect elements in the element area la to form a functional block, and there are a plurality of underpasses (buried wiring layers) 2 extending laterally. Line play is busy @ these underbus 2 is 1 normal.

多結晶シリコン、又はP十拡散やN十拡散の拡散層とし
て形成される。一方、配線領域1bにおける縦方向のメ
タル配線は、アンダーメス2上に存在する絶縁層上KA
1.等の金属を蒸着して形成する。
It is formed as a diffusion layer of polycrystalline silicon or P0 diffusion or N0 diffusion. On the other hand, the vertical metal wiring in the wiring region 1b is formed on the insulating layer KA on the underfemale 2.
1. It is formed by vapor deposition of metals such as.

ところで、従来のマスタスライスチップにおいては素子
領域内に形成されるゲートアレイのゲート幅が同一であ
り、しかも入出力バッファを駆動可能な程度の能力は必
要である為に、ゲート幅をあまり小さく設定することは
不可能であった。従って、高速動作用の回路をゲートア
レイで構成すると、たとえCMO8i使用したとしても
スイッチング電流がかなり流れてしまう場合があった。
By the way, in conventional master slice chips, the gate widths of the gate arrays formed in the element area are the same, and since the ability to drive the input/output buffer is required, the gate widths are not set too small. It was impossible to do so. Therefore, if a circuit for high-speed operation is configured with a gate array, a considerable amount of switching current may flow even if CMO8i is used.

その為に、単位ゲート面積をある程度以下に小さくする
ことができず、集積度上の限界が存在していた。
Therefore, the unit gate area cannot be reduced below a certain level, and there is a limit on the degree of integration.

本発明は以上の点に鑑みなされたtのであって、低消費
電力、高速性、高密度という互いに両立、困難な条件を
同時に満足することt可能とし1機11@回路構成に柔
軟性を与えるマスタスライスチップ管提供することを目
的とする。即ち。
The present invention was developed in view of the above points, and it makes it possible to simultaneously satisfy the difficult conditions of low power consumption, high speed, and high density, and provides flexibility in the circuit configuration of a single machine. Aims to provide master slicing chip tubes. That is.

本発明は、複数個の素子領域と該素子領域間に介在され
素子領域間の接続を行なう配−領域とを有するマスタス
ライスチップにおいて、前記各素子領域が所定のゲニト
輪を有するゲートアレイを具備しており、しかも少なく
とも1つの素子領域は他の素子領域とa異なった値のゲ
ート輻會有することt特徴とするものである。
The present invention provides a master slice chip having a plurality of device regions and a wiring region interposed between the device regions and connecting the device regions, wherein each device region includes a gate array having a predetermined genit ring. Moreover, at least one element region is characterized in that it has a gate interaction with a value different from that of the other element regions.

以下1図面會参考に本発明の具体的実施の1様に付き説
明する。本発明のマスタスライスlは、第1図に示した
典型例と同一の榊造を基本とすることも可能でTol、
その場合に被数個のMO8構造tアレアレイ状列形成し
たゲートアレイ會素子領域1m内に形成してあり、少な
くとも成る1つの素子iiI竣内のゲート@iが他の素
子*琥内のゲート幅と異なった値に設定されている・ 第2図は1本発明の別の実施例を示す概略図で、マスク
スライスlは、第1ゲート幅領域3゜8I2ゲ一ト幅領
域4%第3ゲート幅領域5を有してお勤、夫々の領域に
形成されるゲートアレイのゲート幅は1例えば、第1ゲ
ート幅〈第2ゲート幅く第3ゲート幅の如く設定されて
いる。
Hereinafter, one specific embodiment of the present invention will be described with reference to one drawing. The master slice l of the present invention can also be based on the same Sakaki construction as the typical example shown in FIG.
In this case, several MO8 structures are formed in a gate array formed in an array in a device area 1 m, and the gate @i in at least one element iii has a gate width within the gate width of another element *. Figure 2 is a schematic diagram showing another embodiment of the present invention, in which the mask slice l is set to different values from the first gate width region 3°8I2 gate width region 4%. The gate array has a gate width region 5, and the gate width of the gate array formed in each region is set such that, for example, the first gate width<the second gate width>the third gate width.

各ゲート幅領域は1例えば、第1図に示した様な素子領
域1aと配線領域1bとで構成することも可能であり、
その場合に各ゲート幅領域内における素子領域1a間の
ゲート幅を異なった値に設定することも可能である。
Each gate width region can be composed of an element region 1a and a wiring region 1b, for example, as shown in FIG.
In that case, it is also possible to set the gate widths between the element regions 1a in each gate width region to different values.

第3図は、各ゲート幅領域内に形成するゲートアレイt
cMO8構造で形成した場合の1例を示すものである。
FIG. 3 shows the gate array t formed in each gate width region.
This shows an example of a case where it is formed with a cMO8 structure.

第3図に示す如く1例えばN型基板内KPウェル(不図
示)金拡散形成し。
As shown in FIG. 3, for example, a KP well (not shown) in an N-type substrate is formed with gold diffusion.

該Pウェル内にソース・ドレイン領域としてのN+拡散
層6[−形成すると共和、前記基板内にP十拡散層7を
拡散形成しである。N十拡散層6及びP十拡散層は夫々
3il域ずつ示しであるが1.これらは電源及び付属回
路との接続方法によって夫々ソース又はドレインとして
機能する。
An N+ diffusion layer 6 as a source/drain region is formed in the P well, and a P+ diffusion layer 7 is formed in the substrate. The N10 diffusion layer 6 and the P10 diffusion layer are each shown in a 3il area, but 1. These function as sources or drains, respectively, depending on how they are connected to the power supply and attached circuits.

N十拡散層6及びP十拡散層7Yr形成した基板表面K
d絶縁層が形成されており、該絶縁層上に制御ゲート−
8が形成されている。制御ゲート8は1.そのゲート長
方向において隣接するソース・ドレイン領域(6又は7
)と多少重畳する如く構成されており、ゲート長と直交
する方向にゲート幅Wt−有している。第3図のCMO
iS構造で第2図のマスタスライスlt−構成する場合
には、第1ゲート幅領埴3のゲート幅Wlと。
Substrate surface K on which N0 diffusion layer 6 and P10 diffusion layer 7Yr are formed
An insulating layer is formed on the insulating layer, and a control gate is formed on the insulating layer.
8 is formed. The control gate 8 is 1. Adjacent source/drain regions (6 or 7) in the gate length direction
), and has a gate width Wt- in a direction perpendicular to the gate length. Figure 3 CMO
When the master slice lt- shown in FIG.

第2ゲート幅領域4のグー)41W2と、第3ゲート幅
領域W3との関係は、Wl(W2(W3となっている。
The relationship between the second gate width region 4 (G) 41W2 and the third gate width region W3 is Wl(W2(W3).

1例を挙げるならば、 W1=10μ諷。To give an example, W1=10μ.

W2 = 20μsn 、 W3 = 40μ■と設定
することが可能である。
It is possible to set W2 = 20μsn and W3 = 40μsn.

ところで、ゲート幅を大きくすると、同一負荷容量なら
ばゲート遅延は小さくなるが、ソース・ドレイン面積も
それにつれて大きくなるので負荷容量が増大する。従っ
て、自分と同一ゲ−ト幅のゲーIt駆動する限りゲーF
遅延は殆んど変わらない。一方、ゲート幅のかな)小さ
なゲートでゲート幅の大きい出力バッファ等を駆動する
場合には、ゲート幅の少しずつ大きなゲートを数段カス
ケード接続した方がゲート幅の小さなゲート1段で駆動
するより全体としての遅延管小さくすることが可能であ
る。従って。
Incidentally, when the gate width is increased, the gate delay becomes smaller if the load capacitance is the same, but the source/drain area also increases accordingly, so the load capacitance increases. Therefore, as long as the game It drives the same gate width as itself, the game F
The delay remains almost the same. On the other hand, when driving an output buffer with a large gate width using a small gate (I wonder if the gate width is large), it is better to cascade several stages of gates with gradually larger gate widths than to drive with a single stage of gates with a smaller gate width. It is possible to make the delay tube smaller as a whole. Therefore.

本発明の如く異なったゲート幅のゲートアレイを複数個
同一チップ上に構成しておくことKよシ、この様な要求
會容易に満足させること一可能となるものである。即ち
、第2図に示したマスクスライスIにおいて、高速動作
する主回路部分をダート幅最小の第1ゲート幅領域3で
構成し、領域3への入出力ゲート類を中間ゲート幅を有
する第2ゲート幅領域4で構成し、領域4とI10バッ
ファ用の周辺領域1cとの接続ゲート類をゲート幅最大
の第3ゲート幅領域5で構成することが可能である。こ
の様な構成とすることにより、1チツプで低消費電力、
高速性。
By constructing a plurality of gate arrays with different gate widths on the same chip as in the present invention, it is possible to easily satisfy such requirements. That is, in the mask slice I shown in FIG. 2, the main circuit portion that operates at high speed is constituted by the first gate width region 3 with the minimum dirt width, and the input/output gates to the region 3 are constituted by the second gate width region 3 having the intermediate gate width. It is possible to configure the gate width region 4 and connect gates between the region 4 and the I10 buffer peripheral region 1c to configure the third gate width region 5 having the largest gate width. With this configuration, one chip can achieve low power consumption and
High speed.

高密度とiう互いに相反する要求を同時に満足させる仁
とが可能である。
It is possible to simultaneously satisfy contradictory requirements such as high density.

以上詳説した如く1本発明によれば異なったゲート幅含
有する複数個のゲートアレイを同一チップ上に設けるこ
とによって、性tIAt−改善したマスタスライスチッ
プを提供することが可能である。尚1本発明は上述した
特定の実施例に限定されるべきものではなく、特許請求
の範囲の記載に基づく技術的範囲内において種々の変形
が可能であることは勿論である。
As described in detail above, according to the present invention, by providing a plurality of gate arrays having different gate widths on the same chip, it is possible to provide a master slice chip with improved performance. Note that the present invention is not limited to the specific embodiments described above, and it goes without saying that various modifications can be made within the technical scope based on the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的なマスタスライスチップの構造を示す説
明図、第2図は不発明の1実施例を示す説明図、第3図
はゲートアレイt−CMO8構造で構成する場合を示し
た説明図、である。 (符号の説明) 1:マスタスライスチップ  1a:素子領域lb=配
線dtA埴    W:ゲート幅特許出願人  株式会
社 リ コ −
Fig. 1 is an explanatory diagram showing the structure of a typical master slice chip, Fig. 2 is an explanatory diagram showing one embodiment of the invention, and Fig. 3 is an explanatory diagram showing a case where the gate array is configured with a t-CMO8 structure. Figure. (Explanation of symbols) 1: Master slice chip 1a: Element area lb = wiring dtA clay W: Gate width Patent applicant Rico Co., Ltd. -

Claims (1)

【特許請求の範囲】[Claims] 1@数個の素子領域と該素子領域間に介在され素子領域
間の接続を行なう配線領域と會有するマスクスライスチ
ップにおいて、前記各素子領域は所定のゲート幅を有す
るゲートアレイを具備しておシ、シかも少なくとも1つ
の素子領域は他の素子領域とは異なった値のゲー)@1
有する仁と1*徴とするマスクスライスチップ。
1@In a mask sliced chip having several device regions and a wiring region interposed between the device regions and connecting the device regions, each of the device regions is provided with a gate array having a predetermined gate width. At least one element area has a different value than other element areas) @1
A mask slice chip with a grain and a 1* character.
JP14932281A 1981-09-24 1981-09-24 Master slice chip Pending JPS5851536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14932281A JPS5851536A (en) 1981-09-24 1981-09-24 Master slice chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14932281A JPS5851536A (en) 1981-09-24 1981-09-24 Master slice chip

Publications (1)

Publication Number Publication Date
JPS5851536A true JPS5851536A (en) 1983-03-26

Family

ID=15472576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14932281A Pending JPS5851536A (en) 1981-09-24 1981-09-24 Master slice chip

Country Status (1)

Country Link
JP (1) JPS5851536A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594139A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Logical large-scale integrated circuit
EP0136952A2 (en) * 1983-09-30 1985-04-10 Fujitsu Limited A gate array
JPS6065546A (en) * 1983-09-20 1985-04-15 Fujitsu Ltd Gate array type integrated circuit
EP0147998A2 (en) * 1983-12-23 1985-07-10 Fujitsu Limited Semiconductor IC output circuitry
EP0150423A2 (en) * 1983-12-17 1985-08-07 Kabushiki Kaisha Toshiba C-MOS basic cells arrangement
JPS60173854A (en) * 1984-02-13 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> Substrate for construction of mis transistor logic circuit
US4611236A (en) * 1983-07-09 1986-09-09 Fujitsu Limited Masterslice semiconductor device
JPS63194348A (en) * 1987-02-09 1988-08-11 Fujitsu Ltd Gate array
JPH04287369A (en) * 1991-03-15 1992-10-12 Sharp Corp Manufacture of gate array and semiconductor integrated circuit device
US5289021A (en) * 1990-05-15 1994-02-22 Siarc Basic cell architecture for mask programmable gate array with 3 or more size transistors
US5341041A (en) * 1990-05-15 1994-08-23 Siarc Basic cell for BiCMOS gate array
US5796129A (en) * 1993-08-03 1998-08-18 Seiko Epson Corp. Master slice type integrated circuit system having block areas optimized based on function

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594139A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Logical large-scale integrated circuit
JPH0479143B2 (en) * 1982-06-30 1992-12-15 Fujitsu Ltd
US4611236A (en) * 1983-07-09 1986-09-09 Fujitsu Limited Masterslice semiconductor device
JPS6065546A (en) * 1983-09-20 1985-04-15 Fujitsu Ltd Gate array type integrated circuit
JPH0479145B2 (en) * 1983-09-20 1992-12-15 Fujitsu Ltd
EP0136952A2 (en) * 1983-09-30 1985-04-10 Fujitsu Limited A gate array
JPS6074644A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Cmos gate array
US4692783A (en) * 1983-09-30 1987-09-08 Fujitsu Limited Gate array
EP0150423A2 (en) * 1983-12-17 1985-08-07 Kabushiki Kaisha Toshiba C-MOS basic cells arrangement
EP0147998A2 (en) * 1983-12-23 1985-07-10 Fujitsu Limited Semiconductor IC output circuitry
JPS60173854A (en) * 1984-02-13 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> Substrate for construction of mis transistor logic circuit
JPH0519826B2 (en) * 1984-02-13 1993-03-17 Nippon Telegraph & Telephone
JPS63194348A (en) * 1987-02-09 1988-08-11 Fujitsu Ltd Gate array
US5341041A (en) * 1990-05-15 1994-08-23 Siarc Basic cell for BiCMOS gate array
US5289021A (en) * 1990-05-15 1994-02-22 Siarc Basic cell architecture for mask programmable gate array with 3 or more size transistors
JPH04287369A (en) * 1991-03-15 1992-10-12 Sharp Corp Manufacture of gate array and semiconductor integrated circuit device
EP0591342A1 (en) * 1991-06-18 1994-04-13 Synopsys, Inc. Basic cell architecture for mask programmable gate array
EP0591342B1 (en) * 1991-06-18 2001-10-17 Artisan Components, Inc. Basic cell architecture for mask programmable gate array
US5796129A (en) * 1993-08-03 1998-08-18 Seiko Epson Corp. Master slice type integrated circuit system having block areas optimized based on function
US5872027A (en) * 1993-08-03 1999-02-16 Seiko Epso Corporation Master slice type integrated circuit system having block areas optimized based on function

Similar Documents

Publication Publication Date Title
US5384472A (en) Symmetrical multi-layer metal logic array with continuous substrate taps and extension portions for increased gate density
US6271548B1 (en) Master slice LSI and layout method for the same
US4884118A (en) Double metal HCMOS compacted array
JPS5851536A (en) Master slice chip
US4783692A (en) CMOS gate array
US6269466B1 (en) Method of constructing an integrated circuit utilizing multiple layers of interconnect
EP0177336B1 (en) Gate array integrated device
US6675361B1 (en) Method of constructing an integrated circuit comprising an embedded macro
JPH0516188B2 (en)
EP0023818A2 (en) Semiconductor integrated circuit device including a master slice and method of making the same
JPH0434309B2 (en)
JPH01186650A (en) Master slice system integrated circuit
JPS5864047A (en) Master slice semiconductor integrated circuit device
JPH10173055A (en) Cell-based semiconductor device and standard cell
JPH0475664B2 (en)
JP2000223575A (en) Design of semiconductor device, semiconductor device and its manufacture
JP2997479B2 (en) Gate array
JP2508214B2 (en) Master slice type semiconductor integrated circuit device
JP2522678B2 (en) CMOS integrated circuit device
JP2807129B2 (en) Semiconductor integrated circuit
JP2541537B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3019764B2 (en) Semiconductor integrated circuit device and multi-stage connection structure of its circuit cells
JPS63194348A (en) Gate array
JPS63311740A (en) Semiconductor integrated circuit device
EP0495990A1 (en) Semiconductor device