JPS584995A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS584995A
JPS584995A JP10404281A JP10404281A JPS584995A JP S584995 A JPS584995 A JP S584995A JP 10404281 A JP10404281 A JP 10404281A JP 10404281 A JP10404281 A JP 10404281A JP S584995 A JPS584995 A JP S584995A
Authority
JP
Japan
Prior art keywords
type diffusion
layer
diffusion region
face
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10404281A
Other languages
Japanese (ja)
Inventor
Shoichi Kakimoto
柿本 昇一
Toshio Sogo
十河 敏雄
Saburo Takamiya
高宮 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10404281A priority Critical patent/JPS584995A/en
Publication of JPS584995A publication Critical patent/JPS584995A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2203Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure with a transverse junction stripe [TJS] structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To equalize temperature distribution, and to extract high output by forming a diffusion layer, the central section thereof has high carrier concentration, so that currents are focussed at the central section more than an end surface. CONSTITUTION:The P<+> type diffusion layer having carrier concentration higher than a layer 10 is formed into a P<+> type diffusion layer 21 in order to reduce additional resistance up to the P-N junction 21 from an electrode 7. In this case, a layer 11 is started from a position where entering an inner section than one end surface 31, and ended at a position where entering an inner section than the other end surface 32. Consequently, there is no layer 11 in the vicinity of the end surfaces 31, 32. As a result, the additional resistance of a current path up to the junction 21 from the electrode 7 also increases in a region where there is the layer 11 in the sections in the vicinity of the end surfaces. Accordingly, currents in the vicinity of the end surfaces 31, 32 decrease more than the central section, and currents focus at the central section. However, the absorption of beams and a temperature rise are scattered to the central section and both ends because a temperature rise in the vicinity of the end surfaces and the reduction of a band gap are generated by the center of recombination formed to the surface, and high output can be extracted.

Description

【発明の詳細な説明】 本発明は半導体レーザ、特にTJ8構造の半導体レーザ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, particularly a TJ8 structure semiconductor laser.

従来のこの種の半導体レーザの一例を第1図に示して説
明すると、第1図(a)はその平面図を、第1図(ロ)
は同図(旬のA−Aにおける断面図をそれぞれ示してい
る。第1図において、(1)はGaAs結晶基板、(2
)はp形のGa、−yAjyAiエビタキシャル層、(
3)はGa 1 + y人ノyAsクラッド層、(4)
はGa 1−xムl xAs活性層、(5)はGa1−
、AJyAsクラッド層、(6)はGaAsコンタクト
層であり、符号X、7はkl含有率を示し、これらはy
>xとなっている。
An example of a conventional semiconductor laser of this type is shown and explained in FIG. 1. FIG. 1(a) shows its plan view, and FIG.
1 shows a cross-sectional view along A-A in the same figure (1). In Fig. 1, (1) is a GaAs crystal substrate, (2)
) is p-type Ga, -yAjyAi epitaxial layer, (
3) is Ga 1 + y As cladding layer, (4)
is a Ga1-xmlxAs active layer, (5) is a Ga1-
, AJyAs cladding layer, (6) is GaAs contact layer, symbol X, 7 indicates kl content, these are y
>x.

なお、p形Ga 1 + yAlyAs エピタキシャ
ル層(2)を除いて前記GaAs結晶基板(1)、クラ
ッド層(3)、活性層(4)、クラッド層(5)および
コンタクト層(6)はn形のエピタキシャル層からなる
。コンタクト層(6)の中央部は図示するように一部が
取り除かれている。そして、図示する左側の斜線を施し
た部分はZn等のp形不純物を拡散して形成されたp形
拡散領域であって、符号(9)で示された領域は比較的
キャリア濃度の低いp膨拡散層、符号Qlで示された領
域はp膨拡散層(9)に比べて濃度の高いp+形拡散層
である。前記活性層(4)内でp膨拡散層(9)に相当
する郁夛の屈折率は両側のp+形拡散層やn形層の屈折
率よりも大きな値を有し、この部分が光のガイドとなっ
ている。(7)、(6)は金属電極であり、(21)は
p膨拡散層(9)によって活性層(4)に形成されるp
−n接合、C11)および(2)はGaAs結晶基板(
1)と上記エピタキシャル層とで形成される平行な一対
の側面に形成された共振器端面である。
Note that, except for the p-type Ga 1 + yAlyAs epitaxial layer (2), the GaAs crystal substrate (1), cladding layer (3), active layer (4), cladding layer (5), and contact layer (6) are of n-type. It consists of an epitaxial layer. A portion of the central portion of the contact layer (6) has been removed as shown. The hatched area on the left side of the figure is a p-type diffusion region formed by diffusing p-type impurities such as Zn, and the region indicated by symbol (9) is a p-type diffusion region with a relatively low carrier concentration. The swelling diffusion layer, a region indicated by the symbol Ql, is a p+ type diffusion layer having a higher concentration than the p swelling diffusion layer (9). In the active layer (4), the refractive index of the layer corresponding to the p-swelled diffusion layer (9) has a larger value than the refractive index of the p+ type diffusion layer and the n-type layer on both sides, and this portion Become a guide. (7) and (6) are metal electrodes, and (21) is a p-type electrode formed in the active layer (4) by the p-swelled diffusion layer (9).
-n junction, C11) and (2) are GaAs crystal substrates (
This is a resonator end face formed on a pair of parallel side surfaces formed by 1) and the above epitaxial layer.

ここで、電極(7)と(8)間に順方向電圧を加えたと
きはまず第1図伽)においてp −n接合c!Dにはそ
の全体に電圧がかかる。しかし、活性層(4)のバンド
ギャップはクラッド層(31,クラッド−(5)のバン
ドギャップよりも狭い0で、電流は図示する矢印の実線
のように活性層(4)内を優先して流れる(実際には各
層に゛形成されるp −n接合での拡散電圧を比較しな
ければならないが、通常拡散電位はバンドギャップにほ
ぼ等しい)。このとき、p ”接合(21)はGaAs
結晶基板(1)内に貫通しているが(Xこのバンドギャ
ップは活性層のバンドギャップよりも狭い)、p形Ga
1−、AJyAs エピタキシャル層(2)が存在する
ため、GaA@結晶基板(1)には蜜、流が流れ込まな
い。
Here, when a forward voltage is applied between the electrodes (7) and (8), the p-n junction c! A voltage is applied across D. However, the bandgap of the active layer (4) is narrower than the bandgap of the cladding layer (31, cladding (5)), and the current flows preferentially in the active layer (4) as shown by the solid arrow in the figure. (Actually, the diffusion voltage at the p-n junction formed in each layer must be compared, but normally the diffusion potential is approximately equal to the band gap.) At this time, the p'' junction (21) is GaAs
The p-type Ga
1-. Because of the presence of the AJyAs epitaxial layer (2), no flow flows into the GaA@crystal substrate (1).

つぎに、第1図(a)における電流の流れについて述べ
ると、電極(7) 、 (8)間に順方向電圧が加えら
れたとき、p−n接合(21)の全体に均一な電圧が印
加されるため、このp−ss 1m合Q1の全体には一
方の端面G1)から他方の端面田にわたって均一な電流
が図示する矢印の実線のように流れる。ただし、実際に
は第1図の)に示したように電流は紙面よりも下にある
活性層(43内に形成されたp −n接合(2])を横
切るように流れる。
Next, regarding the flow of current in Fig. 1(a), when a forward voltage is applied between the electrodes (7) and (8), a uniform voltage is applied across the entire p-n junction (21). As a result, a uniform current flows through the entire p-ss 1m joint Q1 from one end surface G1) to the other end surface as shown by the solid line of the arrow. However, in reality, as shown in FIG. 1), the current flows across the active layer (p-n junction (2) formed in 43) below the plane of the paper.

しかし、第1図に示した従来の構造の半導体レーザでは
%I)−n接合の一方の端面から他方の端面までほぼ均
一な電流が流れるため、温度分布も第3図(!1)の実
線に示すように均一になっている。
However, in the semiconductor laser with the conventional structure shown in Figure 1, a nearly uniform current flows from one end face to the other end face of the %I)-n junction, so the temperature distribution also changes as shown by the solid line in Figure 3 (!1). As shown in the figure, it is uniform.

一方、バンドギャップは温度に依存し、温度が高ければ
狭くなり、逆に低くなれば広くなる。したがって、この
バンドギャップも第3図(b)の実線に示したようにほ
ぼ一定となっている。ところで、p−am!m通合で発
生した光は端面で反射を繰り返しながらガイド内を往復
するが、最終的には端面から外部に放出されるか、ある
いはガイド内で吸収される。仁のとき、吸収される場合
にはバンドギャップの狭いところでその確率が高くなる
On the other hand, the band gap depends on temperature; the higher the temperature, the narrower it becomes, and conversely, the lower the temperature, the wider it becomes. Therefore, this bandgap is also approximately constant as shown by the solid line in FIG. 3(b). By the way, p-am! The light generated by the m-passes travels back and forth within the guide while being repeatedly reflected at the end face, but is ultimately either emitted to the outside from the end face or absorbed within the guide. In the case of absorption, the probability of absorption increases when the band gap is narrow.

したがって、上記した従来の構造では、第3図(a)お
よび争)に示したように、温度が一方の端面から他方の
端面までほぼ一定であり、バンドギャップもそれに対応
してゆぼ一定であるから、光の吸収は中央部でも端面付
近でも同じ割合で起ると考えられる。しかし、実際には
、結晶表面に存在する深い再結合中心(q#に酸素など
は結晶表面に侵入し深い再結合中心を形成すると考えら
れている)が端面付近での光の吸収の割合を増加させて
いる。
Therefore, in the conventional structure described above, the temperature is almost constant from one end face to the other end face, and the band gap is correspondingly almost constant, as shown in Figure 3(a) and Figure 3(a). Therefore, it is thought that light absorption occurs at the same rate both in the center and near the end faces. However, in reality, deep recombination centers existing on the crystal surface (it is thought that oxygen at q# penetrates the crystal surface and forms deep recombination centers) reduce the absorption rate of light near the end faces. It is increasing.

このため、第1図に示した従来構造では実際にはこの光
の吸収により端面付近の温度を上昇させている。第3図
(a)にはこの現象による温度上昇分を破線で示してい
る。端面付近で温度が上昇すれば、これにより端面付近
のバンドギャップが第3図・(ロ)の破C示すように狭
くなる。すると、この部分がまた光を吸収しやすくなる
。したがって、光の吸収→温度上昇→バンドギャップの
減少→光の吸収という叶イクルを繰り返すことにより、
実際には端面付近の温度は非常に高くなっている。特に
電流を増やして大きな出力を出そうとする際にはこの温
度上昇が端間の結晶性を破壊してしまうことになり、大
きな出力を取り出すことが困難であつた。また、一般に
発光効率は温度が高くなると減少することから、上記し
た従来のもの分ように端面付近で温度が高くなると、端
面付近の発光効率が悪くなり、全体としての発光効率が
低下するという欠点があった。
Therefore, in the conventional structure shown in FIG. 1, the temperature near the end face is actually increased by absorption of this light. In FIG. 3(a), the temperature increase due to this phenomenon is shown by a broken line. If the temperature rises near the end face, the band gap near the end face narrows as shown by broken C in Figure 3 (b). This area then absorbs light more easily. Therefore, by repeating the cycle of light absorption → temperature rise → band gap decrease → light absorption,
In reality, the temperature near the end face is extremely high. In particular, when trying to increase the current to produce a large output, this temperature rise destroys the crystallinity between the ends, making it difficult to obtain a large output. In addition, since luminous efficiency generally decreases as the temperature increases, when the temperature increases near the end face, as in the case of the conventional device described above, the luminous efficiency near the end face deteriorates, and the overall luminous efficiency decreases. was there.

本発明はこのような従来の欠点に鑑みなされたもので、
その目的は半導体レーザの高出力化、しきい値電流の低
減化を可能にした半導体レーザを提供することにある。
The present invention was made in view of these conventional drawbacks.
The purpose is to provide a semiconductor laser that enables higher output and lower threshold current.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第2図は本発明による半導体レーザの一実施例を示すも
のであり、$2図(a)はその平面図、第2図伽)は同
図(a)のB−Bにおける断面図、第2図(C)は同図
(a)のC−Cにおける断面図をそれぞれ示し、第2図
において第1図と同一符号は同一部分を示している。こ
の実施例の半導体レーザは、p膨拡散層(9)内に第1
のp+形拡散層翰を形成している点は第1図に示した従
来の半導体レーザと同様であるが、電極(7)からp 
−n接合Q1)にいたるまでの付加抵抗を低減させるた
めに前記第1のp+形拡濃度の高い第2のp+形拡散層
伍υを形成している。
FIG. 2 shows an embodiment of the semiconductor laser according to the present invention, and FIG. 2(a) is a plan view thereof, FIG. FIG. 2(C) shows a sectional view taken along line CC in FIG. 2(a), and the same reference numerals as in FIG. 1 indicate the same parts in FIG. The semiconductor laser of this example has a first
It is similar to the conventional semiconductor laser shown in Fig. 1 in that it forms a p+ type diffusion layer, but it
In order to reduce the additional resistance up to the -n junction Q1), a second p+ type diffusion layer 5v with a high concentration of the first p+ type is formed.

この場合、第2のp+形拡散層αυは、一方の端面C1
1)よりも内部に入り込んだ位置よりはじまり、他方の
端面(至)よりも内部に入り込んだ位置で終わるように
なっている。
In this case, the second p+ type diffusion layer αυ has one end surface C1
It starts at a position further inside than 1) and ends at a position deeper inside than the other end face (end).

このように上記実施例の構造によると、第2のp+形拡
散層aυが第2図(1)に示すように、一方の端面C3
1)より′も少し内部に入り込んだ位置からはじまり他
方の端面(至)よりも少し内部に入り込んだ位置で終っ
ており、これら端面6υ#(至)の付近では第2のp+
形拡散層aυが存在しない。したがって、この部分では
電極(7)からp−n接合(21)にいたるまでの電流
経路の付加抵抗が第2のp+形拡散層住υの存在する領
域よりも大きくなっている。そのため、上記実施例の構
造では、両端面Gυ、(2)付近における電流が中央部
よりも減少し、中央部に電流が集中することになる。こ
の様子を第2図(a)に示す矢印の実線で示している。
According to the structure of the above embodiment, the second p+ type diffusion layer aυ is formed on one end surface C3 as shown in FIG. 2(1).
It starts at a position slightly deeper than 1) and ends at a position slightly deeper than the other end face (to), and near these end faces 6υ# (to), the second p +
There is no shape diffusion layer aυ. Therefore, in this portion, the additional resistance of the current path from the electrode (7) to the pn junction (21) is greater than in the region where the second p+ type diffusion layer exists. Therefore, in the structure of the above embodiment, the current near both end faces Gυ, (2) is smaller than that at the center, and the current is concentrated at the center. This state is shown by the solid arrow line shown in FIG. 2(a).

ただし、実際には第1図の場合と同様に電流は紙面より
も下にある活性層(4)内に形成されるp −n接合(
21)を横切るように流れる。
However, in reality, as in the case of Figure 1, the current flows through the p-n junction (
21).

すなわち、第1図に示した従来構造の半導体レーザでは
、温度が一方の端面から他方の端面までほぼ一定であり
、バンドギャップもそれに対応してほぼ一定であるから
、光の吸収は中央部でも端面付゛近でも同じ割合で起る
が、実際には上述したように結晶表面に存在する深い再
結合中心が端面付近での光の吸収の割合を増加させてい
る。このため、光の吸収により端面付近の温度が上昇し
、この温度上昇分は第3図(a)の破線で示すようにな
り、端面付近で温度が上昇すれば端面付近のバンドギャ
ップが第3図〜)の破線で示すように狭くなる。すると
、この部分が光を吸収しやすくなるため、光の吸収→温
度上昇→バンドギャップの減少→光の吸収というサイク
ルを繰り返すことにより、実際には端面近くの温度は非
常に高くなり、特に電流を増やして大きな出力を取り出
す場合にはこの温度上昇が板間の結晶性を破壊してしま
う原因となっていた。
In other words, in the semiconductor laser with the conventional structure shown in Figure 1, the temperature is almost constant from one end face to the other, and the band gap is correspondingly almost constant, so light absorption occurs even in the center. It occurs at the same rate near the end faces, but in reality, as mentioned above, the deep recombination centers existing on the crystal surface increase the rate of light absorption near the end faces. Therefore, the temperature near the end surface increases due to absorption of light, and this temperature increase becomes as shown by the broken line in Figure 3(a).If the temperature rises near the end surface, the band gap near the end surface increases to It becomes narrower as shown by the broken line in Figures ~). This makes it easier for this part to absorb light, so by repeating the cycle of light absorption → temperature rise → band gap decrease → light absorption, the temperature near the end surface actually becomes very high, especially when the current In order to obtain a large output by increasing the temperature, this temperature rise causes the crystallinity between the plates to be destroyed.

これに対し、上記実施例の半導体レーザでは、電流が中
央部に集中しているため、第4図(1)の実線に示すよ
うに中央部の温度が端面付近に比べて高くなり、またこ
の部分のバンドギャップが第4図(ロ)の実線に示すよ
うに狭くなるとともに、両端面付近のバンドギャップが
中央部に比べて広くなる、したがって、光は主に中央部
で吸収され、端面付近では吸収されにくくなる。しかし
、実際には上述したように、表面に形成される再結合中
心によって端面付近の温度上昇およびバンドギャップの
減少が起る。この表面にふける影響を第4図(a)およ
び(ロ)に破線で示している。この図から明らかなよう
に、本発明による半導体レーザでは、光の吸収および温
度上昇が中央部と両端とに分散され、従来構造のような
局所的な破壊(端面破壊)が起きにくくなるので、大き
な出力を取り出すことができる。
On the other hand, in the semiconductor laser of the above embodiment, the current is concentrated in the center, so the temperature in the center becomes higher than near the end facets, as shown by the solid line in FIG. 4 (1). As shown by the solid line in Figure 4 (b), the bandgap of the part becomes narrower, and the bandgap near both end faces becomes wider than the central part. Therefore, light is mainly absorbed in the central part, and the bandgap near the end faces becomes wider. It becomes difficult to absorb. However, as mentioned above, in reality, the recombination centers formed on the surface cause a temperature rise near the end face and a decrease in the band gap. This surface effect is shown in dashed lines in FIGS. 4(a) and (b). As is clear from this figure, in the semiconductor laser according to the present invention, light absorption and temperature rise are dispersed in the center and both ends, and local breakage (end face breakage) as in the conventional structure is less likely to occur. Can produce large output.

さらに、第1図に示した従来のものでは、端面付近の温
度が高くなるため、端面付近における発光効率が悪くな
るとともに、温度の高いところに余計に電流が集中しや
すくなり、したがって、発光効率の悪くなっている端面
付近に多くの電流が流れ込むことになる。これに対し、
本発明では、従来のものに比べて温度分布が平均化され
ているため、局所的に発光効率の悪い部分がなくなり、
全体として発光効率が良好でしかもしきい値電流の小さ
い半導体レーザな得ることができる。
Furthermore, in the conventional device shown in Fig. 1, the temperature near the end faces becomes high, so the luminous efficiency near the end faces deteriorates, and the current tends to concentrate unnecessarily in areas with high temperatures, thus reducing the luminous efficiency. A large amount of current will flow into the vicinity of the end face where the condition is poor. On the other hand,
In the present invention, the temperature distribution is averaged compared to the conventional one, so there are no local areas with poor luminous efficiency.
It is possible to obtain a semiconductor laser with good overall luminous efficiency and low threshold current.

以上説明したように本発明によれば、TJS構造の半導
体レーザにおいて電流が端面よりも中央部に集中するよ
うに中央部にp+形拡散層を設けることにより、温度分
布が平均化されるため、大きな出力を取り出すことがで
きるとともに、しきいfL電流の低減をはかることがで
きる効果がある。
As explained above, according to the present invention, in a semiconductor laser having a TJS structure, the temperature distribution is averaged by providing a p+ type diffusion layer at the center so that the current is concentrated at the center rather than at the end facets. This has the effect that a large output can be extracted and the threshold fL current can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)およびΦ)は従来の半導体レーザの一例を
示す平面図および同図(!1)のA−Aにおける断面図
、第2図は本発明による半導体レーザの一実施例を示す
ものであって、第2図(a)はその平面図、第2図(b
)は同図(a)のB−Bにおける断面図、第2図(C)
は同図(a)Q) C−Cにおける断面図である。第3
図(a)およびΦ)は第1図に示す半導体レーザのガイ
ドに泊っての温度分布およびそれに伴なうバンドギ“ヤ
ツプの変化を示す図、第4図(a)および伽)は第2図
に示す半導体レーザのガイドに沿っての温度分布および
それに伴なうバンドギャップの変化を示す図である。 +1) @ 1111 * GaAs ih晶基板、(
2)−” ” ” I)’形−Gal−yAAyAsエ
ピタキシャル層、’(31−−−−Ga □−yAl 
yAaクラッド層、(4) @ @ @ 11 Gal
−1AjXAs活性層、(51@ 11 @ @ Ga
、−yAA!yAsクラッド層、(6i拳assGaA
@コyタクト層% (71,(81−−、。 金属電極、(9)・・・・p形拡散領域、翰・・・・第
1のp+形拡散領域、αυ・・・・第2のp+形拡拡散
域、121J・・・・p −n接合、CI旬、(2)・
・・・端面。 代理人 葛野信 −(外1名) 第1II 第2図
Figures 1(a) and Φ) are a plan view showing an example of a conventional semiconductor laser and a sectional view taken along line A-A in the same figure (!1), and Figure 2 shows an embodiment of the semiconductor laser according to the present invention. FIG. 2(a) is a plan view of the same, FIG. 2(b)
) is a sectional view taken along line B-B in Figure 2(a), and Figure 2(C)
is a sectional view taken along line (a)Q) CC in the same figure. Third
Figures (a) and Φ) are diagrams showing the temperature distribution in the guide of the semiconductor laser shown in Figure 1 and the accompanying change in band gap. It is a diagram showing the temperature distribution along the guide of the semiconductor laser shown in FIG.
2)-"""I)'-type-Gal-yAAyAs epitaxial layer,'(31-----Ga □-yAl
yAa cladding layer, (4) @ @ @ 11 Gal
-1AjXAs active layer, (51@11@@Ga
, -yAA! yAs cladding layer, (6i fist ass GaA
@ Coy tact layer % (71, (81--,. Metal electrode, (9)... p type diffusion region, wire... first p+ type diffusion region, αυ... second p+ type expanding diffusion region, 121J...p-n junction, CI junction, (2).
···End face. Agent Makoto Kuzuno - (1 other person) Figure 1II Figure 2

Claims (1)

【特許請求の範囲】[Claims] GaAs結晶基板と、該GaAs結晶基板の一方の主面
上に形成された少なくとも第1のn形りラッド層、n形
活性層、第2のn形りラッド層の3層を含むGa、−x
AjxAs系(0≦X<1)の多層エピタキシャル層と
からなり、前記多層エピタキシャル層と前記GaAs結
晶基板とで形成される平行な一対の側面を共振器端面と
なし、前記多層エピタキシャル層表面側より骸多層エピ
タキシャル層の一部にはp形の不純物を少な(とも前記
活性層よりも深く拡散して形成された第1のp形拡散領
域を設け、該第1のp形拡散領域が前記活性層内に形成
するp −n接合は前記共振器端面に直交してその一方
の共振器端面から他方の共振器端面まで達してなり、さ
らに前記第1のp形拡散領域内には該第1のp形拡散領
域より高いキャリア濃度を有しかつ少なくとも前記活性
層よりも深い位置まで達して形成された第2のp形拡散
領域を設け、該第2のp形拡散領域と前記第1のp形拡
散領域が前記活性層内で形成する境界面は前記共振器端
面に直交してその一方の共振器端面から他方の共振器端
面まで達してなる構造を有する半導体レーザにおいて、
前記第2のp形拡散領域内に該第2のp形拡散領域より
も高いキャリア濃度を有して形成された第3のp形拡散
領域を設け、該第3のp形拡散領域は一方の共振器端面
よりも内部に入り込んだ位置よりはじまって他方の共振
器端面よりも内部に入り込んだ位置で終わってなること
を特徴とする半導体レーザ。
A GaAs crystal substrate, and at least three layers formed on one main surface of the GaAs crystal substrate: a first n-type rad layer, an n-type active layer, and a second n-type rad layer, - x
AjxAs system (0≦X<1) multilayer epitaxial layer, a pair of parallel side surfaces formed by the multilayer epitaxial layer and the GaAs crystal substrate are resonator end faces, and from the surface side of the multilayer epitaxial layer A first p-type diffusion region formed by diffusing a small amount of p-type impurity (deeper than the active layer) is provided in a part of the epitaxial layer, and the first p-type diffusion region is formed by diffusing the p-type impurity deeper than the active layer. The p-n junction formed in the layer is orthogonal to the resonator end faces and extends from one resonator end face to the other resonator end face, and the first p-type diffusion region is further provided with the first p-type diffusion region. A second p-type diffusion region having a higher carrier concentration than the p-type diffusion region and reaching at least a deeper position than the active layer is provided, and the second p-type diffusion region and the first p-type diffusion region are In a semiconductor laser having a structure in which a boundary surface formed by a p-type diffusion region in the active layer is perpendicular to the cavity end face and extends from one cavity end face to the other cavity end face,
A third p-type diffusion region formed with a higher carrier concentration than the second p-type diffusion region is provided in the second p-type diffusion region, and the third p-type diffusion region is formed on one side. What is claimed is: 1. A semiconductor laser, characterized in that the semiconductor laser starts at a position deeper into the cavity than the end face of the other cavity, and ends at a position deeper inside than the other cavity end face.
JP10404281A 1981-07-01 1981-07-01 Semiconductor laser Pending JPS584995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10404281A JPS584995A (en) 1981-07-01 1981-07-01 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404281A JPS584995A (en) 1981-07-01 1981-07-01 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS584995A true JPS584995A (en) 1983-01-12

Family

ID=14370158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404281A Pending JPS584995A (en) 1981-07-01 1981-07-01 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS584995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411391A (en) * 1987-07-06 1989-01-13 Kokusai Denshin Denwa Co Ltd Optical semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411391A (en) * 1987-07-06 1989-01-13 Kokusai Denshin Denwa Co Ltd Optical semiconductor element

Similar Documents

Publication Publication Date Title
JPS584995A (en) Semiconductor laser
JPH01235397A (en) Semiconductor laser
JPH04115588A (en) Semiconductor laser
JPS62291987A (en) Optical integrated device
JPS61160990A (en) Semiconductor laser device
JPS60102790A (en) Manufacture of semiconductor light-emitting device
JPS61214591A (en) Semiconductor laser element
JPS61112392A (en) Semiconductor laser and manufacture thereof
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS63263790A (en) Semiconductor laser
JPS61194886A (en) Semiconductor laser element
JPS59205788A (en) Semiconductor laser
JPS5856376A (en) Semiconductor laser device
JP2005259937A (en) Element and device of semiconductor laser
JPS59112671A (en) Semiconductor laser
JPH0438880A (en) Semiconductor light emitting element
JPS5828887A (en) Semiconductor laser
JPH0482074B2 (en)
JPS60217688A (en) Semiconductor laser element
JPH0553316B2 (en)
JPS60134489A (en) Semiconductor laser device
JPS58197789A (en) Semiconductor laser
JPH0661569A (en) Semiconductor laser
JPH03185782A (en) Semiconductor laser
JPS5833886A (en) Semiconductor laser element