JPS5847624B2 - Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou - Google Patents

Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou

Info

Publication number
JPS5847624B2
JPS5847624B2 JP50049417A JP4941775A JPS5847624B2 JP S5847624 B2 JPS5847624 B2 JP S5847624B2 JP 50049417 A JP50049417 A JP 50049417A JP 4941775 A JP4941775 A JP 4941775A JP S5847624 B2 JPS5847624 B2 JP S5847624B2
Authority
JP
Japan
Prior art keywords
generator
solution
heat exchanger
heat
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50049417A
Other languages
Japanese (ja)
Other versions
JPS51124848A (en
Inventor
昭三 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP50049417A priority Critical patent/JPS5847624B2/en
Publication of JPS51124848A publication Critical patent/JPS51124848A/en
Publication of JPS5847624B2 publication Critical patent/JPS5847624B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、冷媒液及び吸収溶液を用いて吸収冷凍サイク
ルを行なう吸収式冷凍装置で発生器を複数設けて運転す
る二重効用吸収冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dual-effect absorption refrigeration system that operates with a plurality of generators in an absorption refrigeration system that performs an absorption refrigeration cycle using a refrigerant liquid and an absorption solution.

一般に、二重効用吸収冷凍装置では複数設けた発生器の
うち、第一発生器で生ずる高fn(f5媒蒸気を第二発
生器の加熱に使用する方式がとられるのが普通であるが
、従来では第二発生器出口の高温冷媒液及び蒸気のまま
で液シール部を通過して損失となっていた冷媒蒸気のも
つ熱エネルギはそのまま凝縮器で冷却水に捨てられてい
て冷凍サイククルの効率上昇には寄与してない不経済が
あった。
Generally, in a dual-effect absorption refrigeration system, a system is adopted in which high fn (f5 medium vapor) generated in the first generator among multiple generators is used to heat the second generator. Conventionally, the high-temperature refrigerant liquid and vapor at the outlet of the second generator pass through the liquid seal part and the thermal energy of the refrigerant vapor, which was lost, is directly discarded into the cooling water in the condenser, which improves the efficiency of the refrigeration cycle. There was a diseconomie that did not contribute to the rise.

本発明はこれら従来の不経済さを適確に除去し、二重効
用吸収冷凍サイクルの効率を著しく向上できる吸収冷凍
装置を提供しようとするにある。
The present invention aims to provide an absorption refrigeration system that can appropriately eliminate these conventional disadvantages and significantly improve the efficiency of a dual-effect absorption refrigeration cycle.

また本発明では、排熱として放出される熱エネルギを適
確に回収し、安全で円滑な運転を保証すると共に、全負
荷にわたって高い運転効率を確保することも可能とした
二重効用吸収冷凍装置を提供することをも目的としてい
る。
In addition, the present invention provides a dual-effect absorption refrigeration system that accurately recovers thermal energy released as waste heat, guarantees safe and smooth operation, and also makes it possible to ensure high operating efficiency over all loads. It also aims to provide.

本発明は、第二発生器出口の高温冷媒液のもつ熱エネル
ギでそのまま凝縮器で冷却水に捨てられている熱エネル
ギに着目し、このエネルギを回収するため、蒸発器A1
吸収器B1第一発生器C1第二発生器D1凝縮器E及び
第一熱交換器F1第二熱交換器Gから構成され、第一発
生器Cから冷媒蒸気を第二発生器Dに導き、この第二発
生器Dで凝縮した冷媒液を凝縮器Eを介して蒸発器Aへ
導くようにした二重効用吸収冷凍機において、溶液ポン
プの吐出口から第二熱交換器人口までのラインからの低
温低濃度の吸収溶液を排熱回収用熱交換器に導いて第二
発生器からの高温の冷媒液ないし冷媒蒸気と熱交換させ
た後、第一発生器又は第一熱交換器Fを出て第一発生器
Cに至る吸収溶液に所要量だけバイパスさせるラインを
配備すると共に、前記第一発生器Cへの熱源量を制御す
る冷凍容量制御用の熱源熱量制御弁Hと、場合によって
は第一発生器Cの構造に玉夫をすることにより、この制
(財)弁Hを配備しなくてもよいが吸収器Bから第一発
生器Cへ送る浴液流量を制御するための溶液流量制御弁
■,■又はこの二つの制御弁1,IIの機能を有する一
体形制御弁例えば三方制御弁若しくは制御弁のいずれか
一方のみとして他の一つを固定絞り機構として備え、同
時に或いは選択して作動させるために、前記第一発生器
Cで発生する冷媒蒸気の圧力又はその飽和温度の変動若
しくは蒸発器Aの冷水出口温度の変動によってその溶液
流量の配分を変えて容量制御するようにしたことを特徴
とするものである。
The present invention focuses on the thermal energy of the high-temperature refrigerant liquid at the outlet of the second generator that is directly discarded into the cooling water in the condenser, and in order to recover this energy, the evaporator A1
It is composed of an absorber B1, a first generator C1, a second generator D1, a condenser E, a first heat exchanger F1, a second heat exchanger G, and leads the refrigerant vapor from the first generator C to the second generator D, In a double-effect absorption refrigerator in which the refrigerant liquid condensed in the second generator D is guided to the evaporator A via the condenser E, a line from the outlet of the solution pump to the second heat exchanger The low-temperature, low-concentration absorbing solution is introduced into the exhaust heat recovery heat exchanger to exchange heat with the high-temperature refrigerant liquid or refrigerant vapor from the second generator, and then the first generator or first heat exchanger F is A line is provided to bypass the required amount of the absorption solution that exits and reaches the first generator C, and a heat source heat amount control valve H for controlling the refrigeration capacity that controls the amount of heat source to the first generator C, and as the case may be. By modifying the structure of the first generator C, it is not necessary to provide this control valve H, but a solution for controlling the flow rate of bath liquid sent from the absorber B to the first generator C. Flow rate control valves ■, ■, or an integrated control valve having the functions of these two control valves 1 and II, such as a three-way control valve or only one of the control valves, with the other one as a fixed throttle mechanism, simultaneously or selectively. In order to operate the refrigerant vapor, the capacity is controlled by changing the distribution of the solution flow rate according to fluctuations in the pressure or saturation temperature of the refrigerant vapor generated in the first generator C or fluctuations in the cold water outlet temperature of the evaporator A. It is characterized by the fact that

本発明を実施例につき、第一図を参照して説明すると、
蒸発器A1吸収器B1第一発生器C1第二発生器D1凝
縮器E1及び第一熱交換器F1第二熱交換器Gから構戒
され、第一発生器Cから冷媒蒸気を第二発生器Dに導き
、この第二発生器Dで凝縮した冷媒液を凝縮器Eを介し
て蒸発器Aへ導くようにした二重効用吸収冷凍機におい
て、前記蒸発器Aは吸収器Bと同一缶胴1内に形成され
冷水チューブ2と冷媒ポンプ3を有する液循環管路4と
スプレー管5とを備え、且つ前記吸収器Bには冷却水チ
ューブ6が設けられ、溶液ポンプ7を有する配管8と戻
り配管9とで第二熱交換器Gと第一熱交換器Fを経て第
一発生器Cと第二発生器Dとに連絡してある。
The present invention will be described by way of example with reference to FIG.
Evaporator A1 Absorber B1 First generator C1 Second generator D1 Condenser E1 and first heat exchanger F1 Second heat exchanger G, refrigerant vapor is transferred from the first generator C to the second generator In a double-effect absorption refrigerator in which the refrigerant liquid condensed in the second generator D is guided to the evaporator A via the condenser E, the evaporator A has the same can body as the absorber B. 1, the absorber B is provided with a liquid circulation pipe 4 having a cold water tube 2 and a refrigerant pump 3, and a spray pipe 5, and the absorber B is provided with a cooling water tube 6, a pipe 8 having a solution pump 7, and a spray pipe 5. A return pipe 9 connects the first generator C and the second generator D via the second heat exchanger G and the first heat exchanger F.

この第一発生器Cは熱源熱量制御弁Hを有する発生器チ
ューブ10を持ち戻り配管11で第一熱交換器Fを経て
第二発生器Dに連絡してあり、また該第二発生器Dは熱
媒が通過する発生器チューブ12を持ち、連通伏態で凝
縮器チューブ13のある凝縮器Eと同一缶胴14に設け
られ配管15で凝縮器Eと蒸発器Aとを連結していると
共に、第二発生器Dは戻り配管9で第二熱交換器Gを経
て吸収器Bに連絡され、且つ発生器チューブ12は冷媒
蒸気配管16で第一発生器Cに連結し、且つ戻り配管1
7で凝縮器Eに連絡してある。
This first generator C carries a generator tube 10 having a heat source heat amount control valve H and is connected to a second generator D via a first heat exchanger F by a return pipe 11. has a generator tube 12 through which the heating medium passes, and is installed in the same can body 14 as the condenser E with the condenser tube 13 in a communication down state, and connects the condenser E and the evaporator A with a pipe 15. At the same time, the second generator D is connected to the absorber B via the second heat exchanger G by a return pipe 9, and the generator tube 12 is connected to the first generator C by a refrigerant vapor pipe 16, and the return pipe is connected to the absorber B via the second heat exchanger G. 1
7 is connected to condenser E.

一方溶液ポンプ7の配管8即ち浴液ポンプの吐出口から
第二熱交侠器Gの人口までのラインから低温低濃度の吸
収溶液をバイパスするバイパス配管18を設け、このバ
イパス配管18を第一発生器Cに連結すると共にバイパ
ス配管18に溶液流量制御弁■又は絞り弁、若しくはオ
リフイスと排熱回収用の熱交換器19が備えられ、且つ
該熱交換器19には第二発生器Dからの高温の冷媒液な
いしは冷媒蒸気を熱交換させるため戻り配管17と関連
すけ、溶液ポンプ7の吐出口から第二熱交換器入口まで
のラインより低温低濃度の吸収溶液を排熱回収用熱交換
器19に導いて第二発生器からの高温の冷媒液ないしは
冷媒蒸気と熱交換させた後、第一発生器C又は第一熱交
換器Fを出て第一発生器Cに至る吸収溶液に所要量だけ
バイパスさせるようにしてある。
On the other hand, a bypass pipe 18 is provided to bypass the low-temperature, low-concentration absorption solution from the pipe 8 of the solution pump 7, that is, the line from the discharge port of the bath liquid pump to the second heat exchanger G. The bypass pipe 18 is connected to the generator C, and the bypass pipe 18 is equipped with a solution flow rate control valve (1), a throttle valve, or an orifice, and a heat exchanger 19 for exhaust heat recovery. In order to heat-exchange the high-temperature refrigerant liquid or refrigerant vapor, a line from the discharge port of the solution pump 7 to the inlet of the second heat exchanger is connected to the return pipe 17 for heat exchange with the low-temperature, low-concentration absorption solution for exhaust heat recovery. 19 to exchange heat with the high-temperature refrigerant liquid or refrigerant vapor from the second generator, and then leave the first generator C or the first heat exchanger F to the absorption solution that reaches the first generator C. Only the required amount is bypassed.

更に前記吸収溶液配管8には溶液流量制御弁Iを設け、
バイパス配管18中の溶液流量制御弁■とともに蒸発器
Aの冷水出口温度検出器20又はこれに制御される第一
発生器Cの蒸気弁に連絡し、弁の操作を司どるようにな
っている。
Furthermore, the absorption solution piping 8 is provided with a solution flow rate control valve I,
Together with the solution flow rate control valve (■) in the bypass pipe 18, it is connected to the cold water outlet temperature detector 20 of the evaporator A or the steam valve of the first generator C that is controlled by this, and controls the operation of the valve. .

そして、蒸発器Aで蒸発した冷媒は吸収器Bの溶液に吸
収され、該溶液は溶液ポンプ7により第二熱交換器G1
第一熱交換器Fを経て第一発生器Cに送られ、ここで加
熱されて冷媒蒸気を放出し溶液は濃縮されて配管11で
第一熱交換器Fに入り、吸収器Bからの溶液と熱交換し
て第二発生器Dに入り、発生器チューブ12の加熱管で
加熱されて再度冷媒蒸気を発生し、この第二発生器Dで
発生した冷媒蒸気は凝縮器Eに入り、チューブ13の冷
却水によって冷却され凝縮する。
Then, the refrigerant evaporated in the evaporator A is absorbed into the solution in the absorber B, and the solution is transferred to the second heat exchanger G1 by the solution pump 7.
The solution is sent to the first generator C via the first heat exchanger F, where it is heated to release refrigerant vapor, and the solution is concentrated and enters the first heat exchanger F through the pipe 11, where the solution from the absorber B is The refrigerant vapor is heated by the heating tube of the generator tube 12 to generate refrigerant vapor again, and the refrigerant vapor generated in the second generator D enters the condenser E and is heated by the heating tube of the generator tube 12. It is cooled and condensed by the cooling water of No. 13.

一方、第二発生器の溶液は戻り配管9で第二熱交換器G
に入り、吸収器Bからの溶液との熱交換により温度が低
下して吸収器Bに戻り、また凝縮器Eに溜った冷媒は戻
り配管15を経て蒸発器Aに戻って二重効用の冷凍サイ
クルを繰り返すものであるが、溶液ポンプ7の吐出口か
ら第二熱交換器G入口までのラインからの低温低濃度の
吸収溶液を排熱回収用熱交換器19に導いて第二発生器
からの高温の冷媒液ないしは冷媒蒸気と熱交換させた後
、第一発生器C又は第一熱交換器Fを出て第一発生器C
に至る吸収溶液に所要量だけバイパスさせ、排熱回収用
熱交換器19で熱交換した熱量相当のエネルギ節約を第
一発生器Cでの加熱源で得ることができる。
On the other hand, the solution in the second generator is transferred to the second heat exchanger G through the return pipe 9.
The refrigerant cools down through heat exchange with the solution from absorber B and returns to absorber B, and the refrigerant accumulated in condenser E returns to evaporator A via return piping 15 for double-effect refrigeration. The cycle is repeated, and the low-temperature, low-concentration absorption solution from the line from the discharge port of the solution pump 7 to the inlet of the second heat exchanger G is guided to the heat exchanger 19 for waste heat recovery, and is then transferred from the second generator. After exchanging heat with the high temperature refrigerant liquid or refrigerant vapor, it exits the first generator C or the first heat exchanger F and is transferred to the first generator C.
By bypassing the absorption solution by the required amount, energy savings equivalent to the amount of heat exchanged in the exhaust heat recovery heat exchanger 19 can be obtained from the heat source in the first generator C.

即ち、所要冷凍容量を得るために少ない加熱エネルギで
よいことになり熱効率が向上する。
That is, less heating energy is required to obtain the required refrigerating capacity, improving thermal efficiency.

そして、バイパスさせるに際しては前記吸収器Bから第
一発生器Cに送り込む量を調整している流量制御弁I,
■を、第一発生器Cの圧力、又は両発生器C,D間の圧
力差を信号として、匍脚するか或いはこれら圧力を用い
る代わりに、第一発生器C又は第二発生器Dの冷媒蒸気
の飽和温又は、近似的な飽和温を用いたり蒸発器Aの冷
水出口湿度の検出で制御してもさしつかえない。
When bypassing, a flow control valve I, which adjusts the amount sent from the absorber B to the first generator C,
(2) using the pressure of the first generator C or the pressure difference between both generators C and D as a signal, or instead of using these pressures, the pressure of the first generator C or the second generator D can be used as a signal. Control may be performed using the saturated temperature of the refrigerant vapor or an approximate saturated temperature, or by detecting the humidity at the cold water outlet of the evaporator A.

即ち、冷水出口温度を信号として熱源熱量制御弁Hを作
動させ、また第二発生器Dのチューブ12内の冷媒液温
を信号として溶液流量制御弁■及び川を作動させ、その
流量配分を調整していることになる。
That is, the heat source heat quantity control valve H is operated using the chilled water outlet temperature as a signal, and the solution flow rate control valve (■) and the flow rate are operated using the refrigerant liquid temperature in the tube 12 of the second generator D as a signal, and the flow rate distribution is adjusted. That means you are doing it.

なお、前記溶媒バイパス配管18は第一発生器Cに直接
連結するラインに代えて間接的に第一熱交換器F出口か
ら第一発生器Cまでのライン22を設けることもできる
In addition, instead of the line directly connected to the first generator C, the solvent bypass piping 18 may be provided with a line 22 indirectly extending from the outlet of the first heat exchanger F to the first generator C.

これらの場合バイパス配管18を第11第2の両熱交換
器の間に連結して希溶液を戻すと溶液流路の抵抗も大き
くなり冷媒冷却装置の抵抗値と低温溶液熱交換器の抵抗
値がバランスしないと、希溶液の配分は両者にできない
ので結果的には溶液循環ポンプのヘッドを高くして、両
熱交換器の流路抵抗のバランスをとることが必要となる
制約を受けることになるため、熱交換器19を出た希溶
液は溶液熱交換器Fを通さず直接第一発生器C側又は第
一熱交換器Fの出口側に戻して損失抵抗を小さくして希
溶液の熱交換器での構成上の制約を受けないで自由にで
きることとなるし、第一熱交換器Fの熱交換量(流量×
温度差×比熱)の減少も防止できる。
In these cases, if the bypass pipe 18 is connected between the 11th and 2nd heat exchangers and the dilute solution is returned, the resistance of the solution flow path will also increase, causing the resistance value of the refrigerant cooling device and the resistance value of the low temperature solution heat exchanger to increase. If these are not balanced, it will not be possible to distribute the dilute solution between the two, and as a result, the head of the solution circulation pump will have to be raised to balance the flow path resistance of both heat exchangers. Therefore, the dilute solution leaving the heat exchanger 19 is returned directly to the first generator C side or the outlet side of the first heat exchanger F without passing through the solution heat exchanger F to reduce the loss resistance and reduce the dilute solution. This means that the heat exchange amount of the first heat exchanger F (flow rate x
It is also possible to prevent a decrease in temperature difference x specific heat).

また冷媒冷却装置への希溶液の流量制限がないと冷凍容
量が減少し、冷媒蒸気ドレンが減少したときもこの装置
に多量の希溶液を循環させることになって吸収冷凍サイ
クルの著しい効率の低下を部分負荷運転で招くことにな
るので前記流量制御弁I,Iが低負荷になるにしたがっ
て希溶液の供給量を減少する制御を行なえるように、負
荷の減少を冷水出口温度などにより検出し、その流量配
分を制御して部分負荷時の効率の低下を防止している。
Additionally, if the flow rate of dilute solution to the refrigerant cooling device is not restricted, the refrigeration capacity will decrease, and even when the refrigerant vapor drain decreases, a large amount of dilute solution will have to be circulated through this device, which will significantly reduce the efficiency of the absorption refrigeration cycle. Therefore, in order to control the flow rate control valves I to reduce the amount of dilute solution supplied as the load becomes low, the decrease in load is detected by the chilled water outlet temperature, etc. , the flow distribution is controlled to prevent a drop in efficiency during partial loads.

一方、第二発生器D出口からの高温の冷媒液は排熱回収
用熱交換器19で低温低濃度の吸収溶液と熱交換して低
温となった後、凝縮器Eに導いてあるが蒸発器Aに導く
ライン23又は更に必要なら凝縮器Eから蒸発器Aへの
液冷媒のライン15に合流させるライン24を設けるこ
ともできる。
On the other hand, the high-temperature refrigerant liquid from the outlet of the second generator D is cooled by exchanging heat with the low-temperature, low-concentration absorbing solution in the exhaust heat recovery heat exchanger 19, and is then led to the condenser E where it evaporates. A line 23 leading to the vessel A or, if necessary, a line 24 joining the liquid refrigerant line 15 from the condenser E to the evaporator A can also be provided.

さらに第1図示例では蒸気又は高温水を加熱源とした二
重効用吸収冷凍装置に実施した例を示したが、二重効用
吸収冷凍サイクルを用いた吸収冷凍装置であれば、すべ
てに実施できる。
Furthermore, although the first illustrated example shows an example in which the system is applied to a dual-effect absorption refrigeration system that uses steam or high-temperature water as a heating source, it can be applied to any absorption refrigeration system that uses a dual-effect absorption refrigeration cycle. .

例えば、蒸気、高温水、都市ガス、灯油などを加熱源と
した二重効用吸収冷凍サイクルを用いた吸収冷凍装置な
どで、第2図においてガスや灯油などを加熱源としたガ
ス冷温水機の実施例を示した。
For example, an absorption refrigeration system using a dual-effect absorption refrigeration cycle using steam, high-temperature water, city gas, kerosene, etc. as a heating source, etc. An example was shown.

しかして第一発生器Cへの熱源熱量制御弁Hが、冷水出
口温度の信号により作動すると、第一発生器Cへの加熱
量が変化し、第一発生器C内の浴液湿が変化、発生する
冷媒蒸気圧及び、その飽和温がi{ヒする。
When the heat source heat amount control valve H to the first generator C is activated by the signal of the cold water outlet temperature, the amount of heating to the first generator C changes, and the bath liquid humidity in the first generator C changes. , the generated refrigerant vapor pressure and its saturation temperature decrease.

つまり熱源熱量匍脚弁Hが作動すると、第二発生器Dの
チューブ12内の冷媒液湿が変動し、それにより溶液流
量制御弁Iが作動することになり、一方バイパス配管1
8には適当な絞り機構■例えばオリフイスなどを入れて
ほゾ一定の所要量の低温低濃度溶液が排熱回収用熱交換
器19に流れるようにして容量制御が容易に行ない得ら
れることになる。
In other words, when the heat source calorific value foot valve H operates, the refrigerant liquid moisture in the tube 12 of the second generator D changes, which causes the solution flow rate control valve I to operate, and on the other hand, the bypass piping 1
In 8, an appropriate throttling mechanism such as an orifice is inserted so that a constant amount of the low-temperature, low-concentration solution flows into the exhaust heat recovery heat exchanger 19, thereby easily controlling the capacity. .

本発明は、第一発生器Cから冷媒蒸気を第二発生器Dに
導き、この第二発生器Dで凝縮した冷媒液を凝縮器Eを
介して蒸発器Aへ導くようにした二重効用吸収冷凍機に
おいて、第二発生器Dからの高温冷媒液のもつ熱エネル
ギをそのまま凝縮器Eで冷却水に捨てることなく回収す
ることによりこの熱量相当のエネルギ節約を第一発生器
Cでの加熱源で得ることができる。
The present invention provides a dual effect system in which refrigerant vapor is guided from the first generator C to the second generator D, and the refrigerant liquid condensed in the second generator D is guided to the evaporator A via the condenser E. In an absorption refrigerator, by recovering the thermal energy of the high-temperature refrigerant liquid from the second generator D directly in the condenser E without discarding it into the cooling water, energy savings equivalent to this amount of heat can be achieved by heating the first generator C. You can get it at source.

即ち希吸収溶液を熱回収用熱交換器に送り第一発生器の
ラインに送っているのでこのラインの加熱は二重効用の
熱エネルギの節約になり、また熱回収用熱交換器は完全
な冷媒液だけでなく冷媒蒸気の同伴による損失の回収も
同時に行なえるほか熱回収用熱交換器への吸収溶液量は
任意に決定できる利点もあり、しかも相手側の流量と熱
交換量が一定のため第一熱交換器の煽吸収溶液の減少(
バイパス分だけ)により逆にこの熱交換器出口の前記溶
液温度が高くできて流量減少による昇湛と伝熱負荷減少
との効果で効率が上昇するし、第一熱交換器の出口側に
吸収溶液を戻す循環系統であるため第一熱交換器の熱交
換量の増大となり、さらに第一熱交換器内の希溶液流量
が増大せずに圧力損失も少なくポンプの特性にも影響が
ないし所要冷凍容量を得るために少ない加熱エネルギで
よいことになり、熱効率が向上する。
That is, since the dilute absorption solution is sent to the heat recovery heat exchanger and sent to the first generator line, the heating of this line saves double-effect thermal energy, and the heat recovery heat exchanger is completely Loss due to entrainment of not only refrigerant liquid but also refrigerant vapor can be recovered at the same time, and there is also the advantage that the amount of absorption solution to the heat recovery heat exchanger can be determined arbitrarily. Due to the reduction of the absorption solution in the first heat exchanger (
On the other hand, the temperature of the solution at the outlet of this heat exchanger becomes higher due to the bypass portion), and the efficiency increases due to the effect of rising due to the flow rate reduction and heat transfer load reduction. Since it is a circulation system that returns the solution, the amount of heat exchanged in the first heat exchanger increases, and the flow rate of the diluted solution in the first heat exchanger does not increase, resulting in less pressure loss and no effect on pump characteristics. Less heating energy is required to obtain the refrigerating capacity, improving thermal efficiency.

例えば普通の空調条件で本発明を実施すると約5%の加
熱エネルギが節約できるのでその効果は太きいし、また
排熱として放出される熱エネルギを回収するのでこの熱
量相当の冷却水側での費用節約が得られる。
For example, if the present invention is implemented under normal air conditioning conditions, approximately 5% of heating energy can be saved, so the effect is significant.Also, since the thermal energy released as waste heat is recovered, the amount of heat equivalent to this amount is reduced on the cooling water side. Cost savings can be achieved.

例えば冷却水水量を放熱量相当量だけ減少したり、再循
環方式ではクーリングタワーの容量もこの分だけ小さく
できる利点があり、しかもこの冷却水送水ポンプ動力も
節約できることになるほか容量制御時に第一発生器と第
二発生器との間は常に液シールされていることとなって
ガスバイパスが適確に防止でき安全に運転することも可
能であり、構戒も簡単経済的にできると共に、第一発生
器に入る溶液流量を流量制御弁の特性、湿度信号の特性
変更により、任意に変化させることが可能で、熱源の状
態に応じて著しく効率のよい冷凍サイクルを得て、その
容量匍脚での応答性も良好であり運転経費の節減に役立
ち、安全性も高められる等の利点がある。
For example, the amount of cooling water can be reduced by an amount equivalent to the amount of heat dissipated, and the recirculation method has the advantage of reducing the capacity of the cooling tower by this amount.In addition, the power of the cooling water pump can also be saved, and the first generation occurs when controlling the capacity. Since there is always a liquid seal between the generator and the second generator, gas bypass can be accurately prevented and safe operation can be performed. The flow rate of the solution entering the generator can be changed arbitrarily by changing the characteristics of the flow control valve and the characteristics of the humidity signal, resulting in an extremely efficient refrigeration cycle depending on the state of the heat source, and the capacity of the It has the advantage of good responsiveness, helping to reduce operating costs, and improving safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統説明図、第2図は他
の実施例の系統説明図である。 A・・・・・・蒸発器、B・・・・・・吸収器、C・・
・・・・第一発生器、D・・・・・・第二発生器、E・
・・・・・凝縮器、F・・・・・・第一熱交換器、G・
・・・・・第二熱叉換器、H・・・・・・熱源熱量制御
弁、■・・・・・・溶液流量制御弁、■・・・・・・溶
液流量制御弁 第1図)また第2図では絞り機構、1,
14・・・・・・缶胴、2・・・・・・冷水チューブ、
3・・・・・・冷媒ポンプ、4・・・・・・液循環管路
、5・・・・・・スプレー管、6・・・・・・冷却水チ
ューブ、7・・・・・・浴液ポンプ、8,9,11,1
5・・・・・・配管、10,12・・・・・・発生器チ
ューブ、13・・・・・・凝縮器チューブ、1 6.−
・・冷媒蒸気配管、17・・・・・・戻り配管、18
・・・・・・バイパス配管、19・・・・・・熱交換器
、20・・・・・・冷水出口温度検出器、22,23,
24・・・・・・ライン。
FIG. 1 is a system explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a system explanatory diagram of another embodiment. A...Evaporator, B...Absorber, C...
...First generator, D...Second generator, E.
... Condenser, F ... First heat exchanger, G.
...Second heat exchanger, H...Heat source heat amount control valve, ■...Solution flow rate control valve, ■...Solution flow rate control valve Figure 1 ) In Fig. 2, the aperture mechanism, 1,
14... Can body, 2... Cold water tube,
3...Refrigerant pump, 4...Liquid circulation pipe, 5...Spray pipe, 6...Cooling water tube, 7... Bath liquid pump, 8, 9, 11, 1
5... Piping, 10, 12... Generator tube, 13... Condenser tube, 1 6. −
... Refrigerant vapor piping, 17 ... Return piping, 18
......Bypass piping, 19...Heat exchanger, 20...Cold water outlet temperature detector, 22, 23,
24... line.

Claims (1)

【特許請求の範囲】 1 蒸発器A1吸収器B1第一発生器C1第二発生器D
1凝縮器E及び第一熱交換器F1第二熱交換器Gから構
成され、第一発生器Cから冷媒蒸気を第二発生器Dに導
き、この第二発生器Dで凝縮した冷媒液を凝縮器Eを介
して蒸発器Aへ導くようにした二重効用吸収冷凍機にお
いて、溶液ポンプの吐出口から第二熱交換器人口までの
ラインからの低温低濃度の吸収溶液を排熱回収用熱交換
器に導いて第二発生器Dからの高温の冷媒液ないし冷媒
蒸気と熱交換させた後、第一発生器C又は第一熱交換器
Fを出て第一発生器Cに至る吸収溶液に所要量だけバイ
パスさせるラインを配備したことを特徴とする二重効用
吸収冷凍装置。 2 蒸発器A1吸収器B1第一発生器C1第二発生器D
1凝縮器E及び第一熱交換器F1第二熱交換器Gから構
或され、第一発生器Cから冷媒蒸気を第二発生器Dに導
き、この第二発生器Dで凝縮した冷媒液を凝縮器Eを介
して蒸発器Aへ導くようにした二重効用吸収冷凍機にお
いて、溶液ポンプの吐出口から第二熱交換器人口までの
ラインからの低温低濃度の吸収溶液を排熱回収用熱交換
器に導いて第二発生器Dからの高温の冷媒液ないしは冷
媒蒸気と熱交換させた後、第一発生器C又は第一熱交換
器Fを出て第一発生器Cに至る吸収溶液に所要量だけバ
イパスさせるラインを配備すると共に、前記吸収器Bか
ら第一発生器Cへ送る溶液流量を制御するための溶液流
量制御弁I,It又はこの二つの制御弁I,■の機能を
有する一体形制御弁例えば三方制御弁若しくは制御弁の
いずれか一方のみとして他の一つを固定絞り機構として
備え、この制御弁が同時に或いは選択して作動させるた
めに前記第一発生器Cで発生する冷媒蒸気の圧力又はそ
の飽和温度の変動若しくは蒸発器Aの冷水出口温度の変
動を検出する検知器に連絡配備され、その溶液流量の配
分を変えて容量制御するようにしたことを特徴とする二
重効用吸収冷凍装置。 3 蒸発器A1吸収器B1第一発生器C1第二発生器D
1凝縮器E及び第一熱交換器F1第二熱交換器Gから構
成され、第一発生器Cから冷媒蒸気を第二発生器Dに導
き、この第二発生器Dで凝縮した冷媒液を凝縮器Eを介
して蒸発器Aへ導くようにした二重効用吸収冷凍機にお
いて、溶液ポンプの吐出口から第二熱交換器入口までの
ラインからの低温低濃度の吸収溶液を排熱回収用熱交換
器に導いて第二発生器Dからの高温の冷媒液ないしは冷
媒蒸気と熱交換させた後、第一発生器C又は第一熱交挨
器Fを出て第一発生器Cに至る吸収溶液に所要量だけバ
イパスさせるラインを配備すると共に、前記第一発生器
Cへの熱源量を制御する冷凍容量制御用の熱源熱量制(
財)弁Hと、吸収器Bから第一発生器Cへ送る溶液流量
を制御するための溶液流量制御弁I,IIとを備え、こ
の溶液流量制御弁I,Iを選択して作動させるために前
記第一発生器Cで発生する冷媒蒸気の圧力又はその飽和
温度の変動若しくは蒸発器Aの冷水出口温度の変動を検
出する検知器に前記熱源熱量制の弁Hと溶液流量制御弁
I,IIを連絡配備してその浴液流量の配分を変えて容
量制(財)するようにしたことを特徴とする二重効用吸
収冷凍装置。
[Claims] 1 Evaporator A1 Absorber B1 First generator C1 Second generator D
The refrigerant vapor is guided from the first generator C to the second generator D, and the refrigerant liquid condensed in the second generator D is In a double-effect absorption refrigerating machine that is guided to the evaporator A via the condenser E, the low-temperature, low-concentration absorption solution from the line from the outlet of the solution pump to the second heat exchanger is used for exhaust heat recovery. After being led to a heat exchanger to exchange heat with the high temperature refrigerant liquid or refrigerant vapor from the second generator D, the absorption leaves the first generator C or the first heat exchanger F and reaches the first generator C. A dual-effect absorption refrigeration device characterized by being equipped with a line that allows a required amount of solution to bypass. 2 Evaporator A1 Absorber B1 First generator C1 Second generator D
The refrigerant vapor is guided from the first generator C to the second generator D, and the refrigerant liquid condensed in the second generator D is In a double-effect absorption refrigerator, in which liquid is introduced to evaporator A via condenser E, waste heat is recovered from the low-temperature, low-concentration absorption solution from the line from the outlet of the solution pump to the second heat exchanger. After being led to a heat exchanger for heat exchange with the high temperature refrigerant liquid or refrigerant vapor from the second generator D, it exits the first generator C or the first heat exchanger F and reaches the first generator C. A solution flow control valve I, It or these two control valves I, An integrated control valve having a function, for example, a three-way control valve or only one of the control valves, and the other one as a fixed throttle mechanism, and the first generator C is operated simultaneously or selectively. The system is connected to a detector that detects fluctuations in the pressure or saturation temperature of the refrigerant vapor generated in the evaporator A, or fluctuations in the cold water outlet temperature of the evaporator A, and the capacity is controlled by changing the distribution of the solution flow rate. A dual-effect absorption refrigeration device. 3 Evaporator A1 Absorber B1 First generator C1 Second generator D
The refrigerant vapor is guided from the first generator C to the second generator D, and the refrigerant liquid condensed in the second generator D is In a double-effect absorption refrigerator that is guided to evaporator A via condenser E, the low-temperature, low-concentration absorption solution from the line from the outlet of the solution pump to the inlet of the second heat exchanger is used for exhaust heat recovery. After being led to a heat exchanger and exchanging heat with the high temperature refrigerant liquid or refrigerant vapor from the second generator D, it exits the first generator C or the first heat exchanger F and reaches the first generator C. A line for bypassing the absorbing solution by a required amount is provided, and a heat source calorific value system for controlling the refrigeration capacity that controls the amount of heat source to the first generator C (
(Installation) Valve H and solution flow rate control valves I and II for controlling the flow rate of the solution sent from the absorber B to the first generator C, and for selectively operating the solution flow rate control valves I and I. The heat source calorific value control valve H and the solution flow rate control valve I are included in the detector for detecting fluctuations in the pressure or saturation temperature of the refrigerant vapor generated in the first generator C or fluctuations in the cold water outlet temperature of the evaporator A. 1. A dual-effect absorption refrigeration system characterized in that the capacity of the bath liquid is controlled by changing the distribution of the flow rate of the bath liquid by communicating and deploying the II.
JP50049417A 1975-04-23 1975-04-23 Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou Expired JPS5847624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50049417A JPS5847624B2 (en) 1975-04-23 1975-04-23 Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50049417A JPS5847624B2 (en) 1975-04-23 1975-04-23 Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou

Publications (2)

Publication Number Publication Date
JPS51124848A JPS51124848A (en) 1976-10-30
JPS5847624B2 true JPS5847624B2 (en) 1983-10-24

Family

ID=12830481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50049417A Expired JPS5847624B2 (en) 1975-04-23 1975-04-23 Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou

Country Status (1)

Country Link
JP (1) JPS5847624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714602B2 (en) 2012-03-16 2017-07-25 Honda Motor Co., Ltd. Airflow directing member for a vehicle engine compartment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515648A (en) * 1974-07-05 1976-01-17 Sanyo Electric Co NIJUKO YOKYUSHU REITOKI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515648A (en) * 1974-07-05 1976-01-17 Sanyo Electric Co NIJUKO YOKYUSHU REITOKI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714602B2 (en) 2012-03-16 2017-07-25 Honda Motor Co., Ltd. Airflow directing member for a vehicle engine compartment

Also Published As

Publication number Publication date
JPS51124848A (en) 1976-10-30

Similar Documents

Publication Publication Date Title
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP3241550B2 (en) Double effect absorption chiller / heater
JPS5847624B2 (en) Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou
JPH03152362A (en) Absorption refrigerator
JP5785800B2 (en) Vapor absorption refrigerator
JP2657703B2 (en) Absorption refrigerator
JPS5857667B2 (en) Dual effect absorption refrigeration device and its control method
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JPS5812507B2 (en) Hybrid type absorption heat pump
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JP2000088391A (en) Absorption refrigerating machine
JP2904650B2 (en) Absorption chiller / heater
JP2592014B2 (en) Absorption chiller / heater
JP3108800B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP4201418B2 (en) Control method of absorption chiller / heater
KR200142462Y1 (en) Absorption type cooler
JPH0744917Y2 (en) Absorption chiller / heater device
JP2895974B2 (en) Absorption refrigerator
JP3111205B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPS6113888Y2 (en)
JPH08261591A (en) Vapor boiling absorption hot or chilled water generator and controlling method therefor
JP2696574B2 (en) Absorption refrigerator
KR0173495B1 (en) Absorptive type air conditioner
JP2000018758A (en) Absorption type cooling and heating apparatus