JP2904650B2 - Absorption chiller / heater - Google Patents

Absorption chiller / heater

Info

Publication number
JP2904650B2
JP2904650B2 JP22529092A JP22529092A JP2904650B2 JP 2904650 B2 JP2904650 B2 JP 2904650B2 JP 22529092 A JP22529092 A JP 22529092A JP 22529092 A JP22529092 A JP 22529092A JP 2904650 B2 JP2904650 B2 JP 2904650B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
temperature regenerator
low
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22529092A
Other languages
Japanese (ja)
Other versions
JPH0650626A (en
Inventor
志奥 山崎
敏之 金子
菊太郎 藤倉
教之 西山
康 眞井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP22529092A priority Critical patent/JP2904650B2/en
Publication of JPH0650626A publication Critical patent/JPH0650626A/en
Application granted granted Critical
Publication of JP2904650B2 publication Critical patent/JP2904650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、夏期には二重効用吸収
冷凍機として、冬期には一重効用吸収ヒートポンプとし
て使用することの出来る吸収冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater which can be used as a double-effect absorption refrigerator in summer and a single-effect absorption heat pump in winter.

【0002】[0002]

【従来の技術】従来の二重効用吸収冷凍機としては、例
えば特公昭60−24380号公報、特開昭62−18
6178号公報、特開昭63−25464号公報などが
知られているが、何れも二重効用/一重効用の切り換え
手段を有する装置ではない。
2. Description of the Related Art Conventional double effect absorption refrigerators include, for example, Japanese Patent Publication No. 60-24380 and Japanese Patent Application Laid-Open No. 62-18 / 1987.
Japanese Patent Application Laid-Open No. 6178, Japanese Patent Application Laid-Open No. 63-25464, and the like are known, but none of them are devices having switching means for double effect / single effect.

【0003】二重効用吸収冷凍機では、高温熱交換器と
低温熱交換器とを備えており、吸収液は高温再生器、高
温熱交換器、低温再生器および低温熱交換器を経由して
吸収器へと還流しているが、熱交換器の抵抗が大きいた
め、最近は吸収器から濃度の低い吸収液(稀液)を高温
再生器に送るための稀液用ポンプの他に、低温再生器と
低温熱交換器との間に濃液用ポンプを設置している。
A double-effect absorption refrigerator has a high-temperature heat exchanger and a low-temperature heat exchanger, and the absorbent is passed through a high-temperature regenerator, a high-temperature heat exchanger, a low-temperature regenerator and a low-temperature heat exchanger. Refluxed to the absorber, but due to the high resistance of the heat exchanger, recently, in addition to the diluent pump for sending low concentration absorbent (dilute) from the absorber to the high temperature regenerator, A concentrate pump is installed between the regenerator and the low-temperature heat exchanger.

【0004】しかし、稀液用と濃液用に二台のポンプを
組み込んだ装置であっても、一重効用運転に切り換える
と、熱交換器を通過する際の抵抗が大き過ぎるためと、
一重効用運転は二重効用運転に比べて再生圧力が低くな
り、熱交換器の抵抗に打ち勝って吸収液を安定に循環さ
せることが出来ないと云う問題点があった。
[0004] However, even in a device incorporating two pumps for a dilute solution and a concentrated solution, if the operation is switched to the single effect operation, the resistance when passing through the heat exchanger is too large.
The single-effect operation has a problem that the regeneration pressure is lower than that of the double-effect operation, and the resistance of the heat exchanger cannot be overcome to stably circulate the absorbent.

【0005】かかる問題点を解決するため、本発明者ら
は既に図5に示した、高温再生器1から低温再生器2お
よび弁(V1)を経由して凝縮器3に開口する冷媒蒸気
管12・12aと、弁(V2)を介して凝縮器3に直接
開口する冷媒蒸気管12・12bを設け、且つ、高温再
生器1から高温熱交換器6および弁(V3)を経由して
低温再生器2に開口する中間液管14の高温熱交換器6
入口側と、低温再生器2から濃液ポンプP3および低温
熱交換器7を経由して吸収器5に開口する濃液管16の
濃液ポンプP3入り口側とを、弁(V6)を介して連通
可能に設けた吸収冷温水機などを、特願平3−7375
1で提案している。
In order to solve such a problem, the present inventors have already shown in FIG. 5 a refrigerant vapor pipe opening from a high-temperature regenerator 1 to a condenser 3 via a low-temperature regenerator 2 and a valve (V1). 12 and 12a, and refrigerant vapor pipes 12 and 12b that open directly to the condenser 3 via the valve (V2), and the low temperature from the high temperature regenerator 1 via the high temperature heat exchanger 6 and the valve (V3). High temperature heat exchanger 6 of intermediate liquid pipe 14 opening to regenerator 2
A valve (V6) connects the inlet side and the inlet of the concentrate pump P3 of the concentrate pipe 16 opening to the absorber 5 via the concentrate pump P3 and the low temperature heat exchanger 7 from the low temperature regenerator 2. An absorption chiller / heater provided for communication is disclosed in Japanese Patent Application No. 3-7375.
1 suggests.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記構成の吸
収冷温水機においては、一重効用サイクル形成時に低温
熱交換器のみの使用となるため、成績係数を向上させる
ことが困難であった。また、高温再生器から吐出した吸
収液(中間液)が、濃液ポンプに直接流入するので耐熱
性が問題となり、高温再生器での加熱を抑えざるを得
ず、したがって、温度の高い温水(例えば、50℃以
上)を供給するのが困難であるなどの問題点があり、こ
れらの解決が課題となっていた。
However, in the absorption chiller / heater of the above construction, it is difficult to improve the coefficient of performance because only the low-temperature heat exchanger is used at the time of forming the single effect cycle. In addition, the absorption liquid (intermediate liquid) discharged from the high-temperature regenerator flows directly into the concentrated liquid pump, so heat resistance becomes a problem, and the heating in the high-temperature regenerator has to be suppressed. For example, it is difficult to supply (for example, 50 ° C. or higher), and solving these problems has been a problem.

【0007】[0007]

【課題を解決するための手段】本発明は上記した従来技
術の課題を解決するためになされたもので、高温再生
器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換
器および低温熱交換器を配管接続して構成する二重効用
吸収冷凍機において、高温再生器から低温再生器および
弁(V1)を経由して凝縮器に開口する冷媒蒸気管を設
けると共に、該高温再生器または該蒸気管の低温再生器
入口側と凝縮器とを弁(V2)を介して連通可能に設
け、高温再生器から高温熱交換器および弁(V3)を経
由して低温再生器に開口する中間液管の高温熱交換器出
口側と、低温再生器から濃液ポンプおよび低温熱交換器
を経由して吸収器に開口する濃液管の濃液ポンプ出口側
とを、弁(V4)を介して連通可能に設けたことを特徴
とする吸収冷温水機と、
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and comprises a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a high-temperature heat exchanger and In a double-effect absorption refrigerator configured by connecting a low-temperature heat exchanger by piping, a refrigerant vapor pipe that opens from a high-temperature regenerator to a condenser via a low-temperature regenerator and a valve (V1) is provided. The condenser or the inlet of the low-temperature regenerator of the steam pipe is provided so as to be able to communicate with the condenser via the valve (V2), and is opened from the high-temperature regenerator to the low-temperature regenerator via the high-temperature heat exchanger and the valve (V3). A valve (V4) is connected between the outlet of the high-temperature heat exchanger of the intermediate liquid pipe to be discharged and the outlet of the concentrated liquid pump of the concentrated liquid pipe that opens from the low-temperature regenerator to the absorber via the concentrated pump and the low-temperature heat exchanger. An absorption chiller / heater characterized by being provided so as to be able to communicate through

【0008】高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、高温熱交換器および低温熱交換器を配管接
続して構成する二重効用吸収冷凍機において、高温再生
器から低温再生器および弁(V1)を経由して凝縮器に
開口する冷媒蒸気管を設けると共に、該高温再生器また
は該蒸気管の低温再生器入口側と凝縮器とを弁(V2)
を介して連通可能に設け、高温再生器から高温熱交換器
および弁(V3)を経由して低温再生器に開口する中間
液管の高温熱交換器出口側と、低温再生器から濃液ポン
プおよび低温熱交換器を経由して吸収器に開口する濃液
管の濃液ポンプ入口側とを、弁(V5)を介して連通可
能に設けたことを特徴とする吸収冷温水機と、を提供
し、前記従技術の課題を解決するものである。
[0008] In a double-effect absorption refrigerator configured by connecting a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a high-temperature heat exchanger and a low-temperature heat exchanger by piping, low-temperature regeneration from the high-temperature regenerator is performed. A refrigerant vapor pipe that opens to the condenser via a condenser and a valve (V1), and connects the condenser of the high-temperature regenerator or the low-temperature regenerator of the vapor pipe with the condenser (V2).
And a high-pressure heat exchanger outlet side of an intermediate liquid pipe opening from the high-temperature regenerator to the low-temperature regenerator via the high-temperature heat exchanger and the valve (V3). And an absorption chiller / heater characterized in that the concentration pipe is connected to the concentration pump inlet side of the concentration pipe that opens to the absorber via the low-temperature heat exchanger through a valve (V5). To solve the problems of the prior art.

【0009】[0009]

【作用】本発明になる吸収冷温水器においては弁(V
1)と(V3)とを開け、弁(V2)と(V4)または
(V5)を閉じると、通常の二重効用モードで効率の良
い冷房運転に供することが出来る。
In the absorption chiller / heater according to the present invention, the valve (V
When 1) and (V3) are opened and the valves (V2) and (V4) or (V5) are closed, efficient cooling operation can be performed in the normal double-effect mode.

【0010】一方、弁(V1)と(V3)を閉じ、弁
(V2)と(V4)を開けて行う一重効用運転(濃液ポ
ンプは停止状態)では、高温再生器で発生した冷媒蒸気
が弁(V2)を介して凝縮器に直接流入し、該凝縮器に
配管してある水管を加熱する。この水管を流れる水は、
先に吸収器において吸収液が冷媒蒸気を吸収する際に生
じる熱で加熱されているので、高温再生器から流入した
冷媒蒸気による単なる加熱よりも熱効率が高い。
On the other hand, in the single effect operation (the concentrated pump is stopped) in which the valves (V1) and (V3) are closed and the valves (V2) and (V4) are opened, the refrigerant vapor generated in the high temperature regenerator is discharged. It flows directly into the condenser via the valve (V2) and heats the water pipe connected to the condenser. The water flowing through this water pipe
Since the absorbing liquid is heated by the heat generated when the absorbing liquid absorbs the refrigerant vapor in the absorber, the thermal efficiency is higher than the mere heating by the refrigerant vapor flowing from the high-temperature regenerator.

【0011】しかも、高温再生器から中間液管に吐出し
て吸収器に導かれる中間液が、高温熱交換器と低温熱交
換器の二箇所で、吸収器から高温再生器に導かれる稀液
と熱交換してこれを加熱するため、高温再生器での加熱
量を減少させることが可能であり、装置の成績係数が向
上する。
Further, the intermediate liquid discharged from the high-temperature regenerator to the intermediate liquid pipe and guided to the absorber is a dilute liquid guided from the absorber to the high-temperature regenerator at two places, a high-temperature heat exchanger and a low-temperature heat exchanger. Since the heat is exchanged with the heat and heated, the amount of heating in the high-temperature regenerator can be reduced, and the coefficient of performance of the apparatus is improved.

【0012】加えて、高温再生器から吐出して吸収器に
導かれる中間液は濃液ポンプを通ることがないので、ポ
ンプの耐熱性とは無関係に高温再生器での加熱温度を高
めて冷媒蒸気を多量に発生させることが可能であり、こ
のため、凝縮器における冷媒蒸気による加熱作用が増大
し、例えば50℃を越えるような温度の高い温水の供給
が可能になる。
In addition, since the intermediate liquid discharged from the high-temperature regenerator and guided to the absorber does not pass through the concentrated liquid pump, the heating temperature in the high-temperature regenerator is increased irrespective of the heat resistance of the pump to increase the refrigerant temperature. It is possible to generate a large amount of steam, so that the heating effect of the refrigerant steam in the condenser increases, and it becomes possible to supply hot water having a high temperature, for example, exceeding 50 ° C.

【0013】また、弁(V1)と(V3)を閉じ、弁
(V2)と(V5)とを開けて行う一重効用運転の場合
においては、前記一重効用運転の作用・効果に加えて、
濃液ポンプP3の作用により、高温再生器から中間液管
に吐出した中間液が高温熱交換器および低温熱交換器を
難なく経由し、吸収器に送られる。
Further, in the case of the single effect operation in which the valves (V1) and (V3) are closed and the valves (V2) and (V5) are opened, in addition to the operation and effect of the single effect operation,
By the action of the concentrated liquid pump P3, the intermediate liquid discharged from the high-temperature regenerator to the intermediate liquid pipe passes through the high-temperature heat exchanger and the low-temperature heat exchanger without difficulty and is sent to the absorber.

【0014】なお、この場合には高温再生器から中間液
管に吐出した中間液が濃液ポンプを経由するが、この場
合の中間液は前記したように高温熱交換器で稀液管の稀
液を加熱し、自身は温度が低下しているため、濃液ポン
プの耐熱性が問題になることがない。したがって、この
場合も高温再生器での加熱温度を高めて冷媒蒸気の多量
発生を促し、凝縮器に多くの冷媒蒸気を送ることができ
るので、50℃を越えるような高温水を供給することが
できる。
In this case, the intermediate liquid discharged from the high-temperature regenerator to the intermediate liquid pipe passes through the concentrated liquid pump. In this case, the intermediate liquid is diluted by the high-temperature heat exchanger as described above. Since the liquid is heated and the temperature itself is lowered, the heat resistance of the concentrated liquid pump does not become a problem. Therefore, also in this case, the heating temperature in the high-temperature regenerator is increased to promote the generation of a large amount of refrigerant vapor, and a large amount of refrigerant vapor can be sent to the condenser. it can.

【0015】[0015]

【実施例】図1と図2に基づいて第1の実施例を説明す
ると、1は高温再生器、2は低温再生器、3は凝縮器、
4は蒸発器、5は吸収器、6は高温熱交換器、7は低温
熱交換器であって、機器それ自体は従来周知の二重効用
吸収冷凍機に使用されているものと何ら変わるものでは
ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment will be described with reference to FIGS. 1 and 2. 1 is a high-temperature regenerator, 2 is a low-temperature regenerator, 3 is a condenser,
4 is an evaporator, 5 is an absorber, 6 is a high-temperature heat exchanger, 7 is a low-temperature heat exchanger, and the equipment itself is different from that used in a conventionally known double-effect absorption refrigerator. is not.

【0016】11は吸収器5の底部に溜った稀液B1を
高温再生器1に送るための稀液管であり、吸収器5の出
口側には稀液ポンプP1が設けられている。なお、稀液
B1は、吸収器5において吸収液(例えばLiBr)が多量
の冷媒(例えば水)を吸収して吸収液濃度が薄くなった
溶液である。
Reference numeral 11 denotes a diluent pipe for sending the dilute liquid B1 accumulated at the bottom of the absorber 5 to the high-temperature regenerator 1, and a dilute liquid pump P1 is provided at the outlet side of the absorber 5. The dilute solution B1 is a solution in which the absorption liquid (for example, LiBr) absorbs a large amount of refrigerant (for example, water) in the absorber 5 and the concentration of the absorption liquid is reduced.

【0017】12は高温再生器1において吸収液から分
離した冷媒蒸気A1を凝縮器3に導くための冷媒蒸気管
である。この冷媒蒸気管12は下流側が二本に分岐し、
一方の冷媒蒸気管12aは低温再生器2の内部を通り、
電磁弁V1を介して凝縮器3に開口し、他方の冷媒蒸気
管12bは電磁弁V2を介して凝縮器3に直接開口して
いる。また、冷媒蒸気管12とは別に高温再生器1から
凝縮器3に至る冷媒蒸気管が、電磁弁などを有して設置
されても良い。
Reference numeral 12 denotes a refrigerant vapor pipe for guiding the refrigerant vapor A1 separated from the absorbing liquid in the high-temperature regenerator 1 to the condenser 3. The downstream side of this refrigerant vapor pipe 12 is branched into two,
One refrigerant vapor pipe 12a passes through the inside of the low-temperature regenerator 2,
The other refrigerant vapor pipe 12b opens directly to the condenser 3 via the solenoid valve V2, while the other refrigerant vapor pipe 12b opens directly to the condenser 3 via the solenoid valve V2. In addition, a refrigerant vapor pipe from the high temperature regenerator 1 to the condenser 3 may be provided with an electromagnetic valve or the like separately from the refrigerant vapor pipe 12.

【0018】13は液状の冷媒Aを蒸発器4に導くため
の冷媒液管であり、凝縮器3で凝縮した冷媒Aと蒸発器
4の下に溜った冷媒Aとが蒸発器4の手前で合流し、蒸
発器4の上部に設けた散布手段21に供給可能に配管さ
れている。なお、P2は、蒸発器4の底部に溜った冷媒
Aを散布手段21に送るための冷媒ポンプである。
Reference numeral 13 denotes a refrigerant liquid pipe for guiding the liquid refrigerant A to the evaporator 4. The refrigerant A condensed in the condenser 3 and the refrigerant A accumulated under the evaporator 4 are disposed in front of the evaporator 4. The pipes are joined so that they can be supplied to the spraying means 21 provided above the evaporator 4. In addition, P2 is a refrigerant pump for sending the refrigerant A accumulated at the bottom of the evaporator 4 to the spraying means 21.

【0019】14は、高温再生器1において濃縮された
中間液B2を低温再生器2に導くための中間液管であ
り、高温熱交換器6および電磁弁V3を途中に設けてあ
る。そして、高温熱交換器6の出口側で吸収液管路15
に分岐し、電磁弁V4を介して濃液ポンプP3出口側の
濃液管16に連通可能となっている。
Reference numeral 14 denotes an intermediate liquid pipe for guiding the intermediate liquid B2 concentrated in the high-temperature regenerator 1 to the low-temperature regenerator 2, in which a high-temperature heat exchanger 6 and a solenoid valve V3 are provided in the middle. Then, at the outlet side of the high-temperature heat exchanger 6, the absorbent line 15
And can communicate with the concentrate pipe 16 on the outlet side of the concentrate pump P3 via the solenoid valve V4.

【0020】なお、前記濃液管16は、低温再生器2で
濃縮された濃液B3を吸収器5の散布手段22に導くた
めのものであり、途中に前記濃液ポンプP3と低温熱交
換器7とを設けてある。
The concentrated liquid pipe 16 is for guiding the concentrated liquid B3 concentrated in the low-temperature regenerator 2 to the spraying means 22 of the absorber 5, and in the middle of the low-temperature heat exchange with the concentrated liquid pump P3. Vessel 7 is provided.

【0021】31と32は共に熱媒体としての水を流す
管であり、水管31は吸収器5および凝縮器3の内部を
通って循環可能に、水管32は蒸発器4の内部を通って
循環可能にそれぞれ配管されている。そして、水管31
の凝縮器3出口側と水管32の蒸発器4出口側に、それ
ぞれの水温を測定するための温度センサー41と42が
設けられている。温度センサー41と42とは同時に測
定可能に配線しても良いし、別々に測定するように接続
することも可能であるが、この場合は、スイッチ51の
切り換えによって何れかの測定データが取り込まれ、コ
ントローラー54の指令により、電動弁などの制御弁5
2の開度を制御し、ガスバーナ53へのガス供給量を調
節して燃焼を制御するように設けてある。
Numerals 31 and 32 denote pipes through which water as a heat medium flows. The water pipe 31 can be circulated through the interior of the absorber 5 and the condenser 3, and the water pipe 32 can be circulated through the interior of the evaporator 4. Each is piped as possible. And the water pipe 31
At the outlet side of the condenser 3 and at the outlet side of the evaporator 4 of the water pipe 32, temperature sensors 41 and 42 for measuring respective water temperatures are provided. The temperature sensors 41 and 42 may be wired so that they can be measured at the same time, or they may be connected so that they can be measured separately. In this case, when the switch 51 is switched, any measurement data is captured. , A control valve 5 such as an electric valve,
2 is controlled so as to control the combustion by controlling the amount of gas supplied to the gas burner 53.

【0022】上記構成になる本発明装置を夏期の冷房運
転に使用する場合には、図1のように電磁弁V2とV4
を閉じ、電磁弁V1とV3を開け、例えば温度センサー
42が測定する水管32の水温に基づいて制御弁52の
開度が制御され、ガスバーナ53の火力が調節できるよ
うにスイッチ51をセットし、稀液ポンプP1、冷媒ポ
ンプP2および濃液ポンプP3、それぞれを駆動して二
重効用運転を行う。
When the apparatus of the present invention having the above configuration is used for cooling operation in summer, the solenoid valves V2 and V4 are used as shown in FIG.
Is closed, the solenoid valves V1 and V3 are opened, and the switch 51 is set so that the opening of the control valve 52 is controlled based on the water temperature of the water pipe 32 measured by the temperature sensor 42 and the heating power of the gas burner 53 can be adjusted, for example. Dilution pump P1, refrigerant pump P2, and concentrate pump P3 are each driven to perform double-effect operation.

【0023】高温再生器1においては稀液B1が所定の
条件、例えば内圧が700mmHgになるように加熱される
ため、例えば液温155℃で冷媒蒸気A1が発生し、吸
収液の濃度が例えば58%から61%に濃縮され、中間
液B2となって中間液管14に吐出する。
In the high-temperature regenerator 1, since the dilute solution B1 is heated under a predetermined condition, for example, an internal pressure of 700 mmHg, the refrigerant vapor A1 is generated at, for example, a liquid temperature of 155 ° C., and the concentration of the absorbing liquid is, for example, 58%. % To 61%, and is discharged into the intermediate liquid pipe 14 as the intermediate liquid B2.

【0024】中間液管14に流れ出た中間液B2は、高
温熱交換器6において稀液管11を高温再生器1の方向
に流れている稀液B1を、例えば70℃から120℃に
加熱し、中間液B2自身は熱を奪われて例えば85℃ま
で冷却され、電磁弁V3を経由して低温再生器2に入
る。
The intermediate liquid B2 flowing into the intermediate liquid pipe 14 heats the dilute liquid B1 flowing in the direction of the high-temperature regenerator 1 through the dilute liquid pipe 11 in the high-temperature heat exchanger 6 from, for example, 70 ° C. to 120 ° C. The intermediate liquid B2 itself is deprived of heat and cooled to, for example, 85 ° C., and enters the low-temperature regenerator 2 via the solenoid valve V3.

【0025】低温再生器2に流入した中間液B2は、冷
媒蒸気管12を通って来た例えば98℃の冷媒蒸気A1
によって加熱され、冷媒蒸気A2を発生して吸収液濃度
が例えば63.6%に高まった濃液B3となって濃液管
16に吐出する。濃液B3が濃液管16に吐出する時の
温度は例えば91.3℃になっている。一方、中間液B
2を加熱した冷媒蒸気A1は熱を奪われて凝縮し、液状
となって電磁弁V1を通り凝縮器3に入る。なお、低温
再生器2の内部は冷媒が中間液B2から蒸発し易いよう
に、例えば内圧が56mmHgに減圧されている。
The intermediate liquid B2 flowing into the low-temperature regenerator 2 has a refrigerant vapor A1 of, for example, 98.degree.
To generate a refrigerant vapor A2, which is discharged into the concentrated liquid pipe 16 as a concentrated liquid B3 having an absorption liquid concentration of, for example, 63.6%. The temperature at which the concentrated liquid B3 is discharged to the concentrated liquid pipe 16 is, for example, 91.3 ° C. On the other hand, the intermediate liquid B
The refrigerant vapor A1 that has heated 2 is deprived of heat, condenses, becomes liquid, and enters the condenser 3 through the solenoid valve V1. The internal pressure of the low-temperature regenerator 2 is reduced to, for example, 56 mmHg so that the refrigerant is easily evaporated from the intermediate liquid B2.

【0026】低温再生器2で発生し、凝縮器3に入って
来た冷媒蒸気A2が水管31の内部を流れている水を例
えば37.5℃に加熱する。このとき、冷媒蒸気A2自
身は熱を奪われて凝縮し、電磁弁V1から入って来た液
状の冷媒Aと混合される。そして、例えば40℃で冷媒
液管13に吐出し蒸発器4に送られる。
The refrigerant vapor A2 generated in the low temperature regenerator 2 and entering the condenser 3 heats the water flowing inside the water pipe 31 to, for example, 37.5 ° C. At this time, the refrigerant vapor A2 itself is deprived of heat and condenses, and is mixed with the liquid refrigerant A entering from the solenoid valve V1. Then, the refrigerant is discharged to the refrigerant liquid pipe 13 at, for example, 40 ° C. and sent to the evaporator 4.

【0027】一方、低温再生器2から濃液管16に吐出
した濃液B3は、低温熱交換器7を経由して吸収器5に
送られる。低温再生器2の内圧は前記したように例えば
56mmHgと低いが、濃液ポンプP3によって送っている
ため濃液B3は低温熱交換器7を難なく経由して吸収器
5に送り込まれる。そして、低温熱交換器7を通過する
際に、濃液B3が稀液管11の内部を流れている稀液B
1を例えば36℃から70℃に加熱し、濃液B3自身は
91.3℃から52℃まで冷却される。
On the other hand, the concentrated liquid B 3 discharged from the low temperature regenerator 2 to the concentrated liquid pipe 16 is sent to the absorber 5 via the low temperature heat exchanger 7. Although the internal pressure of the low-temperature regenerator 2 is low, for example, 56 mmHg as described above, the concentrated liquid B3 is sent to the absorber 5 via the low-temperature heat exchanger 7 without difficulty because it is sent by the concentrated liquid pump P3. When passing through the low-temperature heat exchanger 7, the concentrated liquid B <b> 3
1 is heated, for example, from 36 ° C. to 70 ° C., and the concentrated liquid B3 itself is cooled from 91.3 ° C. to 52 ° C.

【0028】蒸発器4においては液状の冷媒Aが散布手
段21から散布され、吸収器5においては濃液B3が散
布手段22から散布される。蒸発器4と吸収器5とは、
従来装置と同様に冷媒Aの蒸気を透過するが、冷媒Aの
液体粒子を透過することのない微小間隙を持つエリミネ
ータ23を介して隣接している。しかも、内部が例えば
6.1mmHgに減圧されているため、散布された冷媒Aは
盛んに蒸発して冷媒蒸気A3となり、吸収器5に入って
ここで散布された濃液B3に吸収され、稀液B1とな
る。
In the evaporator 4, the liquid refrigerant A is sprayed from the spraying means 21, and in the absorber 5, the concentrated liquid B 3 is sprayed from the spraying means 22. The evaporator 4 and the absorber 5 are
Like the conventional device, it is adjacent via an eliminator 23 having a minute gap that allows the vapor of the refrigerant A to permeate but does not allow the liquid particles of the refrigerant A to permeate. In addition, since the pressure inside is reduced to, for example, 6.1 mmHg, the sprayed refrigerant A evaporates vigorously into refrigerant vapor A3, enters the absorber 5 and is absorbed by the concentrated liquid B3 sprayed there, It becomes liquid B1.

【0029】このように、蒸発器4で発生する冷媒蒸気
A3はエリミネータ23を通って隣りの吸収器5に入
り、ここで濃液B3に吸収されるため飽和圧力に達する
ことがない。したがって、冷媒Aは蒸発器4で盛んに蒸
発し、気化熱を奪って周囲の温度を下げる。このため、
蒸発器4内に導かれている水管32が冷却され、内部を
流れている水が例えば12℃から設定温度、例えば7℃
に冷却されるので、この冷水が冷房用の熱媒体として循
環使用される。
As described above, the refrigerant vapor A3 generated in the evaporator 4 enters the adjacent absorber 5 through the eliminator 23, where it is absorbed by the concentrated liquid B3, and does not reach the saturation pressure. Therefore, the refrigerant A evaporates vigorously in the evaporator 4 and takes away heat of vaporization to lower the ambient temperature. For this reason,
The water pipe 32 guided into the evaporator 4 is cooled, and the water flowing inside the evaporator 4 is heated from, for example, 12 ° C. to a set temperature, for example, 7 ° C.
The cooling water is circulated and used as a heat medium for cooling.

【0030】一方、吸収器5においては、エリミネータ
23を通って入って来た冷媒蒸気A3を濃液B3が吸収
する際に吸収熱が発生し、水管31の内部にある水を加
熱する。この水は凝縮器3に送られ、前記したように例
えば37.5℃まで加熱されるため、クーリングタワー
(図示せず)などに導いて例えば32℃まで冷却し、循
環して再び冷却水として使用される。
On the other hand, in the absorber 5, when the concentrated liquid B3 absorbs the refrigerant vapor A3 that has entered through the eliminator 23, heat of absorption is generated, and the water inside the water pipe 31 is heated. This water is sent to the condenser 3 and heated to, for example, 37.5 ° C. as described above. Therefore, the water is guided to a cooling tower (not shown) and cooled to, for example, 32 ° C., circulated and used again as cooling water. Is done.

【0031】運転中、冷房負荷が大きくて温度センサ4
2が測定する水管32の蒸発器4出口側の水温が前記設
定の7℃より高くなった時には、コントローラー54の
指示によって制御弁52を大きく開口してガス供給量を
増やし、ガスバーナ53の火力を上げ冷媒蒸気A1を増
加させる。冷媒蒸気A1の発生量が増加すると、蒸発器
4では冷媒Aの蒸発量が増加して多量の気化熱が奪われ
るため冷却効果が大となり、水管32の蒸発器4出口側
水温が低下する。逆に、冷房負荷が小さく、水管32の
蒸発器4出口側の水温が前記設定の7℃より低くなった
時には、ガスバーナ53の火力を適宜下げて運転すれば
設定水温に復帰する。
During operation, the cooling load is large and the temperature sensor 4
When the water temperature at the outlet side of the evaporator 4 of the water pipe 32 measured by 2 becomes higher than the above-mentioned set temperature of 7 ° C., the control valve 52 is opened greatly by the instruction of the controller 54 to increase the gas supply amount, and the heating power of the gas burner 53 is reduced. The raising refrigerant vapor A1 is increased. When the generation amount of the refrigerant vapor A1 increases, the evaporation amount of the refrigerant A increases in the evaporator 4 and a large amount of heat of vaporization is taken, so that the cooling effect becomes large and the water temperature of the water pipe 32 on the outlet side of the evaporator 4 decreases. Conversely, when the cooling load is small and the water temperature at the outlet side of the evaporator 4 of the water pipe 32 becomes lower than the above-mentioned set temperature of 7 ° C., the gas burner 53 is returned to the set water temperature by appropriately reducing the thermal power.

【0032】次に、本装置を冬期に一重効用のヒートポ
ンプとして使用する例を図2に基づいて説明すると、こ
の場合は電磁弁V1とV3とを閉じ、電磁弁V2とV4
とを開け、温度センサー41が測定する水管31の凝縮
器3出口側水温によって制御弁52を制御可能にスイッ
チ51をセットし、濃液ポンプP3を停止し、稀液ポン
プP1と冷媒ポンプP2とを駆動させて運転する。な
お、二重効用の場合と同様に機能する部分の説明は省略
する。
Next, an example in which the present apparatus is used as a single-effect heat pump in winter will be described with reference to FIG. 2. In this case, the solenoid valves V1 and V3 are closed, and the solenoid valves V2 and V4 are closed.
The switch 51 is set so that the control valve 52 can be controlled by the water temperature on the outlet of the condenser 3 of the water pipe 31 measured by the temperature sensor 41, the concentrated liquid pump P3 is stopped, and the diluted liquid pump P1 and the refrigerant pump P2 are To drive. Note that a description of a portion that functions in the same manner as in the case of double effect is omitted.

【0033】高温再生器1で発生した冷媒蒸気A1は、
電磁弁V2を経由して凝縮器3に直接入って水管31を
加熱する。この加熱によって水管31の中を流れる水は
所定温度、例えば45℃まで加熱され、冷媒蒸気A1自
身は凝縮して温水となる。したがって、この場合の凝縮
器3は外観上は温水器であり、該凝縮器3を経由してき
た水管31の温水が暖房の熱源として使用される。そし
て、暖房に使用された後、この温水は例えば40℃まで
温度が下がって再び吸収器5に還流する。
The refrigerant vapor A1 generated in the high-temperature regenerator 1 is
It directly enters the condenser 3 via the solenoid valve V2 to heat the water pipe 31. By this heating, the water flowing in the water pipe 31 is heated to a predetermined temperature, for example, 45 ° C., and the refrigerant vapor A1 itself condenses to become hot water. Therefore, the condenser 3 in this case is a water heater in appearance, and the hot water of the water pipe 31 passing through the condenser 3 is used as a heat source for heating. Then, after being used for heating, the temperature of this hot water drops to, for example, 40 ° C. and returns to the absorber 5 again.

【0034】水管31を通して凝縮器3から取り出され
る温水は、吸収器5においても高温再生器1から送られ
た中間液B2が冷媒蒸気A3を吸収する際に発生した吸
収熱によって加熱されているため、高温再生器1で発生
した冷媒蒸気A1による単なる加熱の場合より熱効率が
高い。
The hot water extracted from the condenser 3 through the water pipe 31 is also heated in the absorber 5 by absorption heat generated when the intermediate liquid B2 sent from the high-temperature regenerator 1 absorbs the refrigerant vapor A3. The thermal efficiency is higher than in the case of simple heating by the refrigerant vapor A1 generated in the high-temperature regenerator 1.

【0035】しかも、高温再生器1から中間液管14に
吐出した中間液B2が、高温熱交換器6と低温熱交換器
7の二箇所で、吸収器5から稀液管11を通って高温再
生器1に導かれている稀液と熱交換してこれを加熱し、
高温再生器1に流入する稀液の温度は例えば85℃にも
達するので、ガスバーナ53の火力を絞ることが可能で
あり、このため一重効用運転時においても熱効率は単な
るボイラー加熱の場合より大幅に改善され、例えば一般
のボイラー加熱の成績係数が0.85前後であるのに対
し、本発明装置のそれは約1.4である。
Further, the intermediate liquid B2 discharged from the high-temperature regenerator 1 to the intermediate liquid pipe 14 is supplied to the high-temperature heat exchanger 6 and the low-temperature heat exchanger 7 from the absorber 5 through the rare liquid pipe 11 at a high temperature. Heat exchanges with the dilute liquid guided to the regenerator 1 and heats it.
Since the temperature of the diluted liquid flowing into the high-temperature regenerator 1 reaches, for example, 85 ° C., it is possible to reduce the heating power of the gas burner 53, and therefore, even in the single effect operation, the thermal efficiency is significantly larger than that of the simple boiler heating. For example, the coefficient of performance of general boiler heating is around 0.85, while that of the apparatus of the present invention is about 1.4.

【0036】また、高温再生器1から中間液管14に吐
出して吸収器5に導かれる中間液は濃液ポンプP3を通
ることがないので、該ポンプの耐熱性とは無関係に高温
再生器1では制御弁52を開け、ガスバーナ53へのガ
ス供給を増加させ、火力を高めて冷媒蒸気を多量に発生
させることが可能であり、このため、凝縮器3における
冷媒蒸気による加熱作用が増大することから、水管31
を流れる温水は50℃を越える高温水にすることも可能
である。
The intermediate liquid discharged from the high-temperature regenerator 1 to the intermediate liquid pipe 14 and led to the absorber 5 does not pass through the concentrated liquid pump P3, so that the high-temperature regenerator is independent of the heat resistance of the pump. In 1, the control valve 52 is opened, the supply of gas to the gas burner 53 is increased, and the thermal power is increased, so that a large amount of refrigerant vapor can be generated. Therefore, the heating effect of the refrigerant vapor in the condenser 3 increases. Therefore, the water pipe 31
The hot water flowing through can be hot water exceeding 50 ° C.

【0037】図3と図4は、図1と図2に示した吸収液
管路15と電磁弁V4に代えて、吸収液管路15Aを中
間液管14の高温再生器6出口側と濃液管16の濃液ポ
ンプP3入口側とを電磁弁V5を介して連通可能に設け
た第2の実施例を示すものである。この場合も、前記実
施例と重複する部分の説明は省略する。
FIGS. 3 and 4 show an absorption liquid line 15A instead of the absorption liquid line 15 and the solenoid valve V4 shown in FIGS. This shows a second embodiment in which the liquid pipe 16 and the inlet side of the concentrated liquid pump P3 are provided so as to be able to communicate with each other via an electromagnetic valve V5. Also in this case, the description of the same parts as those in the above embodiment is omitted.

【0038】この第2の実施例の吸収冷温水機において
も、電磁弁V2とV5を閉じ、電磁弁V1とV3とを開
けて行う二重効用モードの冷房運転では、前記第1の実
施例の吸収冷温水機と同一構成となるので、同様に機能
することは明らかである。
Also in the absorption chiller / heater of the second embodiment, the cooling operation in the double effect mode in which the solenoid valves V2 and V5 are closed and the solenoid valves V1 and V3 are opened is performed in the cooling operation of the first embodiment. It has the same configuration as that of the absorption chiller / heater of No. 1, and thus it is apparent that it functions similarly.

【0039】そして、電磁弁V1とV3を閉じ、電磁弁
V2とV5を開けて運転する冬期の一重効用モードのヒ
ートポンプ運転の場合には、高温再生器1から中間液管
14に吐出した中間液B2が、濃液ポンプP3の駆動に
より高温熱交換器6、吸収液管路15Aの電磁弁V5お
よび低温熱交換器7を難なく通過して吸収器5に送ら
れ、前記実施例1と同様の作用効果がより安定して発揮
される。
In the case of a single-effect mode heat pump operation in winter in which the solenoid valves V1 and V3 are closed and the solenoid valves V2 and V5 are opened, the intermediate liquid discharged from the high temperature regenerator 1 to the intermediate liquid pipe 14 is operated. B2 is passed through the high-temperature heat exchanger 6, the solenoid valve V5 of the absorbing liquid pipe 15A and the low-temperature heat exchanger 7 without difficulty by the operation of the concentrated liquid pump P3 and sent to the absorber 5, and the same as in the first embodiment. The effect is more stably exhibited.

【0040】なお、この場合には高温再生器1から中間
液管14に吐出した中間液が濃液ポンプP3を経由する
ことになるが、この場合の中間液は前記したように高温
熱交換器6で稀液管11の稀液と熱交換してこれを加熱
し、自身の温度は低下しているので、濃液ポンプP3の
耐熱性が問題になることがない。したがって、この場合
も高温再生器1での加熱温度を高めて冷媒蒸気を多量に
発生させ、凝縮器3に多くの冷媒蒸気を送ることが可能
であり、水管31から50℃を越えるような高温水を供
給することができる。
In this case, the intermediate liquid discharged from the high-temperature regenerator 1 to the intermediate liquid pipe 14 passes through the concentrated liquid pump P3. In this case, the intermediate liquid is supplied to the high-temperature heat exchanger as described above. In step 6, heat is exchanged with the diluent in the diluent tube 11 to heat the diluent, and the temperature of the diluent is lowered, so that the heat resistance of the concentrated pump P3 does not matter. Therefore, also in this case, it is possible to generate a large amount of refrigerant vapor by increasing the heating temperature in the high-temperature regenerator 1 and to send a large amount of refrigerant vapor to the condenser 3. Can supply water.

【0041】[0041]

【発明の効果】以上説明したように本発明になる装置に
よれば、冷房負荷の大きい夏期には二重効用モードで運
転を行い、冷房負荷のない冬期には一重効用のヒートポ
ンプとして暖房に供することが出来る。しかも、通常の
温水器を使用する暖房では成績係数は一般の加熱ボイラ
ーと同様0.85前後であるが、本装置ではヒートポン
プ運転であり、さらに、高温再生器には高温熱交換器と
低温熱交換器の二箇所で加熱されて85℃にも達した状
態で稀液が流入するので、高温熱交換器における加熱量
が削減できることから成績係数は約1.4と大幅に改善
され、年間を通じての省エネルギー化が可能となった。
As described above, according to the apparatus according to the present invention, the operation is performed in the double effect mode in summer when the cooling load is large, and is supplied to the heating as a single effect heat pump in winter when there is no cooling load in winter. I can do it. In addition, the coefficient of performance for heating using a normal water heater is about 0.85 like a general heating boiler, but this device operates with a heat pump, and the high-temperature regenerator has a high-temperature heat exchanger and a low-temperature heat exchanger. Since the dilute liquid flows in a state where the temperature reaches 85 ° C. after being heated at two places in the exchanger, the coefficient of performance is greatly improved to about 1.4 because the amount of heating in the high-temperature heat exchanger can be reduced, and throughout the year. Energy saving has become possible.

【0042】また、濃液ポンプには高温の吸収液が流入
することがないので、該ポンプの耐熱性とは無関係に高
温再生器での加熱温度を高めることが可能であり、した
がって、冷媒蒸気を多量に発生させて凝縮器での加熱作
用を増加し、例えば50℃を越えるような高温水の供給
も可能になった。
Further, since the high-temperature absorbing liquid does not flow into the concentrated liquid pump, the heating temperature in the high-temperature regenerator can be increased regardless of the heat resistance of the pump. In a large amount to increase the heating action in the condenser, and supply of high-temperature water exceeding, for example, 50 ° C. has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の本発明装置を冷房運転する時の説明図で
ある。
FIG. 1 is an explanatory diagram when a first present invention apparatus is operated for cooling.

【図2】第1の本発明装置を暖房運転する時の説明図で
ある。
FIG. 2 is an explanatory diagram when a first operation of the present invention is performed in a heating operation.

【図3】第2の本発明装置を冷房運転する時の説明図で
ある。
FIG. 3 is an explanatory diagram when a second present invention apparatus is operated for cooling.

【図4】第2の本発明装置を暖房運転する時の説明図で
ある。
FIG. 4 is an explanatory diagram when a second operation of the present invention is performed in a heating operation.

【図5】従来例の説明図である。FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 高温熱交換器 7 低温熱交換器 11 稀液管 12 冷媒蒸気管 13 冷媒液管 14 中間液管 15 吸収液管路 15A 吸収液管路 16 濃液管 21 散布手段 22 散布手段 31 水管 32 水管 41 温度センサー 42 温度センサー 51 スイッチ 52 制御弁 53 ガスバーナ 54 コントローラー A 冷媒 A1 冷媒蒸気 B1 稀液 B2 中間液 B3 濃液 P1 稀液ポンプ P2 冷媒ポンプ P3 濃液ポンプ V1 電磁弁 V2 電磁弁 V3 電磁弁 V4 電磁弁 V5 電磁弁 V6 電磁弁 DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 High temperature heat exchanger 7 Low temperature heat exchanger 11 Rare liquid pipe 12 Refrigerant vapor pipe 13 Refrigerant liquid pipe 14 Intermediate liquid pipe 15 Absorbing liquid pipe 15A Absorption Liquid conduit 16 Concentrated liquid pipe 21 Spraying means 22 Spraying means 31 Water pipe 32 Water pipe 41 Temperature sensor 42 Temperature sensor 51 Switch 52 Control valve 53 Gas burner 54 Controller A Refrigerant A1 Refrigerant vapor B1 Rare liquid B2 Intermediate liquid B3 Concentrate P1 Rare liquid pump P2 Refrigerant pump P3 Concentrate pump V1 Solenoid valve V2 Solenoid valve V3 Solenoid valve V4 Solenoid valve V5 Solenoid valve V6 Solenoid valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 教之 神奈川県中郡二宮町山西656 (72)発明者 眞井 康 東京都世田谷区千歳台6−9−13 (56)参考文献 特開 昭58−140576(JP,A) 特開 昭58−31264(JP,A) 特開 平5−231739(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Noriyuki Nishiyama, Inventor 656, Saninishi, Ninomiya-cho, Naka-gun, Kanagawa (72) Inventor Yasushi Yasui 6-9-13 Chitosedai, Setagaya-ku, Tokyo (56) References JP-A Sho58 -140576 (JP, A) JP-A-58-31264 (JP, A) JP-A-5-231739 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F25B 15/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、高温熱交換器および低温熱交換器を配管接
続して構成する二重効用吸収冷凍機において、高温再生
器から低温再生器および弁(V1)を経由して凝縮器に
開口する冷媒蒸気管を設けると共に、該高温再生器また
は該蒸気管の低温再生器入口側と凝縮器とを弁(V2)
を介して連通可能に設け、高温再生器から高温熱交換器
および弁(V3)を経由して低温再生器に開口する中間
液管の高温熱交換器出口側と、低温再生器から濃液ポン
プおよび低温熱交換器を経由して吸収器に開口する濃液
管の濃液ポンプ出口側とを、弁(V4)を介して連通可
能に設けたことを特徴とする吸収冷温水機。
1. A double-effect absorption refrigerator comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a high-temperature heat exchanger and a low-temperature heat exchanger connected by piping. A refrigerant vapor pipe opening to the condenser via the low temperature regenerator and the valve (V1) is provided, and the high temperature regenerator or the low temperature regenerator inlet side of the vapor pipe and the condenser are connected to the valve (V2).
And a high-pressure heat exchanger outlet side of an intermediate liquid pipe opening from the high-temperature regenerator to the low-temperature regenerator via the high-temperature heat exchanger and the valve (V3). An absorption chiller / heater characterized in that a concentration pipe is connected to a concentration pump outlet side of a concentration pipe that opens to an absorber via a low-temperature heat exchanger through a valve (V4).
【請求項2】 高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、高温熱交換器および低温熱交換器を配管接
続して構成する二重効用吸収冷凍機において、高温再生
器から低温再生器および弁(V1)を経由して凝縮器に
開口する冷媒蒸気管を設けると共に、該高温再生器また
は該蒸気管の低温再生器入口側と凝縮器とを弁(V2)
を介して連通可能に設け、高温再生器から高温熱交換器
および弁(V3)を経由して低温再生器に開口する中間
液管の高温熱交換器出口側と、低温再生器から濃液ポン
プおよび低温熱交換器を経由して吸収器に開口する濃液
管の濃液ポンプ入口側とを、弁(V5)を介して連通可
能に設けたことを特徴とする吸収冷温水機。
2. A double effect absorption refrigerator comprising a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a high temperature heat exchanger and a low temperature heat exchanger connected by piping. A refrigerant vapor pipe opening to the condenser via the low temperature regenerator and the valve (V1) is provided, and the high temperature regenerator or the low temperature regenerator inlet side of the vapor pipe and the condenser are connected to the valve (V2).
And a high-pressure heat exchanger outlet side of an intermediate liquid pipe opening from the high-temperature regenerator to the low-temperature regenerator via the high-temperature heat exchanger and the valve (V3). An absorption chiller / heater, wherein a concentration pipe is connected to a concentration pump inlet side of a concentration pipe which opens to an absorber via a low temperature heat exchanger via a valve (V5).
JP22529092A 1992-07-31 1992-07-31 Absorption chiller / heater Expired - Fee Related JP2904650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22529092A JP2904650B2 (en) 1992-07-31 1992-07-31 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22529092A JP2904650B2 (en) 1992-07-31 1992-07-31 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH0650626A JPH0650626A (en) 1994-02-25
JP2904650B2 true JP2904650B2 (en) 1999-06-14

Family

ID=16827020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22529092A Expired - Fee Related JP2904650B2 (en) 1992-07-31 1992-07-31 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP2904650B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104896777B (en) * 2014-03-05 2018-01-05 珠海格力电器股份有限公司 water chilling unit

Also Published As

Publication number Publication date
JPH0650626A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
JP3241550B2 (en) Double effect absorption chiller / heater
JP2904650B2 (en) Absorption chiller / heater
JP3444203B2 (en) Absorption refrigerator
JP2592014B2 (en) Absorption chiller / heater
JP4315854B2 (en) Absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP2895974B2 (en) Absorption refrigerator
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JP3754206B2 (en) Single double-effect absorption chiller / heater
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP3728092B2 (en) Single double-effect absorption chiller / heater
JPH1038402A (en) Steam-heating absorption type water cooler/heater
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
WO2004046622A1 (en) Absorption refrigerating machine
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPH01244257A (en) Double-effect absorption water cooler/heater
JPH04203862A (en) Cold water and hot water parallel supplying absorption type refrigerating machine
JPH0758145B2 (en) Absorption cold / hot water device and its operating method
JP2000018758A (en) Absorption type cooling and heating apparatus
JPH01310272A (en) Absorption type air conditioner
JP2001208443A (en) Absorption freezer
JPS5847624B2 (en) Nijiyuukouyoukiyuushiyureitosouchi Oyobi Sono Seigiyohouhou
JP2000065442A (en) Combined heat transfer apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees