JPH04203862A - Cold water and hot water parallel supplying absorption type refrigerating machine - Google Patents

Cold water and hot water parallel supplying absorption type refrigerating machine

Info

Publication number
JPH04203862A
JPH04203862A JP33050490A JP33050490A JPH04203862A JP H04203862 A JPH04203862 A JP H04203862A JP 33050490 A JP33050490 A JP 33050490A JP 33050490 A JP33050490 A JP 33050490A JP H04203862 A JPH04203862 A JP H04203862A
Authority
JP
Japan
Prior art keywords
temperature
condenser
water
solution
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33050490A
Other languages
Japanese (ja)
Inventor
Masatsugu Ajisaka
鯵坂 誠承
Ryohei Minowa
箕輪 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33050490A priority Critical patent/JPH04203862A/en
Publication of JPH04203862A publication Critical patent/JPH04203862A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system

Abstract

PURPOSE:To produce sufficient high-temperature hot-water without deteriorating the efficiency and performance of refrigerating operation and without any fear of separating crystals out due to the maintaining and condensing of absorbing solution by a method wherein a temperature regulator is provided at the outlet port of hot-water of a parallel supplying water heater and the bypass pipeline of a three-way valve is opened and/or closed by the output signal of the temperature regulator to regulate the amount of cooling water supplied to a condenser. CONSTITUTION:A temperature regulator 13, provided at the outlet port of hot-water of a parallel supplying water heater 7, operates a three-way valve 12 provided at the inlet port of cooling water of a condenser 3 to bypass one part of cooling water by a bypass pipe 26 without conducting it through a condenser 3. The internal temperature of the condenser 3, whose cooling is stopped, is risen and the temperature of the solution of a low-temperature generator 5, communicated with the condenser 3, is risen. On the other hand, refrigerant vapor 18 generated from a high-temperature reproducer 4 provides solution in the low- temperature reproducer 5 with heat, however, the temperature of the solution is risen and therefore, the temperature of the refrigerant vapor 18 is risen. Accordingly, sufficient high- temperature hot-water can be taken out of a parallel supplying water heater 7, employing the refrigerant vapor 18 supplied from the high--temperature reproducer 4 as a heating source, without reducing the temperature of the hot-water.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍運転中に一部温水を取り出す冷温水併給
式吸収冷凍機に係り、冷凍負荷の減少時の併給温水取り
出し温度の降下を防止する手段に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cold and hot water co-supply type absorption chiller that takes out a portion of hot water during refrigeration operation, and is capable of reducing the co-supply hot water withdrawal temperature when the refrigeration load is reduced. It concerns means of prevention.

[従来の技術] 近年、二重効用吸収式冷凍機において、高温発生器に設
ける加熱源による加熱を利用して冷水と同時に温水を取
り出すものが提供されている。
[Prior Art] In recent years, dual-effect absorption refrigerators have been provided that utilize heating from a heat source provided in a high-temperature generator to take out both cold water and hot water at the same time.

従来の技術では、冷凍能力が減少したとき5吸収器から
高温再生器、低温再生器へ供給する吸収液量すなわち希
溶液量を減少させて、各再生器内の溶液の高濃縮化を図
ることで発生冷媒蒸気を高温とし、これを併給温水器に
導き、高温の温水を得るようになっていた。
In conventional technology, when the refrigeration capacity decreases, the amount of absorption liquid, that is, the amount of dilute solution supplied from the 5 absorbers to the high-temperature regenerator and low-temperature regenerator, is reduced to highly concentrate the solution in each regenerator. The generated refrigerant vapor was heated to a high temperature and then led to a co-feed water heater to obtain high-temperature hot water.

なお、この種の装置として関連するものに、例えば特公
昭59−50908号公報が挙げられる。
Note that related devices of this type include, for example, Japanese Patent Publication No. 59-50908.

[発明が解決しようとする課題] 上記従来技術は、循環吸収液を減少させるため以下の点
が配慮されていなかった。
[Problems to be Solved by the Invention] The above-mentioned prior art did not take into account the following points in order to reduce the circulating absorption liquid.

なお、以下の説明では吸収液を溶液という。Note that in the following explanation, the absorption liquid will be referred to as a solution.

また、一般に冷媒は水、吸収剤は臭化リチウム水溶液を
用いている。
Generally, water is used as the refrigerant and an aqueous lithium bromide solution is used as the absorbent.

1)吸収器から各再生器への希溶液の送り出し、各再生
器から吸収器への戻り濃溶液の熱回収用に設けである溶
液熱交換器が、溶液減少のため伝熱性能が低下し、効率
低下、性能不足となる。
1) The heat transfer performance of the solution heat exchanger, which is installed to send the dilute solution from the absorber to each regenerator and recover the heat of the concentrated solution returned from each regenerator to the absorber, decreased due to the decrease in solution. , resulting in decreased efficiency and insufficient performance.

2)大幅な溶液循環量の減少により、再生器の伝熱性能
が低下する。
2) The heat transfer performance of the regenerator deteriorates due to a significant decrease in the amount of solution circulation.

3)溶液の高濃度化による結晶析出の危険性がある。3) There is a risk of crystal precipitation due to high concentration of the solution.

4)循環液量を大幅に減少させるので、ポンプ特性を充
分検討する必要がある。
4) Since the amount of circulating fluid is significantly reduced, it is necessary to carefully consider the pump characteristics.

本発明は、冷凍運転の効率、性能を低下させることなく
、また、溶液(吸収液)の異常濃縮による結晶析出の恐
れもなく、低冷凍能力運転においても、十分な高温の温
水を取り出すことの可能な冷温水併給式吸収冷凍機を提
供することを、その目的とするものである。
The present invention makes it possible to extract sufficient high-temperature hot water even in low refrigeration capacity operation without reducing the efficiency and performance of refrigeration operation, and without the risk of crystal precipitation due to abnormal concentration of the solution (absorbing liquid). The purpose of the present invention is to provide a cold and hot water co-supply type absorption refrigerator.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る冷温水併給式
吸収冷凍機の構成は、蒸発器、吸収器、凝縮器、高温再
生器、低温再生器、溶液熱交換器、溶液循環ポンプ、冷
媒循環ポンプ、およびこれらを作動的に接続する配管系
を備え、高温再生器の発生冷媒蒸気を導いて温水を加温
する併給温水器を備えた冷温水併給式吸収冷凍機におい
て、凝縮器への冷却水入口に、三方弁と該三方弁の一方
に接続するバイパス管とを設け、併給温水器の温水出口
に温度調節器を設け、この温度調節器の出力信号により
前記三方弁のバイパス管路を開閉し、前記凝縮器へ供給
する冷却水量を調整するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the configuration of the cold and hot water co-supply absorption refrigerator according to the present invention includes an evaporator, an absorber, a condenser, a high temperature regenerator, a low temperature regenerator, and a solution. Cold and hot water co-feed type equipped with a heat exchanger, a solution circulation pump, a refrigerant circulation pump, and a piping system that operatively connects these, and a co-feed water heater that guides the refrigerant vapor generated by the high-temperature regenerator to heat the hot water. In an absorption refrigerator, a three-way valve and a bypass pipe connected to one of the three-way valves are provided at the cooling water inlet to the condenser, a temperature regulator is provided at the hot water outlet of the co-feed water heater, and the output of this temperature regulator is The bypass pipe of the three-way valve is opened and closed in response to a signal, and the amount of cooling water supplied to the condenser is adjusted.

すなわち、上記目的を達成するための本発明の技術思想
は次のとおりである。
That is, the technical idea of the present invention for achieving the above object is as follows.

凝縮器内の温度が低温再生器の溶液温度を変化させ、そ
の溶液温度が高温再生器内の溶液から分離される冷媒蒸
気の温度を支配する点に着目し、併給温水器の温水出口
に設けた温度調節器により、凝縮器に供給される冷却水
量を、入口に設けた三方弁で制御することで、凝縮器内
の温度の降下を防止し、結果として、併給温水器へ供給
される高温再生器の発生冷媒蒸気温度の低下を防止する
ものである。
Focusing on the fact that the temperature inside the condenser changes the solution temperature in the low-temperature regenerator, and that solution temperature governs the temperature of the refrigerant vapor separated from the solution in the high-temperature regenerator, we installed this at the hot water outlet of the co-feed water heater. By controlling the amount of cooling water supplied to the condenser with a three-way valve installed at the inlet, the temperature regulator prevents the temperature inside the condenser from dropping, and as a result, the high temperature supplied to the co-feed water heater is reduced. This prevents the temperature of the refrigerant vapor generated in the regenerator from decreasing.

[作用コ 上記の技術的手段による働きは、下記のとおりである。[Action Co. The operation of the above technical means is as follows.

併給温水器の温水出口に設けた温度調節器は、温水の温
度が低下してくると、冷却水三方弁に、凝縮器へ通水す
る冷却水量を減少するように指令が発せられる。それに
より、凝縮器内の温度が上昇する。したがって、低温再
生器内の溶液温度が上昇し、高温再生器からの発生冷媒
蒸気温度も上昇することにより、併給温水器に通水され
る温水が加熱されるため、温水温度の低下を防止するこ
とになる。
When the temperature of the hot water drops, the temperature regulator installed at the hot water outlet of the combined water heater issues a command to the three-way cooling water valve to reduce the amount of cooling water flowing to the condenser. As a result, the temperature inside the condenser increases. Therefore, the temperature of the solution in the low-temperature regenerator increases, and the temperature of the refrigerant vapor generated from the high-temperature regenerator also increases, which heats the hot water that is passed to the co-feed water heater, thereby preventing a drop in the hot water temperature. It turns out.

[実施例コ 以下、本発明の一実施例を図面を参照して説明する。[Example code] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図面は、本発明の一実施例に係る併給温水器付き吸収式
冷温水ユニットの系統図である。
The drawing is a system diagram of an absorption type cold/hot water unit with a co-feed water heater according to an embodiment of the present invention.

図面において、1は蒸発器、2は吸収器、3は凝縮器、
4は高温再生器、5は低温再生器、6は溶液熱交換器、
7は併給温水器、8は溶液循環ポンプ、9は冷媒循環ポ
ンプである。
In the drawings, 1 is an evaporator, 2 is an absorber, 3 is a condenser,
4 is a high temperature regenerator, 5 is a low temperature regenerator, 6 is a solution heat exchanger,
7 is a co-feed water heater, 8 is a solution circulation pump, and 9 is a refrigerant circulation pump.

10は、蒸発器1における冷水出口に設けた温度調節器
、11は、温度調整器の出力信号により高温再生器4に
おける加熱源16からの加熱を制御する制御弁である。
10 is a temperature regulator provided at the cold water outlet of the evaporator 1, and 11 is a control valve that controls the heating from the heat source 16 in the high temperature regenerator 4 based on the output signal of the temperature regulator.

また、12は、凝縮器3への冷却水入口に設けた三方弁
、13は、併給温水器7における温水出口に設けた温度
調節器である。
Further, 12 is a three-way valve provided at the cooling water inlet to the condenser 3, and 13 is a temperature regulator provided at the hot water outlet of the co-supply water heater 7.

14は、蒸発器1内に伝熱管部を構成する冷水配管、1
5は、吸収器2と凝縮器3内に伝熱管部を構成する冷却
水配管、20は、併給温水器7内に伝熱管部を構成する
温水配管である。
14 is a cold water pipe that constitutes a heat exchanger tube section in the evaporator 1;
Reference numeral 5 denotes a cooling water pipe that constitutes a heat exchanger tube portion in the absorber 2 and condenser 3, and 20 represents a hot water pipe that constitutes a heat exchanger tube portion in the co-supply water heater 7.

21は希溶液配管で、21aは、吸収器2から高温再生
器4へ希溶液を送る配管、21bは、吸収器2から低温
再生器5へ希溶液を送る配管である。また、22は濃溶
液配管で、22aは、高温再生器4から吸収器2へ濃溶
液を戻す配管、22bは、低温再生器5から吸収器2へ
濃溶液を戻す配管である。23は冷媒配管、24は、高
温再生器4からの発生冷媒蒸気を低温再生器5.凝縮器
3へ送る冷媒配管、25は、高温再生器4からの発生冷
媒蒸気の一部を併給温水器7へ送る蒸気管、26は、三
方弁12の一方に接続する冷却水配管系のバイパス管で
ある。
21 is a dilute solution pipe, 21a is a pipe for sending the dilute solution from the absorber 2 to the high temperature regenerator 4, and 21b is a pipe for sending the dilute solution from the absorber 2 to the low temperature regenerator 5. Further, 22 is a concentrated solution pipe, 22a is a pipe that returns the concentrated solution from the high temperature regenerator 4 to the absorber 2, and 22b is a pipe that returns the concentrated solution from the low temperature regenerator 5 to the absorber 2. 23 is a refrigerant pipe, and 24 is a refrigerant pipe that transfers the generated refrigerant vapor from the high temperature regenerator 4 to the low temperature regenerator 5. 25 is a steam pipe that sends a part of the refrigerant vapor generated from the high-temperature regenerator 4 to the co-supply water heater 7; 26 is a bypass of the cooling water piping system connected to one side of the three-way valve 12; It's a tube.

次に、図面に示す吸収式冷温水ユニットの運転動作を説
明する。
Next, the operation of the absorption type cold/hot water unit shown in the drawings will be explained.

蒸発器1内で、冷水配管14の冷水から熱を奪って蒸発
した冷媒(水)蒸気17は、吸収器2内の臭化リチウム
水溶液(吸収液)に吸収される。
Refrigerant (water) vapor 17 that is evaporated by removing heat from the cold water in the cold water pipe 14 in the evaporator 1 is absorbed by a lithium bromide aqueous solution (absorbing liquid) in the absorber 2.

これにより希釈された希溶液は、吸収能力が低下するの
で、溶液循環ポンプ8の駆動により溶液熱交換器6を経
て、配管21aの高温再生器4へ配管21bで低温再生
器5へ送られる。
Since the diluted solution has a reduced absorption capacity, the diluted solution is sent to the low temperature regenerator 5 via the pipe 21b via the solution heat exchanger 6 by driving the solution circulation pump 8 to the high temperature regenerator 4 via the pipe 21b.

高温再生器5に供給された希溶液は、外部からの加熱源
16であるバーナ燃焼ガス、蒸気等で加熱濃縮され吸収
能力を回復し、その濃溶液は配管22a、溶液熱交換器
6を経て吸収器2に戻る。
The dilute solution supplied to the high-temperature regenerator 5 is heated and concentrated using burner combustion gas, steam, etc., which is an external heat source 16, to recover its absorption capacity, and the concentrated solution passes through the pipe 22a and the solution heat exchanger 6. Return to absorber 2.

一方、加熱濃縮時に溶液から分離された冷媒蒸気18は
冷媒配管24で低温再生器5に導かれ、ここに供給され
た希溶液を加熱濃縮したのち、凝縮器3に流入する。ま
た、低温再生器5で濃縮された溶液は、配管22b、溶
液熱交換器6を経て高温再生器5からの濃溶液と合流し
、吸収器2に戻される。分離した冷媒蒸気19は、高温
再生器4における発生蒸気18と同じく凝縮器3に流入
する。ここで吸収器2内を冷却した後の冷却水配管IS
で冷却され、凝縮し、蒸発器1に戻される。
On the other hand, the refrigerant vapor 18 separated from the solution during heating and concentration is led to the low-temperature regenerator 5 through the refrigerant pipe 24, where the dilute solution supplied here is heated and concentrated, and then flows into the condenser 3. Further, the solution concentrated in the low-temperature regenerator 5 passes through the pipe 22b and the solution heat exchanger 6, joins with the concentrated solution from the high-temperature regenerator 5, and is returned to the absorber 2. The separated refrigerant vapor 19 flows into the condenser 3 in the same way as the generated vapor 18 in the high temperature regenerator 4. Here, the cooling water pipe IS after cooling the inside of the absorber 2
is cooled, condensed, and returned to the evaporator 1.

併給温水器7は冷媒蒸気を導く蒸気管20により、高温
再生器4に接続されている。
The co-feed water heater 7 is connected to the high-temperature regenerator 4 by a steam pipe 20 that guides refrigerant vapor.

冷凍運転中に高温再生器4内で希溶液から分離された冷
媒蒸気18の一部は蒸気管25で、併給温水器7に流入
し、ここに設けられている温水配管20の伝熱管部を加
熱し温水を加温する。
A part of the refrigerant vapor 18 separated from the dilute solution in the high-temperature regenerator 4 during the refrigeration operation flows into the co-feed water heater 7 through the steam pipe 25, and flows through the heat transfer tube section of the hot water pipe 20 provided here. Heat and warm water.

さて、この冷媒蒸気18は冷力最大出力時は、加熱源1
6の熱量も最大となるので、高温高圧であるが、加熱源
16の熱量を減少させると、温度、圧力が低下してくる
ため、併給温水器7の温水温度は降下してしまうことに
なる。そこで、併給温水器7の温水出口に設けた温度調
節器13は、凝縮器3の冷却水入口部に設けた三方弁1
2を作動させ、冷却水の一部を凝縮器3へ通水させずに
、バイパス管26によりバイパスさせる。冷却させなく
なった凝縮器3の内部温度は上昇することになり連通す
る低温再生器5の溶液温度は上昇する。
Now, when the refrigerant vapor 18 is at its maximum output, the heating source 1
6 also has the maximum amount of heat, so it is high temperature and high pressure, but if the amount of heat from the heating source 16 is decreased, the temperature and pressure will decrease, so the hot water temperature in the co-feed water heater 7 will drop. . Therefore, the temperature regulator 13 installed at the hot water outlet of the co-feed water heater 7 is connected to the three-way valve 1 installed at the cooling water inlet of the condenser 3.
2 is activated, and a part of the cooling water is bypassed through the bypass pipe 26 without being passed to the condenser 3. The internal temperature of the condenser 3 that is no longer cooled rises, and the solution temperature of the low-temperature regenerator 5 with which it is connected rises.

一方、高温再生器4からの発生冷媒蒸気18は、低温再
生器5内の溶液に熱を与えるのだが、溶液温度が上昇す
るために、この冷媒蒸気18の温度が上昇することにな
る。
On the other hand, the generated refrigerant vapor 18 from the high-temperature regenerator 4 gives heat to the solution in the low-temperature regenerator 5, but since the solution temperature increases, the temperature of the refrigerant vapor 18 increases.

したがって、高温再生器4から供給される冷媒蒸気18
を加熱源とする併給温水器7は、温水温度を下げること
なく、充分高温の温水を取り出すことが可能になる。
Therefore, the refrigerant vapor 18 supplied from the high temperature regenerator 4
The co-supply water heater 7 which uses the water as a heating source can take out sufficiently high-temperature hot water without lowering the hot water temperature.

本実施例によれば、冷凍能力の減少すなわち再生器加熱
量の減少にもかかわらず、高温の温水を取り出すことが
でき、また、そのことを、凝縮器への冷却水の制御のみ
で実現できるため、冷凍運転の効率低下、性能不足はほ
とんど無く、さらに溶液の異常濃縮による結晶析出を防
止する効果もある。
According to this embodiment, high-temperature hot water can be taken out despite a decrease in the refrigerating capacity, that is, a decrease in the regenerator heating amount, and this can be achieved only by controlling the cooling water to the condenser. Therefore, there is almost no reduction in efficiency or lack of performance in refrigeration operation, and it also has the effect of preventing crystal precipitation due to abnormal concentration of the solution.

[発明の効果] 以上詳細に説明したように、本発明によれば、冷凍運転
の効率、性能を低下させることなく、また、溶液(吸収
液)の異常濃縮による結晶析出の恐れもなく、低冷凍能
力運転においても、十分な高温の温水を取り出すことの
可能な冷温水併給式吸収冷凍機を提供することができる
[Effects of the Invention] As explained in detail above, according to the present invention, the efficiency and performance of refrigeration operation are not reduced, and there is no fear of crystal precipitation due to abnormal concentration of the solution (absorbing liquid). It is possible to provide a cold and hot water co-supply type absorption refrigerator that can take out a sufficient amount of high-temperature hot water even when operating at refrigerating capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施例に係る併給温水器付き吸収式
冷温水ユニットの系統図である。 1・・・蒸発器、2・・・吸収器、3・・・凝縮器、4
・・・高温再生器、5・・・低温再生器、6・・・溶液
熱交換器、7・・・併給温水器、8・・・溶液循環ポン
プ、9・・・冷媒循環ポンプ、12・・・三方弁、13
・・・温度調節器、14・・・冷水配管、15・・・冷
却水配管、20・・・温水配管、25・・・蒸気管、2
6・・・バイパス管。
The drawing is a system diagram of an absorption type cold/hot water unit with a co-feed water heater according to an embodiment of the present invention. 1... Evaporator, 2... Absorber, 3... Condenser, 4
. . . High temperature regenerator, 5. Low temperature regenerator, 6. Solution heat exchanger, 7. Co-feed water heater, 8. Solution circulation pump, 9. Refrigerant circulation pump, 12. ...three-way valve, 13
...Temperature controller, 14...Cold water piping, 15...Cooling water piping, 20...Hot water piping, 25...Steam pipe, 2
6...Bypass pipe.

Claims (1)

【特許請求の範囲】 1、蒸発器、吸収器、凝縮器、高温再生器、低温再生器
、溶液熱交換器、溶液循環ポンプ、冷媒循環ポンプ、お
よびこれらを作動的に接続する配管系を備え、高温再生
器の発生冷媒蒸気を導いて温水を加温する併給温水器を
備えた冷温水併給式吸収冷凍機において、 凝縮器への冷却水入口に、三方弁と該三方弁の一方に接
続するバイパス管とを設け、 併給温水器の温水出口に温度調節器を設け、この温度調
節器の出力信号により前記三方弁のバイパス管路を開閉
し、前記凝縮器へ供給する冷却水量を調整するようにし
た ことを特徴とする冷温水併給式吸収冷凍機。
[Claims] 1. An evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant circulation pump, and a piping system that operatively connects these. In a co-feed cold and hot water absorption refrigerator equipped with a co-feed water heater that heats hot water by guiding refrigerant vapor generated by a high-temperature regenerator, a three-way valve and one of the three-way valves are connected to the cooling water inlet to the condenser. A temperature regulator is provided at the hot water outlet of the co-feed water heater, and an output signal of the temperature regulator opens and closes the bypass pipe of the three-way valve to adjust the amount of cooling water supplied to the condenser. A cold and hot water co-feed absorption chiller characterized by:
JP33050490A 1990-11-30 1990-11-30 Cold water and hot water parallel supplying absorption type refrigerating machine Pending JPH04203862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33050490A JPH04203862A (en) 1990-11-30 1990-11-30 Cold water and hot water parallel supplying absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33050490A JPH04203862A (en) 1990-11-30 1990-11-30 Cold water and hot water parallel supplying absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JPH04203862A true JPH04203862A (en) 1992-07-24

Family

ID=18233367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33050490A Pending JPH04203862A (en) 1990-11-30 1990-11-30 Cold water and hot water parallel supplying absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPH04203862A (en)

Similar Documents

Publication Publication Date Title
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
JP3241550B2 (en) Double effect absorption chiller / heater
JPH04203862A (en) Cold water and hot water parallel supplying absorption type refrigerating machine
JP3986122B2 (en) Exhaust heat absorption type absorption air conditioner
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
JP2532982B2 (en) Absorption refrigerator control device
JP2895974B2 (en) Absorption refrigerator
JP2000088391A (en) Absorption refrigerating machine
JPH04313652A (en) Absorption refrigerating machine
JPS5844182B2 (en) absorption refrigerator
JP2904650B2 (en) Absorption chiller / heater
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JPS6113884Y2 (en)
JP3434279B2 (en) Absorption refrigerator and how to start it
JPS6118366Y2 (en)
JPS6113888Y2 (en)
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2592014B2 (en) Absorption chiller / heater
JPS6117319Y2 (en)
JP3280261B2 (en) Absorption refrigeration equipment
JPS6149586B2 (en)
JPH04161766A (en) Control device for absorption type freezer
JPH08159595A (en) Absorption refrigerator
JPS6222056B2 (en)