JPS5846453B2 - Method for producing silver peroxide - Google Patents

Method for producing silver peroxide

Info

Publication number
JPS5846453B2
JPS5846453B2 JP55083974A JP8397480A JPS5846453B2 JP S5846453 B2 JPS5846453 B2 JP S5846453B2 JP 55083974 A JP55083974 A JP 55083974A JP 8397480 A JP8397480 A JP 8397480A JP S5846453 B2 JPS5846453 B2 JP S5846453B2
Authority
JP
Japan
Prior art keywords
cadmium
silver peroxide
tellurium
silver
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55083974A
Other languages
Japanese (ja)
Other versions
JPS5711823A (en
Inventor
忠義 清水
洋一 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP55083974A priority Critical patent/JPS5846453B2/en
Priority to US06/271,088 priority patent/US4338385A/en
Priority to GB8118350A priority patent/GB2079522B/en
Priority to CH400781A priority patent/CH656487A5/en
Priority to DE19813124591 priority patent/DE3124591C2/en
Priority to FR8112283A priority patent/FR2485269A1/en
Priority to KR1019810002276A priority patent/KR840002391B1/en
Publication of JPS5711823A publication Critical patent/JPS5711823A/en
Publication of JPS5846453B2 publication Critical patent/JPS5846453B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes

Description

【発明の詳細な説明】 この発明は自己放電性が特に少なく電池用としてすぐれ
た過酸化銀の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silver peroxide which has particularly low self-discharge properties and is excellent for use in batteries.

電池用過酸化銀は例えば、時計などに使用する電池に適
するように長い寿命を有することが必要で、このために
は安定性、すなわち自己放電性が少ないことが要求され
る。
Silver peroxide for batteries needs to have a long life so as to be suitable for batteries used in watches and the like, and for this purpose, it is required to have stability, that is, low self-discharge properties.

電池の保存中に電解液であるアルカリ液中で過酸化銀は
徐々に分解して酸素を放出するが、このとき過酸化銀の
安定性が悪いと保存中に分解が進行し、使用可能電力が
減少し、また分解により生成する酸素の圧力によって気
密にしであるセルの変形、破損の原因となる。
During battery storage, silver peroxide gradually decomposes in the alkaline electrolyte and releases oxygen; however, if the stability of silver peroxide is poor, decomposition progresses during storage, reducing the usable power. In addition, the pressure of oxygen produced by decomposition causes deformation and damage to the airtight cell.

過酸化銀の製造方法として、硝酸銀溶成と酸化剤とを水
酸化アルカリ液中に加えて過酸化銀を沈殿させる方法が
一般に行われている。
A commonly used method for producing silver peroxide is to precipitate silver peroxide by adding silver nitrate and an oxidizing agent to an alkaline hydroxide solution.

電池用過酸化銀の安定性を表わす尺度として、ガス発生
率または酸素発生率と呼ばれる特定値がある。
As a measure of the stability of silver peroxide for batteries, there is a specific value called the gas generation rate or oxygen generation rate.

これは例えば、通常の使用状態よりも苛酷な条件を用い
、40℃で40%水酸化ナトリウムまたは水酸化力9ウ
ム溶液中に存在する過酸化銀1gから一定時間に発生る
る酸素量で表わされる。
For example, this is expressed as the amount of oxygen generated in a certain period of time from 1 g of silver peroxide present in a 40% sodium hydroxide or 9 um hydroxide solution at 40°C under conditions more severe than normal usage conditions. .

過酸化銀電池は電解液として一般には水酸化ナトリウム
が使用されているが、一時に大電流を必要とする用途の
ためには水酸化カリウムを電解液として用いることが必
要である。
Silver peroxide batteries generally use sodium hydroxide as the electrolyte, but for applications that require a large current at one time, it is necessary to use potassium hydroxide as the electrolyte.

通常得られる過酸化銀は水酸化カリウム電解液中では水
酸化ナトリウム電解液中におけるよりも安定性がかなり
悪い 過酸化銀を不安定とする原因は過酸化銀の活性が大きく
、これと接するアルカリ性電解液と反応することによる
ものと考えられ、この欠点を除くために過酸化銀粒子の
表面を鉛酸銀で被覆することが米国特許第3,017.
448号明細書に記載されている。
Usually obtained silver peroxide is much less stable in a potassium hydroxide electrolyte than in a sodium hydroxide electrolyte. This is thought to be due to reaction with the electrolyte, and to eliminate this drawback, US Pat. No. 3,017.
It is described in the specification of No. 448.

この方法は過酸化銀に対し0.1〜5重量四の鉛、酸化
鉛、水酸化鉛または亜ナマリ酸ナトリウムの微粉末を混
合し、アルカリ電解液中で反応させて、過酸化銀の粒子
表面に鉛酸銀を生成させる方法である。
In this method, 0.1 to 5 parts by weight of lead, lead oxide, lead hydroxide, or sodium malite fine powder is mixed with silver peroxide, and the mixture is reacted in an alkaline electrolyte to form silver peroxide particles. This method generates lead acid silver on the surface.

この他特開昭54−132732号ないし特開昭54−
132734号公報には過酸化銀の安定性の改善のため
にそれぞれZn、Cd。
In addition, JP-A-54-132732 or JP-A-54-
No. 132734 discloses Zn and Cd, respectively, to improve the stability of silver peroxide.

A4の添加を行うという記載があり、ざらにV。There is a description that A4 is added, and it is roughly V.

Cr等の添加によってもある程度の効果を示すことが知
られている。
It is known that the addition of Cr or the like has some effect.

しかしながらこれらの添加物の効果は添加剤がないとき
に比して、酸素発生量がイ〜イに減少する程度で、40
℃、40%水酸化カリウム液中ではいずれも35μt/
El・48時間以上であった。
However, the effect of these additives is that the amount of oxygen generated is reduced to 40% compared to when no additives are used.
℃, 35μt/in 40% potassium hydroxide solution.
El・48 hours or more.

出願人は先に、同じ目的のために特願昭54−1031
2号および特願昭54−84427号においてそれぞれ
鉛およびテルル、鉛およびアルミニウムの添加の効果を
開示し、特に後者の場合には不安定度が水酸化ナトリウ
ムよりも大きい水酸化カリウム液中においてさえ従来の
ものに例を見ないすぐれた安定性のある過酸化銀が得ら
れることを報告した。
The applicant had previously filed a patent application for the same purpose in 1984-1031.
No. 2 and Japanese Patent Application No. 54-84427 disclose the effects of adding lead and tellurium, lead and aluminum, respectively, and in particular in the latter case even in potassium hydroxide solution where the instability is greater than that of sodium hydroxide. It was reported that silver peroxide with unprecedented stability could be obtained.

発明者等は酸素発生量をさらに飛躍的に低減させる方法
について鋭意研究の結果、過酸化銀の表面をカドミウム
とテルルの両者を同時に用いて被覆することによって得
られる過酸化銀の酸素発生量が非常に少なくなることを
見出して本発明に到達した。
As a result of intensive research into ways to further dramatically reduce the amount of oxygen generated, the inventors have found that the amount of oxygen generated by silver peroxide can be reduced by coating the surface of silver peroxide with both cadmium and tellurium. The present invention was achieved by discovering that the amount of carbon dioxide is significantly reduced.

すなわちこの発明は一般的に電池用過酸化銀の製造方法
として用いられる水酸化アルカリと硝酸銀と酸化剤とを
反応させる過酸化銀の製造方法において、生成した過酸
化銀に金属としてカドミウム0.03重量%以上および
テルルを0.01重量伝以上で、かつCd /T eの
比が0.5以上となる量で含有させるように構成したこ
とにある。
That is, this invention relates to a method for producing silver peroxide in which an alkali hydroxide, silver nitrate, and an oxidizing agent are reacted, which is generally used as a method for producing silver peroxide for batteries. The structure is such that it contains tellurium in an amount of at least 0.01% by weight and at least 0.01% by weight, and a Cd /Te ratio of 0.5 or more.

この発明は従来公知の他の方法、たとえばハロゲン化銀
酸化法、電解酸化法等によって製造された過酸化銀生成
物に適用してもその効果に若干のバラツキはあるがいず
れもその安定性を改善し、ガス発生率を減少させること
ができる。
Even when this invention is applied to silver peroxide products produced by other conventionally known methods, such as silver halide oxidation method, electrolytic oxidation method, etc., there are some variations in the effectiveness, but in all cases, the stability is improved. can be improved and gas generation rate reduced.

過酸化銀にカドミウム成分およびテルル成分を含有せし
めるlこは、たとえば水酸化アルカリと硝酸銀と酸化剤
とで反応させて、生成する過酸化銀を流過乾燥前のスラ
リー中にカドミウム成分およびテルル成分を添加混合し
た後流過乾燥すると都合がよいが、一旦乾燥した過酸化
銀を分散媒中に再分散してカドミウムおよびテルルの同
成分を添加してもよいし、また過酸化銀を乾燥状態のま
まこれにカドミウムおよびテルル同成分を機械的に混合
してもよい。
To make silver peroxide contain cadmium and tellurium components, for example, alkali hydroxide, silver nitrate, and an oxidizing agent are reacted, and the resulting silver peroxide is poured into a slurry before over-drying to add cadmium and tellurium components. Although it is convenient to add and mix silver peroxide and overdry it in the wake, it is also possible to redisperse the once dried silver peroxide in a dispersion medium and add the same components of cadmium and tellurium. The same components of cadmium and tellurium may be mechanically mixed into this as is.

また過酸化銀を用いる電池の陽極製造工程で、たとえば
過酸化銀の造粒物にカドミウムおよびテルル同成分を加
えて成形しても同様な効果かえられる。
Further, in the process of manufacturing an anode for a battery using silver peroxide, the same effect can be obtained by adding the same components of cadmium and tellurium to a granulated product of silver peroxide and molding the product.

過酸化銀に含有させるカドミウム成分およびテルル成分
は金属としてカドミウムは0.03重量%以上、テルル
は0.01重量%以上で、かつCdTeO3が0.5以
上が必要である。
The cadmium component and the tellurium component contained in the silver peroxide must contain 0.03% by weight or more of cadmium, 0.01% by weight or more of tellurium, and 0.5% or more of CdTeO3 as metals.

同成分の下限添加量であるカドミウム0.03重量%と
、テルル0.01重量7oの組合せ使用の場合でもカド
ミウムを単独で使用する従来技術に較べて過酸化銀の安
定効果を著しく改善する。
Even when using a combination of 0.03% by weight of cadmium, which is the lower limit addition amount of the same component, and 0.01% by weight of tellurium, the stabilizing effect of silver peroxide is significantly improved compared to the conventional technique in which cadmium is used alone.

同等の効果を求めるためにはカドミウムを0.3重量耐
以上使用する必要があることから明らかに同成分使用に
よる相乗効果を示すものと考えられる。
In order to obtain the same effect, it is necessary to use cadmium in a weight capacity of 0.3 or more, so it is thought that a synergistic effect is clearly exhibited by using the same component.

カドミウムおよびテルルを併用する場合の酸素発生量の
減少効果は勿論無添加試料に較べて充分有効であるが、
それぞれの含有量が上記下限添加量以下であるとその効
果の顕著性は不充分となる。
Of course, the effect of reducing the amount of oxygen generated when using cadmium and tellurium in combination is more effective than the sample without additives, but
If each content is below the above-mentioned lower limit addition amount, the effect will be insufficiently significant.

さらに、含有させるCd/Teの比を0.5以上に保つ
ことが必要で、前記比が0.5以下、すなわちテルル量
がカドミウム量の2倍以上となるとかえってその効果を
減することになるので好ましくない。
Furthermore, it is necessary to maintain the Cd/Te ratio to be contained at 0.5 or more, and if the ratio is 0.5 or less, that is, the amount of tellurium is more than twice the amount of cadmium, the effect will be reduced. So I don't like it.

同成分の使用量の上限はカドミウムおよびテルルの合計
で10重量伝程度とするのが好ましく、過大の使用は過
酸化銀の純度を低下させるために発生電気量の低下を招
くことになる。
The upper limit of the amount of these components used is preferably about 10 parts by weight in total of cadmium and tellurium, and using an excessive amount will lower the purity of silver peroxide, leading to a reduction in the amount of electricity generated.

しかし、電池の陽極を形成するための増量剤として使用
rるような場合は10重量%以上の添加も可能で、この
場合でも安定性が低下することはない。
However, when used as an extender for forming an anode of a battery, it is possible to add 10% by weight or more, and even in this case, the stability will not deteriorate.

使用するカドミウム成分の例としては酸化カドミウム、
水酸化カドミウム、金属カドミウム粉、硫化カドミウム
、硫酸カドミウム、硝酸カドミウム、ステアリン酸カド
ミウム、蟻酸カドミウムおよびセレン化カドミウム等が
あり、これらは一種または組合せで使用される。
Examples of cadmium components used include cadmium oxide,
Examples include cadmium hydroxide, metal cadmium powder, cadmium sulfide, cadmium sulfate, cadmium nitrate, cadmium stearate, cadmium formate, and cadmium selenide, which may be used alone or in combination.

また使用するテルル成分の例としては、二酸化テルル、
三酸化テルル、金属テルル粉およびテルル酸、亜テルル
酸またはそれらのアルカリ塩等があり、これらの一種ま
たは組合せで使用できる。
Examples of tellurium components used include tellurium dioxide,
There are tellurium trioxide, metal tellurium powder, telluric acid, tellurite acid, or alkali salts thereof, and these can be used alone or in combination.

またカドミウムとテルルの両方を含む化合物、合金たと
えばCdTeO31CdTe04.Cd−Te合金粉末
を添加することもできる。
Compounds and alloys containing both cadmium and tellurium, such as CdTeO31CdTe04. Cd-Te alloy powder can also be added.

過酸化銀に含有させるカドミウム源、テルル源として金
属粉末を使用するときには金属粉末は粒子サイズが小な
程比表面積が大きくなり過酸化銀と接触する有効表面積
が増加するので好ましく、各々の粒子サイズは大部分が
50μ以下が好ましい。
When metal powder is used as a cadmium source or tellurium source to be contained in silver peroxide, it is preferable that the metal powder has a smaller particle size because the specific surface area becomes larger and the effective surface area in contact with silver peroxide increases. It is preferable that most of the particles are 50μ or less.

以下この発明を実施例について説明する。This invention will be described below with reference to embodiments.

実施例 1 アルカリ液中で硝酸銀と過硫酸カリウムを用いて合成し
た過酸化銀の乾燥物10(L9を10100Oの純水中
に投入し攪拌してよく分散させた。
Example 1 Dried silver peroxide 10 (L9) synthesized using silver nitrate and potassium persulfate in an alkaline solution was poured into 10100O pure water and stirred to disperse it well.

この中にカドミウム源としてCdO、テルル源としてT
eO2を使用し、それぞれの所定量を水分散液として加
えて10分間攪拌後、濾過乾燥した。
In this, CdO is used as a cadmium source, and T is used as a tellurium source.
Using eO2, a predetermined amount of each was added as an aqueous dispersion, stirred for 10 minutes, and then filtered and dried.

各製品について水酸力9ラム40%水溶液中の40℃で
のガス発生率および製品酸化銀中のカドミウム、テルル
の含有量を測定した。
For each product, the gas generation rate at 40° C. in a 40% aqueous solution of 9 ram hydroxide and the contents of cadmium and tellurium in the silver oxide product were measured.

結果を第1表に示す。The results are shown in Table 1.

試験A1〜3は比較例でカドミウムおよびテルルを全く
含有しないか、一方のみ含有するものである。
Tests A1 to A3 are comparative examples that do not contain cadmium or tellurium at all, or contain only one of them.

試験44〜7はカドミウムとテルルの両者が添加されて
はいるがこの発明の下限以下の添加量のためにガス発生
率の低下が充分でない。
In Tests 44 to 7, both cadmium and tellurium were added, but the amount added was below the lower limit of this invention, so the gas generation rate was not sufficiently reduced.

試験/168〜19はこの発明に係る製品でいずれもガ
ス発生率の低下が著しい。
Tests/168 to 19 were products according to the present invention, and all showed a remarkable decrease in gas generation rate.

但し、試験/1619は過酸化銀に対する添加物量が多
くなるため発生電気量が低下して好ましくない。
However, test/1619 is not preferable because the amount of additives relative to silver peroxide is large, resulting in a decrease in the amount of electricity generated.

試験A20〜22はCd /T eの比が0.5以下の
例であっていずれもや5好ましくない結果を示している
Tests A20 to A22 are examples in which the Cd/Te ratio is 0.5 or less, and all of them show unfavorable results of 5.

実施例 2 アルカリ液中で硝酸銀と過硫酸カリウムを用いて合成し
た過酸化銀の乾燥物101と所定量のカドミウム源およ
びテルル源を容量50 QmA’のビーカ内で乾燥状態
で手動的に混合し、さらにプレンダーを用いて15部間
攪拌した。
Example 2 Dried silver peroxide 101 synthesized using silver nitrate and potassium persulfate in an alkaline solution and predetermined amounts of a cadmium source and a tellurium source were manually mixed in a dry state in a beaker with a capacity of 50 QmA'. , and further stirred for 15 parts using a blender.

各製品について40℃、40℃濃度の水酸化カリウムま
たは水酸化ナトリウムを用いてガス発生率を測定した。
For each product, the gas generation rate was measured at 40°C using potassium hydroxide or sodium hydroxide at a concentration of 40°C.

結果を第2表に示す。The results are shown in Table 2.

試験A23〜27に示すように各種のカドミウム源、テ
ルル源を用いても結果に多少のバラツキはあるが類似の
効果が認められた。
As shown in Tests A23 to A27, similar effects were observed even when various cadmium sources and tellurium sources were used, although there were some variations in the results.

試験A28〜30はカドミウムとテルルの両者を含む化
合物または合金を使用した例である。
Tests A28-30 are examples in which a compound or alloy containing both cadmium and tellurium was used.

また試験、%31〜33はガス発生率の試験にNaOH
を用いた成績を示し1.%31およびA33は比較例で
ある。
Also, in the test, %31-33 is NaOH for gas generation rate test.
The results using 1. %31 and A33 are comparative examples.

嚇豪実施例 3 アルカリ液中で硝酸銀と過マンガン酸カリウムを用いて
合成した過酸化銀にカドミウム源およびテルル源を実施
例1と同様に湿式で混合し、ガス発生率を40℃、40
%水酸化カリウム水溶液中で測定した。
Example 3: Silver peroxide synthesized using silver nitrate and potassium permanganate in an alkaline solution was wet mixed with a cadmium source and a tellurium source in the same manner as in Example 1, and the gas generation rate was adjusted to 40°C and 40°C.
% potassium hydroxide aqueous solution.

結果を第3表に示す。試験/1634〜36は過酸化銀
製造の際使用する酸化剤が異なってもカドミウム源、テ
ルル源を加えればはゾ同様にガス発生率が下ることを示
している。
The results are shown in Table 3. Tests/1634 to 36 show that even if the oxidizing agent used in the production of silver peroxide is different, if a cadmium source and a tellurium source are added, the gas generation rate is similarly reduced.

試験A37〜3実施例 4 塩化銀30gを20 9は比較例である。Test A37-3 Example 4 20g of silver chloride 9 is a comparative example.

Omlの水にレパルプし、 れに50gのNaOH結晶を加えて溶解後758Cに保
ち、過硫酸力9ウム30gを少しづつ加え、3時間攪拌
しながら反応させる。
Repulp in 0ml of water, add 50g of NaOH crystals, maintain the temperature at 758C after dissolving, add 30g of persulfate little by little, and react with stirring for 3 hours.

洗滌流過後乾燥して過酸化銀を得た。After washing and drying, silver peroxide was obtained.

この過酸化銀は98.1重量牽41)%のAgO含有率
であった。
This silver peroxide had an AgO content of 98.1% by weight.

これに実施例1と同様に湿式でCdOおよびTeO2の
所定量を加え乾燥した。
As in Example 1, predetermined amounts of CdO and TeO2 were added to this in a wet manner and dried.

製品につき40%KOH水溶液中の40℃のガス発生率
を測定した。
The gas evolution rate at 40° C. in a 40% KOH aqueous solution was measured for each product.

結果を第4表に示す。試験A40はカドミウム源、テル
ル源無添加の比較例で、試験應41〜44は過酸化銀の
製造方法が異ってもカドミウム源、テルル源を添加する
と同様にガス発生率が下ることを示している。
The results are shown in Table 4. Test A40 is a comparative example in which no cadmium source or tellurium source is added, and Tests 41 to 44 show that even if the production method of silver peroxide is different, the gas generation rate similarly decreases when a cadmium source or tellurium source is added. ing.

Claims (1)

【特許請求の範囲】[Claims] 1 電池用過酸化銀の製造方法において、生成した過酸
化銀に金属としてカドミウム成分を0.03重量%以上
およびテルル成分を0.01重量四以上でかつCd/T
eの含有比が0°5以上となる量で含有させることを特
徴とする過酸化銀の製造方法。
1. In a method for producing silver peroxide for batteries, the produced silver peroxide contains 0.03% by weight or more of a cadmium component and 0.01% by weight or more of a tellurium component as metals, and Cd/T.
A method for producing silver peroxide, comprising containing e in an amount such that the content ratio is 0°5 or more.
JP55083974A 1980-06-23 1980-06-23 Method for producing silver peroxide Expired JPS5846453B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP55083974A JPS5846453B2 (en) 1980-06-23 1980-06-23 Method for producing silver peroxide
US06/271,088 US4338385A (en) 1980-06-23 1981-06-05 Divalent silver oxide cell containing cadmium and tellurium components
GB8118350A GB2079522B (en) 1980-06-23 1981-06-15 Silver oxide cell
CH400781A CH656487A5 (en) 1980-06-23 1981-06-17 SILVER (II) OXIDE CELL AND METHOD FOR THE PRODUCTION THEREOF.
DE19813124591 DE3124591C2 (en) 1980-06-23 1981-06-23 Silver (II) oxide cell
FR8112283A FR2485269A1 (en) 1980-06-23 1981-06-23 SILVER OXIDE BATTERY DIVALENT, CONTAINING CADMIUM AND TELLURE COMPONENTS
KR1019810002276A KR840002391B1 (en) 1980-06-23 1981-06-23 Divalent silrer oride cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55083974A JPS5846453B2 (en) 1980-06-23 1980-06-23 Method for producing silver peroxide

Publications (2)

Publication Number Publication Date
JPS5711823A JPS5711823A (en) 1982-01-21
JPS5846453B2 true JPS5846453B2 (en) 1983-10-17

Family

ID=13817506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55083974A Expired JPS5846453B2 (en) 1980-06-23 1980-06-23 Method for producing silver peroxide

Country Status (2)

Country Link
JP (1) JPS5846453B2 (en)
KR (1) KR840002391B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124853A (en) * 1981-01-26 1982-08-03 Seiko Instr & Electronics Ltd Silver peroxide battery
JPS57136771A (en) * 1981-01-26 1982-08-23 Seiko Instr & Electronics Ltd Silver peroxide cell
JPS57124852A (en) * 1981-01-26 1982-08-03 Seiko Instr & Electronics Ltd Silver peroxide battery
JPS57136770A (en) * 1981-01-26 1982-08-23 Seiko Instr & Electronics Ltd Silver peroxide cell
JPS5894761A (en) * 1981-12-01 1983-06-06 Seiko Instr & Electronics Ltd Silver peroxide cell
JPS59184459A (en) * 1983-04-01 1984-10-19 Sumitomo Metal Mining Co Ltd Silver peroxide battery
JPWO2021106829A1 (en) 2019-11-28 2021-06-03
CN115849431B (en) * 2022-10-11 2023-07-18 贵州梅岭电源有限公司 Zinc-silver battery and high specific capacity AgO positive electrode material thereof

Also Published As

Publication number Publication date
KR830006830A (en) 1983-10-06
KR840002391B1 (en) 1984-12-24
JPS5711823A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
JPS5846453B2 (en) Method for producing silver peroxide
US3297433A (en) Process for preparing a cadmium electrode material for use in electric storage devices
JPS58131660A (en) Reducing agent in alkali battery electrolyte
CA1038030A (en) Silver-ii-oxide for galvanic elements
JP2009117246A (en) Electrolytic manganese dioxide, and manufacturing method and application thereof
JPS6211459B2 (en)
JPS605528B2 (en) Method for producing silver peroxide
JPH04259755A (en) Alkali electrolyte for battery
JPS6164076A (en) Electrochemical battery
JPH084004B2 (en) Highly fluid aqueous cadmium oxide paste vibratingly packed into porous or fibrous electrode frameworks
US3040114A (en) Primary battery cell
US6277305B1 (en) Cobaltous oxide containing finely-dispersed metallic cobalt, methods of producing the same and use thereof
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPS62123658A (en) Zinc-alkaline battery
JPH0317181B2 (en)
JPH0459374B2 (en)
JPS61109256A (en) Zinc anode of alkaline call
JPS6123707A (en) Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury
JPS58225565A (en) Alkaline battery
JP2001052694A (en) Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder
JP2754664B2 (en) Method for producing cadmium hydroxide
JPH0418674B2 (en)
JPH09161781A (en) Negative electrode active material for alkaline battery
JPS5920602B2 (en) Production method of silver oxide for batteries
JPS6394560A (en) Negative electrode active material for cell