JP2001052694A - Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder - Google Patents

Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder

Info

Publication number
JP2001052694A
JP2001052694A JP11221207A JP22120799A JP2001052694A JP 2001052694 A JP2001052694 A JP 2001052694A JP 11221207 A JP11221207 A JP 11221207A JP 22120799 A JP22120799 A JP 22120799A JP 2001052694 A JP2001052694 A JP 2001052694A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
cobalt
hydroxide powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11221207A
Other languages
Japanese (ja)
Inventor
Shoichi Tamura
祥一 田村
Shigeki Sato
佐藤  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP11221207A priority Critical patent/JP2001052694A/en
Publication of JP2001052694A publication Critical patent/JP2001052694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide nickel hydroxide powder with an enhanced utilization factor of nickel hydroxide without resorting to improvement of the electroconductivity between active materials or between a positive electrode base material and active material. SOLUTION: Nickel hydroxide powder in the form of solid solution contains 0.5-10 wt.% solid-solution cobalt in metal conversion, 0-10 wt.% solid-solution zinc, cadmium, magnesium, calcium, and/or manganese, and no more than 0.2 wt.% lithium. The content of trivalent nickel and trivalent cobalt in total is below 10% of the total quantity of nickel and cobalt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池正
極活物質用コバルト固溶水酸化ニッケル粉末とその製造
方法に関する。
The present invention relates to a cobalt solid solution nickel hydroxide powder for a positive electrode active material of an alkaline storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】水酸化ニッケル粉末は、ニッケル−カド
ミウム蓄電池、ニッケル−水素蓄電池等のアルカリ蓄電
池の正極活物質として、従来、種々の電子機器、例え
ば、携帯電話、パソコン等の小型機器の電源に広く用い
られており、更に、近年に至っては、電気自動車用の大
型電源としても利用されつつある。そこで、最近、この
ようなアルカリ蓄電池の高容量化が重要な課題となり、
特に、正極活物質である水酸化ニッケルの利用率の向上
が強く求められている。
2. Description of the Related Art Nickel hydroxide powder has conventionally been used as a positive electrode active material for alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries as a power source for various electronic devices, for example, small devices such as mobile phones and personal computers. It is widely used and, more recently, is being used as a large power source for electric vehicles. Therefore, recently, increasing the capacity of such alkaline storage batteries has become an important issue,
In particular, there is a strong demand for an improvement in the utilization of nickel hydroxide, which is a positive electrode active material.

【0003】アルカリ蓄電池正極活物質としての水酸化
ニッケルの利用率を向上させる方法として、例えば、特
開平7−22027号公報には、水酸化コバルトを導電
剤として、水酸化ニッケルに混合する方法が提案されて
いる。この方法によれば、電池の充電時に水酸化コバル
トがオキシ水酸化コバルトに酸化されて導電性マトリッ
クスを形成し、その結果として、活物質の間の導電性が
高まるとされている。
As a method for improving the utilization rate of nickel hydroxide as a positive electrode active material of an alkaline storage battery, for example, Japanese Patent Application Laid-Open No. 7-22027 discloses a method of mixing nickel hydroxide with cobalt hydroxide as a conductive agent. Proposed. According to this method, cobalt hydroxide is oxidized to cobalt oxyhydroxide when the battery is charged to form a conductive matrix, and as a result, conductivity between the active materials is increased.

【0004】また、特開昭62−234867号公報、
特開昭62−237667号公報、特開昭62−222
566号公報、特開平7−22027号等には、水酸化
ニッケルやこれを主成分とする粒子の表面にコバルト化
合物を被覆させて、更に、導電性を向上させることが提
案されている。
[0004] Also, Japanese Patent Application Laid-Open No. 62-234867,
JP-A-62-237667, JP-A-62-222
No. 566, Japanese Patent Application Laid-Open No. 7-22027 and the like propose that nickel compounds are coated on the surfaces of nickel hydroxide and particles mainly composed of nickel hydroxide to further improve the conductivity.

【0005】このように、従来、水酸化ニッケル粉末に
水酸化コバルト粉末を添加し、又は水酸化ニッケル粒子
の表面に水酸化コバルトの被覆を形成して、活物質間の
導電性や正極基材と活物質との間の導電性を高めること
によって、アルカリ蓄電池正極活物質としての水酸化ニ
ッケル粒子の利用率を高めることが提案されてきてい
る。
[0005] As described above, conventionally, cobalt hydroxide powder is added to nickel hydroxide powder, or a coating of cobalt hydroxide is formed on the surface of nickel hydroxide particles to provide conductivity between the active materials and the positive electrode base material. It has been proposed to increase the utilization of nickel hydroxide particles as an alkaline storage battery positive electrode active material by increasing the conductivity between the active material and the active material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た方法によって、活物質の導電性を一層高めようとすれ
ば、水酸化ニッケルに対する水酸化コバルトの添加量や
被覆量を増やさざるを得なくなり、そうすれば、電極基
材への水酸化ニッケル活物質の充填量が相対的に減少す
るのみならず、原料コストと製造コストが増加し、コス
トメリットが少ないという欠点がある。
However, if the conductivity of the active material is further increased by the above-described method, the amount of cobalt hydroxide added to nickel hydroxide and the amount of coating must be increased. In this case, not only the amount of the nickel hydroxide active material charged into the electrode substrate is relatively reduced, but also the raw material cost and the production cost are increased, and the cost merit is low.

【0007】本発明は、従来のアルカリ蓄電池正極活物
質用水酸化ニッケル粉末の利用率の向上における上述し
た問題を解決するためになされたものであって、活物質
間の導電性や、正極基材と活物質との間の導電性の改良
に頼ることなく、従来の水酸化ニッケル粉末に比べて、
利用率を遙かに高いレベルに向上させた水酸化ニッケル
粉末とその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem in improving the utilization rate of the conventional nickel hydroxide powder for a positive electrode active material of an alkaline storage battery. Compared to conventional nickel hydroxide powder, without depending on the improvement in conductivity between the active material and
An object of the present invention is to provide a nickel hydroxide powder whose utilization factor has been improved to a much higher level and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明によれば、金属換
算にてコバルトを0.5〜10重量%の範囲で固溶させる
と共に、亜鉛、カドミウム、マグネシウム、カルシウム
及びマンガンから選ばれる少なくとも1種の元素を0〜
10重量%の範囲で固溶させ、更に、リチウムを0.2重
量%以下の範囲で含有させてなる水酸化ニッケル粉末か
らなり、ニッケルとコバルトの全量に対して、3価ニッ
ケルと3価コバルトが合計にて10%以下の範囲で含ま
れているアルカリ蓄電池正極活物質用水酸化ニッケル粉
末が提供される。
According to the present invention, cobalt is solid-dissolved in a range of 0.5 to 10% by weight in terms of metal and at least one selected from zinc, cadmium, magnesium, calcium and manganese. Seed element
A nickel hydroxide powder containing 10% by weight of a solid solution and further containing lithium in a range of 0.2% by weight or less, based on the total amount of nickel and cobalt; Is provided in a range of 10% or less in total.

【0009】このようなアルカリ蓄電池正極活物質用水
酸化ニッケル粉末は、本発明に従って、水溶性ニッケル
塩と金属換算にて水溶性コバルト塩を0.5〜10重量%
の範囲で含むと共に、亜鉛、カドミウム、マグネシウ
ム、カルシウム及びマンガンから選ばれる少なくとも1
種の元素の水溶性塩を0〜10重量%の範囲で含む水溶
液とアンモニウム塩水溶液と水酸化アルカリ水溶液と
を、これらの混合物のpHを9〜13の範囲に保持しな
がら、単一の反応容器に導入して、上記範囲でコバルト
と上記元素を固溶させた水酸化ニッケル粉末を得、次い
で、ニッケルとコバルトの全量に対して、3価ニッケル
と3価コバルトが合計にて10%以下の範囲で含まれる
ように、上記水酸化ニッケル粉末を酸化剤で酸化して、
3価ニッケルと3価コバルトとを含む水酸化ニッケル粉
末を得、次いで、この水酸化ニッケル粉末と水溶性リチ
ウム塩とを含む水性スラリーを加圧下に100℃を越え
て、200℃以下の温度に加熱することによって得るこ
とができる。
According to the present invention, such a nickel hydroxide powder for a positive electrode active material of an alkaline storage battery comprises a water-soluble nickel salt and a water-soluble cobalt salt in a metal conversion of 0.5 to 10% by weight.
And at least one selected from zinc, cadmium, magnesium, calcium and manganese
An aqueous solution containing a water-soluble salt of a species element in the range of 0 to 10% by weight, an aqueous solution of an ammonium salt and an aqueous solution of an alkali hydroxide are mixed while maintaining the pH of the mixture in the range of 9 to 13 by a single reaction. Introduced into a container to obtain a nickel hydroxide powder in which cobalt and the above elements are dissolved in the above range, and then trivalent nickel and trivalent cobalt are 10% or less in total with respect to the total amount of nickel and cobalt. Oxidation of the nickel hydroxide powder with an oxidizing agent so as to be included in the range of,
A nickel hydroxide powder containing trivalent nickel and trivalent cobalt is obtained. Then, an aqueous slurry containing the nickel hydroxide powder and a water-soluble lithium salt is heated to a temperature of 200 ° C. or lower at a temperature exceeding 100 ° C. under pressure. It can be obtained by heating.

【0010】[0010]

【発明の実施の形態】本発明によるアルカリ蓄電池正極
活物質用水酸化ニッケル粉末は、金属換算にてコバルト
を0.5〜10重量%の範囲で固溶させると共に、亜鉛、
カドミウム、マグネシウム、カルシウム及びマンガンか
ら選ばれる少なくとも1種の元素を0〜10重量%の範
囲で固溶させた水酸化ニッケル粉末からなる。
BEST MODE FOR CARRYING OUT THE INVENTION The nickel hydroxide powder for a positive electrode active material of an alkaline storage battery according to the present invention has a solid solution of cobalt in the range of 0.5 to 10% by weight in terms of metal, and contains zinc,
It is composed of nickel hydroxide powder in which at least one element selected from cadmium, magnesium, calcium and manganese is dissolved in a range of 0 to 10% by weight.

【0011】水酸化ニッケル粉末において、コバルトの
割合が金属換算にて0.5重量%よりも少ないときは、ニ
ッケルとコバルトを一部、3価に酸化しても、正極活物
質としての水酸化ニッケルの利用率を十分に向上させる
ことができない。しかし、コバルトの割合が金属換算に
てニッケルに対して10重量%よりも多いときは、活物
質である水酸化ニッケルの電極基材への充填量が相対的
に減少して、容量低下を招く。特に、本発明によれば、
水酸化ニッケル粉末におけるコバルトの割合は、金属換
算にてニッケルに対して1〜5重量%の範囲であること
が好ましい。
In the nickel hydroxide powder, when the proportion of cobalt is less than 0.5% by weight in terms of metal, even if nickel and cobalt are partially oxidized to trivalent, hydroxyl as a positive electrode active material The utilization rate of nickel cannot be sufficiently improved. However, when the proportion of cobalt is more than 10% by weight with respect to nickel in terms of metal, the amount of nickel hydroxide, which is an active material, charged into the electrode substrate is relatively reduced, resulting in a reduction in capacity. . In particular, according to the present invention,
The proportion of cobalt in the nickel hydroxide powder is preferably in the range of 1 to 5% by weight relative to nickel in terms of metal.

【0012】本発明によれば、水酸化ニッケル粉末は、
コバルトに加えて、亜鉛、カドミウム、マグネシウム、
カルシウム及びマンガンから選ばれる少なくとも1種を
金属換算にて、0〜10重量%の範囲で含んでいてもよ
い。特に、本発明によれば、上記元素の割合は、金属換
算にて、1〜10重量%の範囲が好ましい。
According to the present invention, the nickel hydroxide powder comprises:
In addition to cobalt, zinc, cadmium, magnesium,
At least one selected from calcium and manganese may be contained in the range of 0 to 10% by weight in terms of metal. In particular, according to the present invention, the ratio of the above elements is preferably in the range of 1 to 10% by weight in terms of metal.

【0013】更に、本発明によるアルカリ蓄電池正極活
物質用水酸化ニッケル粉末は、ニッケルとコバルトの全
量に対して、3価ニッケルと3価コバルトが合計にて1
0%以下の範囲で含まれている。以下、本発明による水
酸化ニッケル粉末において、ニッケルとコバルトの全量
に対する3価ニッケルと3価コバルトの合計の割合を
「酸化率」という。この酸化率が10%を越えるとき
は、正極活物質としての水酸化ニッケルの利用率が低下
して、従来の水酸化ニッケルよりも容量が小さくなる。
また、本発明によれば、酸化率は、0.5%以上であるこ
とが好ましく、特に、1%以上であることが好ましい。
Further, the nickel hydroxide powder for the positive electrode active material of the alkaline storage battery according to the present invention is characterized in that trivalent nickel and trivalent cobalt in a total amount of 1 to the total amount of nickel and cobalt.
It is included in the range of 0% or less. Hereinafter, in the nickel hydroxide powder according to the present invention, the ratio of the total of trivalent nickel and trivalent cobalt to the total amount of nickel and cobalt is referred to as “oxidation rate”. When the oxidation rate exceeds 10%, the utilization rate of nickel hydroxide as a positive electrode active material decreases, and the capacity becomes smaller than that of conventional nickel hydroxide.
Further, according to the present invention, the oxidation rate is preferably 0.5% or more, and particularly preferably 1% or more.

【0014】本発明において、水酸化ニッケル粉末に含
まれるコバルトや、亜鉛、カドミウム、マグネシウム、
カルシウム又はマンガンのような元素とリチウムの割合
は、水酸化ニッケル粉末中のニッケルほか、コバルト、
上記元素及びリチウムを金属換算で合計で100重量%
としたときの割合(重量%)で示されている。
In the present invention, cobalt, zinc, cadmium, magnesium, and the like contained in the nickel hydroxide powder are used.
The ratio of lithium to elements such as calcium or manganese is nickel, nickel, cobalt,
100% by weight of the above elements and lithium in total in terms of metal
The ratio (% by weight) is shown.

【0015】同様に、本発明による水酸化ニッケル粉末
の製造において、水溶性ニッケル塩のほか、コバルト水
溶性塩や上記元素の水溶性塩の割合も、ニッケル塩、コ
バルト塩及び上記元素の水溶性塩を金属換算で合計で1
00重量%としたときの割合(重量%)で示されてい
る。
Similarly, in the production of the nickel hydroxide powder according to the present invention, in addition to the water-soluble nickel salt, the ratio of the cobalt water-soluble salt or the water-soluble salt of the above element is determined by the water solubility of the nickel salt, the cobalt salt and the above-mentioned element. Salt is 1 in total in metal conversion
It is shown as a ratio (% by weight) when it is set to 00% by weight.

【0016】水酸化ニッケル粉末における酸化率は、チ
オ硫酸ナトリウム滴定法により求めることができる。チ
オ硫酸ナトリウム滴定法によれば、以下のようにして、
水酸化ニッケル粉末中の3価ニッケルと3価コバルトの
合計量を求めることができる。即ち、次式(1)に示す
ように、ヨウ素イオンを含む塩、例えば、ヨウ化カリウ
ム等の水溶液に、3価ニッケルと3価コバルトを含む水
酸化ニッケル粉末を溶解させると、3価ニッケルと3価
コバルトはヨウ素イオンにてそれぞれ2価ニッケルと2
価コバルトに還元されると共に、ヨウ素イオンはヨウ素
に酸化される。そこで、次式(2)に示すように、この
ヨウ素をチオ硫酸ナトリウムで滴定すれば、上記水酸化
ニッケル粉末中の3価ニッケルと3価コバルトの合計量
を求めることができる。
The oxidation rate of the nickel hydroxide powder can be determined by a sodium thiosulfate titration method. According to the sodium thiosulfate titration method,
The total amount of trivalent nickel and trivalent cobalt in the nickel hydroxide powder can be determined. That is, as shown in the following formula (1), when a nickel hydroxide powder containing trivalent nickel and trivalent cobalt is dissolved in an aqueous solution of a salt containing iodide ions, for example, potassium iodide, the trivalent nickel is dissolved. Trivalent cobalt is converted to divalent nickel and
While being reduced to valent cobalt, iodine ions are oxidized to iodine. Then, as shown in the following formula (2), if this iodine is titrated with sodium thiosulfate, the total amount of trivalent nickel and trivalent cobalt in the nickel hydroxide powder can be determined.

【0017】[0017]

【数1】 (Equation 1)

【0018】従って、本発明における前記酸化率は、次
式で定義される。
Therefore, the oxidation rate in the present invention is defined by the following equation.

【0019】酸化率=((滴定に要したチオ硫酸ナトリ
ウムのモル数)/滴定に用いた水酸化ニッケル粉末中の
ニッケルとコバルトの全量のモル数))×100(%)
Oxidation rate = ((moles of sodium thiosulfate required for titration) / moles of total amount of nickel and cobalt in nickel hydroxide powder used for titration)) × 100 (%)

【0020】滴定に要したチオ硫酸ナトリウムのモル数
は、即ち、水酸化ニッケル粉末中の3価ニッケルと3価
コバルトの合計のモル数である。
The number of moles of sodium thiosulfate required for the titration is the total number of moles of trivalent nickel and trivalent cobalt in the nickel hydroxide powder.

【0021】更に、本発明による水酸化ニッケル粉末
は、リチウムを0.2重量%以下の範囲で含み、好ましく
は、0.01〜0.1重量%の範囲で含む。かくして、本発
明による水酸化ニッケル粉末を電極基材に充填し、アル
カリ蓄電池とするとき、その充放電に際して、正極の膨
化を抑制することができる。
Further, the nickel hydroxide powder according to the present invention contains lithium in a range of 0.2% by weight or less, and preferably in a range of 0.01 to 0.1% by weight. Thus, when the electrode substrate is filled with the nickel hydroxide powder according to the present invention to form an alkaline storage battery, the expansion of the positive electrode can be suppressed during charging and discharging.

【0022】このようなアルカリ蓄電池正極活物質用水
酸化ニッケル粉末は、水溶性ニッケル塩と金属換算にて
水溶性コバルト塩を0.5〜10重量%の範囲で含むと共
に、亜鉛、カドミウム、マグネシウム、カルシウム及び
マンガンから選ばれる少なくとも1種の元素の水溶性塩
を0〜10重量%の範囲で含む水溶液とアンモニウム塩
水溶液と水酸化アルカリ水溶液とを、これらの混合物の
pHを9〜13の範囲に保持しながら、単一の反応容器
に導入して、上記範囲でコバルトと上記元素を固溶させ
た水酸化ニッケル粉末を共沈物として得、次いで、ニッ
ケルとコバルトの全量に対して、3価ニッケルと3価コ
バルトが合計にて10%以下の範囲で含まれるように、
上記水酸化ニッケル粉末を酸化剤で酸化して、3価ニッ
ケルと3価コバルトとを含む水酸化ニッケル粉末を得、
次いで、この水酸化ニッケル粉末を水溶性リチウム塩を
含む水に分散させて水性スラリーとし、これを加圧下に
100℃を越えて、200℃以下の温度に加熱すること
によって得ることができる。
The nickel hydroxide powder for a positive electrode active material of an alkaline storage battery contains a water-soluble nickel salt and a water-soluble cobalt salt in a metal conversion range of 0.5 to 10% by weight, and contains zinc, cadmium, magnesium, An aqueous solution containing a water-soluble salt of at least one element selected from calcium and manganese in a range of 0 to 10% by weight, an aqueous solution of an ammonium salt and an aqueous solution of an alkali hydroxide are adjusted to a pH of 9 to 13 in a mixture thereof. While holding, the mixture was introduced into a single reaction vessel to obtain a nickel hydroxide powder in which cobalt and the above elements were dissolved in the above range as a coprecipitate, and then trivalent with respect to the total amount of nickel and cobalt. In order that nickel and trivalent cobalt are included in a range of 10% or less in total,
The nickel hydroxide powder is oxidized with an oxidizing agent to obtain a nickel hydroxide powder containing trivalent nickel and trivalent cobalt,
Next, the nickel hydroxide powder can be obtained by dispersing the nickel hydroxide powder in water containing a water-soluble lithium salt to form an aqueous slurry, which is heated to a temperature of more than 100 ° C. and 200 ° C. or less under pressure.

【0023】特に、本発明によれば、水溶性ニッケル塩
と金属換算にて水溶性コバルト塩を0.5〜10重量%と
亜鉛、カドミウム、マグネシウム、カルシウム及びマン
ガンから選ばれる少なくとも1種の元素の水溶性塩を1
〜10重量%の範囲で含む水溶液とアンモニウム塩水溶
液と水酸化アルカリ水溶液とを、これらの混合物のpH
を9〜13の範囲に保持しながら、単一の反応容器に導
入して、上記範囲でコバルトと上記元素を固溶させた水
酸化ニッケル粉末を共沈物として得、これを上述したよ
うにして、一部、酸化し、更に、このように、一部、酸
化した水酸化ニッケル粉末のスラリーを水溶性リチウム
塩と共に加圧下に加熱処理するのが好ましい。
In particular, according to the present invention, 0.5 to 10% by weight of a water-soluble nickel salt and a water-soluble cobalt salt in terms of metal, and at least one element selected from zinc, cadmium, magnesium, calcium and manganese 1 water-soluble salt
Aqueous solution, ammonium salt aqueous solution and alkali hydroxide aqueous solution containing the aqueous solution in the range of 10 to 10% by weight;
While maintaining in the range of 9 to 13, was introduced into a single reaction vessel to obtain a nickel hydroxide powder in which cobalt and the above elements were dissolved in the above range as a coprecipitate. It is preferable to heat the partially oxidized and thus partially oxidized slurry of the nickel hydroxide powder together with the water-soluble lithium salt under pressure.

【0024】上記水溶性ニッケル塩と水溶性コバルト塩
としては、特に制限されないが、通常、硫酸塩、硝酸
塩、塩化物等の鉱酸塩が好ましく用いられる。水溶性の
カドミウム塩、マグネシウム塩、カルシウム塩、マンガ
ン塩も、同様に、硫酸塩、硝酸塩、塩化物等の鉱酸塩が
好ましく用いられる。
The water-soluble nickel salt and water-soluble cobalt salt are not particularly limited, but usually, mineral salts such as sulfates, nitrates, and chlorides are preferably used. Similarly, mineral salts such as sulfates, nitrates, and chlorides are preferably used as the water-soluble cadmium salts, magnesium salts, calcium salts, and manganese salts.

【0025】水酸化アルカリ水溶液としては、水酸化ナ
トリウムが好ましく用いられる。また、アンモニウム塩
水溶液としては、アンモニア水が代表的に用いられる。
As the aqueous alkali hydroxide solution, sodium hydroxide is preferably used. As the ammonium salt aqueous solution, ammonia water is typically used.

【0026】このようにして、コバルトと共に、必要に
応じて、カドミウム、マグネシウム、カルシウム又はマ
ンガンを固溶させた水酸化ニッケル粉末を共沈物として
得た後、これを水に分散させ、得られたスラリーに攪拌
下、酸化剤を加えて、ニッケルやコバルトを一部、3価
に酸化することによって、本発明によるアルカリ蓄電池
正極活物質用水酸化ニッケル粉末を得ることができる。
In this way, nickel hydroxide powder in which cadmium, magnesium, calcium or manganese is dissolved as necessary together with cobalt is obtained as a coprecipitate, which is then dispersed in water. An oxidizing agent is added to the slurry under stirring to partially oxidize nickel and cobalt to trivalent, whereby the nickel hydroxide powder for an alkaline storage battery positive electrode active material according to the present invention can be obtained.

【0027】上記酸化剤としては、次亜塩素酸ナトリウ
ム、ペルオキソ二硫酸カリウム等の水溶液やオゾンなど
の気体が好ましく用いられる。
As the oxidizing agent, an aqueous solution such as sodium hypochlorite and potassium peroxodisulfate and a gas such as ozone are preferably used.

【0028】本発明によれば、このように、ニッケルと
コバルトを一部、酸化した水酸化ニッケル粉末を水溶性
リチウム塩を含む水に分散させて水性スラリーとし、こ
れを加圧下に100℃を越えて、200℃以下の温度に
加熱することによって、本発明による水酸化ニッケル粉
末を得ることができる。以下、この反応をリチウム化と
いう。本発明によれば、このリチウム化反応の温度は、
操作性や経済性の点から、好ましくは、120〜180
℃の範囲の温度である。
According to the present invention, as described above, the nickel hydroxide powder, which is obtained by partially oxidizing nickel and cobalt, is dispersed in water containing a water-soluble lithium salt to form an aqueous slurry, which is heated to 100 ° C. under pressure. By heating to above 200 ° C., the nickel hydroxide powder according to the invention can be obtained. Hereinafter, this reaction is referred to as lithiation. According to the present invention, the temperature of this lithiation reaction is
From the viewpoints of operability and economy, preferably 120 to 180
Temperatures in the range of ° C.

【0029】上記水溶性リチウム塩としては、特に制限
されるものではないが、通常、水酸化リチウム、炭酸リ
チウム、硫酸リチウム、硝酸リチウム、塩化リチウム等
が用いられる。
The water-soluble lithium salt is not particularly limited, but usually lithium hydroxide, lithium carbonate, lithium sulfate, lithium nitrate, lithium chloride and the like are used.

【0030】[0030]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこの実施例により何ら限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by this embodiment.

【0031】実施例1 (亜鉛・コバルト固溶水酸化ニッケル粉末の製造)10
L容量の攪拌機付き反応槽に攪拌下に温度を50℃に維
持しつつ、濃度250g/Lの硫酸ニッケルと4.0g/
Lの硫酸コバルトと11.8g/Lの硫酸亜鉛とを含む混
合水溶液と13重量%アンモニア水を連続的に供給し、
この際、混合物のpHを12.1に維持するように、28
重量%水酸化ナトリウム水溶液を間欠的に反応槽に加え
た。得られた共沈物を濾過し、洗浄し、真空乾燥して、
金属換算にてコバルトを1.5重量%と亜鉛を4.5重量%
それぞれ固溶している平均粒子径11.6μm、タップ密
度2.1g/ccの水酸化ニッケル粉末Aを得た。
EXAMPLE 1 (Production of zinc-cobalt solid solution nickel hydroxide powder) 10
While maintaining the temperature at 50 ° C. with stirring in a reaction vessel having a stirrer of L capacity, nickel sulfate having a concentration of 250 g / L and 4.0 g /
A mixed aqueous solution containing 13 L of cobalt sulfate and 11.8 g / L of zinc sulfate and 13% by weight of ammonia water are continuously supplied,
At this time, the pH of the mixture was maintained at 28 so as to maintain the pH at 12.1.
A weight percent aqueous sodium hydroxide solution was added intermittently to the reactor. The resulting coprecipitate is filtered, washed, dried in vacuo,
1.5% by weight of cobalt and 4.5% by weight of zinc in metal conversion
Nickel hydroxide powder A having an average particle diameter of 11.6 μm and a tap density of 2.1 g / cc was obtained.

【0032】次に、このようにして得られた水酸化ニッ
ケル粉末A1kgを水2.5Lと共に5L容量の攪拌機付
き反応槽に加えて、攪拌下、温度を10℃に維持しつ
つ、有効塩素濃度111g/Lの次亜塩素酸ナトリウム
水溶液80ccを添加して、水酸化ニッケル中のニッケ
ルとコバルトとを一部、酸化した。
Next, 1 kg of the nickel hydroxide powder A thus obtained was added together with 2.5 L of water to a 5 L reactor equipped with a stirrer. 80 cc of a 111 g / L sodium hypochlorite aqueous solution was added to partially oxidize nickel and cobalt in nickel hydroxide.

【0033】この水酸化ニッケル300gを濾過し、洗
浄し、真空乾燥した後、水酸化リチウム一水塩21gと
共に水に投入し、全量で500mLの水性スラリーを得
た。このスラリーを1L容量のオートクレーブに仕込
み、加圧下に、150℃で4時間保持して、リチウムを
含む水酸化ニッケル粉末Bを得た。
After filtering and washing and vacuum-drying 300 g of this nickel hydroxide, it was poured into water together with 21 g of lithium hydroxide monohydrate to obtain a 500 mL aqueous slurry in total. This slurry was charged into an autoclave having a capacity of 1 L, and kept at 150 ° C. for 4 hours under pressure to obtain nickel hydroxide powder B containing lithium.

【0034】同様にして、水酸化ニッケル粉末A1kg
を有効塩素濃度118g/Lの次亜塩素酸ナトリウム水
溶液150ccを用いて、水酸化ニッケル中のニッケル
とコバルトとを一部、酸化した後、上記と同様にして、
リチウムを含む水酸化ニッケル粉末Cを得た。
Similarly, 1 kg of nickel hydroxide powder A
Is partially oxidized with 150 cc of an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 118 g / L, in the same manner as above, after partially oxidizing nickel and cobalt in nickel hydroxide.
A nickel hydroxide powder C containing lithium was obtained.

【0035】同様にして、水酸化ニッケル粉末A1kg
を有効塩素濃度123g/Lの次亜塩素酸ナトリウム水
溶液288ccを用いて、水酸化ニッケル中のニッケル
とコバルトとを一部、酸化した後、上記と同様にして、
リチウムを含む水酸化ニッケル粉末Dを得た。
Similarly, 1 kg of nickel hydroxide powder A
Was partially oxidized with 288 cc of an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 123 g / L, and in the same manner as described above,
A nickel hydroxide powder D containing lithium was obtained.

【0036】同様にして、水酸化ニッケル粉末A1kg
を有効塩素濃度116g/Lの次亜塩素酸ナトリウム水
溶液460ccを用いて、水酸化ニッケル中のニッケル
とコバルトとを一部、酸化した後、上記と同様にして、
リチウムを含む水酸化ニッケル粉末Eを得た。
Similarly, 1 kg of nickel hydroxide powder A
Using 460 cc of an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 116 g / L, nickel and cobalt in nickel hydroxide are partially oxidized, and in the same manner as above,
A nickel hydroxide powder E containing lithium was obtained.

【0037】同様にして、水酸化ニッケル粉末A1kg
を有効塩素濃度117g/Lの次亜塩素酸ナトリウム水
溶液606ccを用いて、水酸化ニッケル中のニッケル
とコバルトとを一部、酸化した後、上記と同様にして、
リチウムを含む水酸化ニッケル粉末Fを得た。
Similarly, 1 kg of nickel hydroxide powder A
Using a 606 cc aqueous solution of sodium hypochlorite having an effective chlorine concentration of 117 g / L, nickel and cobalt in nickel hydroxide were partially oxidized,
A nickel hydroxide powder F containing lithium was obtained.

【0038】このようにして得た水酸化ニッケル粉末A
からFについて、その酸化率とリチウム含有率を表1に
示す。また、これら水酸化ニッケル粉末について、Cu
Kα線を用い、管電圧40kV、管電流30mA、走査
速度1.2deg/分の測定条件の下にX線回折測定を行
なって、回折ピーク(101)面の半価幅を求めた。結
果を表1に併せて示す。
The nickel hydroxide powder A thus obtained
Table 1 shows the oxidation rate and lithium content of each of Examples 1 to 3. Further, regarding these nickel hydroxide powders, Cu
X-ray diffraction measurement was performed using a Kα ray under the measurement conditions of a tube voltage of 40 kV, a tube current of 30 mA, and a scanning speed of 1.2 deg / min, and the half width of the diffraction peak (101) plane was obtained. The results are shown in Table 1.

【0039】(活物質の利用率の測定)上記水酸化ニッ
ケル粉末AからFをそれぞれ用いて、以下の方法で正極
を調製した。即ち、上記水酸化ニッケル粉末と酸化コバ
ルトを重量比40:7の割合で混合し、更に、これにカ
ルボキシメチルセルロースと水とポリテトラフルオロエ
チレン分散液を加えてペースト状にした後、多孔度96
%の発泡ニッケル多孔体に充填し、80℃で乾燥した。
(Measurement of Utilization of Active Material) A positive electrode was prepared by using the above nickel hydroxide powders A to F by the following method. That is, the nickel hydroxide powder and cobalt oxide were mixed at a weight ratio of 40: 7, and carboxymethylcellulose, water and polytetrafluoroethylene dispersion were added thereto to form a paste.
% Of nickel foam, and dried at 80 ° C.

【0040】負極に発泡ニッケル極、参照極に塩化銀電
極、電解液に1.6重量%となるように水酸化リチウム一
水塩を加えた30重量%水酸化カリウム水溶液を用い
て、簡易セルを作製した。
A simple cell was prepared by using a foamed nickel electrode as the negative electrode, a silver chloride electrode as the reference electrode, and a 30% by weight aqueous solution of potassium hydroxide in which lithium hydroxide monohydrate was added to the electrolyte at 1.6% by weight. Was prepared.

【0041】この簡易セルを用いて、以下の条件にて、
水酸化ニッケル活物質の利用率を測定した。即ち、温度
20℃の下、0.2CmAの充電電流で水酸化ニッケル活
物質から計算される理論容量の150%充電を行ない、
1時間休止して、0.2CmAの放電電流で−0.25Vま
で、連続放電を行なった。この方法で充放電を4回繰り
返し、各サイクルにおける活物質の利用率を以下の次式
から計算した。
Using this simple cell, under the following conditions:
The utilization rate of the nickel hydroxide active material was measured. That is, at a temperature of 20 ° C. and a charging current of 0.2 CmA, the battery is charged to 150% of the theoretical capacity calculated from the nickel hydroxide active material,
After suspending for 1 hour, continuous discharge was performed to -0.25 V at a discharge current of 0.2 CmA. Charge / discharge was repeated four times by this method, and the utilization rate of the active material in each cycle was calculated from the following equation.

【0042】活物質の利用率=((−0.25Vまで放電
容量/水酸化ニッケル理論容量))×100(%)
Utilization rate of active material = ((discharge capacity up to −0.25 V / theoretical nickel hydroxide capacity)) × 100 (%)

【0043】表2にそれぞれの水酸化ニッケル粉末の利
用率を示す。
Table 2 shows the utilization ratio of each nickel hydroxide powder.

【0044】(正極の膨化の度合いの評価)更に、上記
簡易セルにおける正極の膨化の度合いを調べるために、
正極の膨潤率を下記式から求めた。結果を表2に示す。
(Evaluation of Degree of Expansion of Positive Electrode) Further, in order to examine the degree of expansion of the positive electrode in the above simple cell,
The swelling ratio of the positive electrode was determined from the following equation. Table 2 shows the results.

【0045】膨潤率=((4サイクル後の正極の厚み)
/充放電を行なう前の正極の厚み))×100(%)
Swelling ratio = ((thickness of positive electrode after 4 cycles)
/ Thickness of positive electrode before charging / discharging)) × 100 (%)

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】表2の結果から明らかなように、従来の水
酸化ニッケル粉末Aに比べて、粉末BからEは高い利用
率を示している。水溶液ニッケル粉末Fは、酸化率が1
0%を越えるため、従来の水酸化ニッケル粉末Aよりも
利用率が低い。
As is clear from the results in Table 2, the powders B to E show a higher utilization factor than the conventional nickel hydroxide powder A. The aqueous nickel powder F has an oxidation rate of 1
Since it exceeds 0%, the utilization factor is lower than that of the conventional nickel hydroxide powder A.

【0049】更に、本発明による水酸化ニッケル粉末を
用いた正極は、従来のものに比べて、膨化が抑制されて
いる。
Further, the positive electrode using the nickel hydroxide powder according to the present invention is suppressed from swelling as compared with the conventional one.

【0050】[0050]

【発明の効果】以上のように、本発明によるアルカリ蓄
電池正極活物質用水酸化ニッケル粉末は、その利用率が
格段に向上しているので、これを正極活物質として用い
ることによって、より高容量のアルカリ蓄電池を得るこ
とができ、更に、本発明による水酸化ニッケル粉末を活
物質とする正極は、従来のものに比べて、膨化が抑制さ
れる。また、このような水酸化ニッケル粉末は、ニッケ
ル塩とコバルト塩とを含む水溶液から水酸化物を共沈さ
せ、これを酸化剤で酸化した後、水溶性リチウム塩を含
む水に分散させて水性スラリーとし、これを加圧加熱し
て、水酸化ニッケルをリチウム化するすることによって
容易に得ることができる。
As described above, the nickel hydroxide powder for the positive electrode active material of an alkaline storage battery according to the present invention has a significantly improved utilization factor. An alkaline storage battery can be obtained, and further, the positive electrode using the nickel hydroxide powder according to the present invention as an active material suppresses expansion as compared with a conventional positive electrode. In addition, such nickel hydroxide powder is prepared by coprecipitating a hydroxide from an aqueous solution containing a nickel salt and a cobalt salt, oxidizing the hydroxide with an oxidizing agent, and then dispersing the hydroxide in water containing a water-soluble lithium salt. The slurry can be easily obtained by pressurizing and heating the slurry to lithium the nickel hydroxide.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA03 AA04 AA05 AB02 AB03 AB06 AC06 AD03 AE05 5H003 AA02 AA04 BA01 BA02 BA03 BA07 BB04 BD00 BD01 BD04 BD06  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4G048 AA03 AA04 AA05 AB02 AB03 AB06 AC06 AD03 AE05 5H003 AA02 AA04 BA01 BA02 BA03 BA07 BB04 BD00 BD01 BD04 BD06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属換算にてコバルトを0.5〜10重量%
の範囲で固溶させると共に、亜鉛、カドミウム、マグネ
シウム、カルシウム及びマンガンから選ばれる少なくと
も1種の元素を0〜10重量%の範囲で固溶させ、更
に、リチウムを0.2重量%以下の範囲で含有させてなる
水酸化ニッケル粉末からなり、ニッケルとコバルトの全
量に対して、3価ニッケルと3価コバルトが合計にて1
0%以下の範囲で含まれているアルカリ蓄電池正極活物
質用水酸化ニッケル粉末。
(1) 0.5 to 10% by weight of cobalt in metal conversion
And at least one element selected from zinc, cadmium, magnesium, calcium and manganese in a range of 0 to 10% by weight, and lithium in a range of 0.2% by weight or less. And nickel hydroxide powder containing trivalent nickel and trivalent cobalt in a total amount of 1 to the total amount of nickel and cobalt.
Nickel hydroxide powder for an alkaline storage battery positive electrode active material contained in a range of 0% or less.
【請求項2】亜鉛、カドミウム、マグネシウム、カルシ
ウム及びマンガンから選ばれる少なくとも1種の元素を
1〜10重量%の範囲で固溶させてなる請求項1に記載
の水酸化ニッケル粉末。
2. The nickel hydroxide powder according to claim 1, wherein at least one element selected from the group consisting of zinc, cadmium, magnesium, calcium and manganese is dissolved in a range of 1 to 10% by weight.
【請求項3】水溶性ニッケル塩と金属換算にて水溶性コ
バルト塩を0.5〜10重量%の範囲で含むと共に、亜
鉛、カドミウム、マグネシウム、カルシウム及びマンガ
ンから選ばれる少なくとも1種の元素の水溶性塩を0〜
10重量%の範囲で含む水溶液とアンモニウム塩水溶液
と水酸化アルカリ水溶液とを、これらの混合物のpHを
9〜13の範囲に保持しながら、単一の反応容器に導入
して、上記範囲でコバルトと上記元素を固溶させた水酸
化ニッケル粉末を得、次いで、ニッケルとコバルトの全
量に対して、3価ニッケルと3価コバルトが合計にて1
0%以下の範囲で含まれるように、上記水酸化ニッケル
粉末を酸化剤で酸化して、3価ニッケルと3価コバルト
とを含む水酸化ニッケル粉末を得、次いで、この水酸化
ニッケル粉末を水溶性リチウム塩を含む水に分散させて
水性スラリーとし、これを加圧下に100℃を越えて、
200℃以下の温度に加熱することを特徴とする請求項
1に記載の水酸化ニッケル粉末の製造方法。
3. A water-soluble nickel salt and a water-soluble cobalt salt in the range of 0.5 to 10% by weight in terms of metal, and at least one element selected from zinc, cadmium, magnesium, calcium and manganese. 0 to water-soluble salt
An aqueous solution containing 10% by weight, an aqueous solution of ammonium salt and an aqueous solution of alkali hydroxide are introduced into a single reaction vessel while maintaining the pH of the mixture in the range of 9 to 13. And a nickel hydroxide powder in which the above-mentioned elements are dissolved. Then, trivalent nickel and trivalent cobalt are added in a total amount of 1 to the total amount of nickel and cobalt.
The nickel hydroxide powder is oxidized with an oxidizing agent so as to be contained in a range of 0% or less to obtain a nickel hydroxide powder containing trivalent nickel and trivalent cobalt. Dispersed in water containing a neutral lithium salt to form an aqueous slurry,
The method for producing a nickel hydroxide powder according to claim 1, wherein the heating is performed at a temperature of 200C or less.
【請求項4】水溶性ニッケル塩と金属換算にて水溶性コ
バルト塩を0.5〜10重量%の範囲で含むと共に、亜
鉛、カドミウム、マグネシウム、カルシウム及びマンガ
ンから選ばれる少なくとも1種の元素の水溶性塩を1〜
10重量%の範囲で含む水溶液とアンモニウム塩水溶液
と水酸化アルカリ水溶液とを、これらの混合物のpHを
9〜13の範囲に保持しながら、単一の反応容器に導入
して、上記範囲でコバルトと上記元素を固溶させた水酸
化ニッケル粉末を得る請求項3に記載の水酸化ニッケル
粉末の製造方法。
4. A water-soluble nickel salt and a water-soluble cobalt salt in the range of 0.5 to 10% by weight in terms of metal, and at least one element selected from zinc, cadmium, magnesium, calcium and manganese. 1 to water-soluble salt
An aqueous solution containing 10% by weight, an aqueous solution of ammonium salt and an aqueous solution of alkali hydroxide are introduced into a single reaction vessel while maintaining the pH of the mixture in the range of 9 to 13. 4. A method for producing a nickel hydroxide powder according to claim 3, wherein a nickel hydroxide powder in which the above-mentioned elements are dissolved is obtained.
JP11221207A 1999-08-04 1999-08-04 Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder Pending JP2001052694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11221207A JP2001052694A (en) 1999-08-04 1999-08-04 Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11221207A JP2001052694A (en) 1999-08-04 1999-08-04 Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder

Publications (1)

Publication Number Publication Date
JP2001052694A true JP2001052694A (en) 2001-02-23

Family

ID=16763152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11221207A Pending JP2001052694A (en) 1999-08-04 1999-08-04 Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder

Country Status (1)

Country Link
JP (1) JP2001052694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064979A1 (en) * 2004-12-17 2006-06-22 Gs Yuasa Corporation Alkaline secondary battery-use nickel electrode and production method therefor and alkaline secondary battery
CN108183267A (en) * 2017-12-29 2018-06-19 东莞市朗泰通实业有限公司 A kind of production method of high temperature resistant Ni-MH battery and its electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064979A1 (en) * 2004-12-17 2006-06-22 Gs Yuasa Corporation Alkaline secondary battery-use nickel electrode and production method therefor and alkaline secondary battery
US8057934B2 (en) 2004-12-17 2011-11-15 Gs Yuasa International Ltd. Nickel electrode for alkaline secondary battery and alkaline secondary battery
JP5099479B2 (en) * 2004-12-17 2012-12-19 株式会社Gsユアサ Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
CN108183267A (en) * 2017-12-29 2018-06-19 东莞市朗泰通实业有限公司 A kind of production method of high temperature resistant Ni-MH battery and its electrode

Similar Documents

Publication Publication Date Title
JP6906072B2 (en) Method for producing cobalt compound-coated nickel hydroxide particles and cobalt compound-coated nickel hydroxide particles
JP2945377B2 (en) Method for producing positive electrode active material for secondary battery
JPH08227712A (en) Alkaline storage battery and manufacture thereof
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
JP2000003707A (en) Alkaline storage battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP2004111389A (en) PRIMARY BATTERY CONSISTING OF Ni COMPOUND POSITIVE ELECTRODE MATERIAL
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP2001185138A (en) Positive electrode active material for alkaline storage battery and manufacturing method therefor
JP2001052694A (en) Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder
JPH0221098B2 (en)
JP3324781B2 (en) Alkaline secondary battery
JPWO2006040907A1 (en) Alkaline battery
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH10188975A (en) Positive electrode material for silver oxide battery and its manufacture
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP7431914B2 (en) Positive electrode active material for alkaline storage batteries and method for producing positive electrode active materials for alkaline storage batteries
JP2001052693A (en) Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery and manufacture of the powder
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
KR20060032646A (en) Alkaline battery
JP4552319B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP4307864B2 (en) Sealed alkaline zinc primary battery
JP4467504B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery