JPS6123707A - Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury - Google Patents

Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury

Info

Publication number
JPS6123707A
JPS6123707A JP59143367A JP14336784A JPS6123707A JP S6123707 A JPS6123707 A JP S6123707A JP 59143367 A JP59143367 A JP 59143367A JP 14336784 A JP14336784 A JP 14336784A JP S6123707 A JPS6123707 A JP S6123707A
Authority
JP
Japan
Prior art keywords
alloy powder
negative electrode
zinc
zinc alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59143367A
Other languages
Japanese (ja)
Inventor
Kojiro Miyasaka
宮坂 幸次郎
Hirohito Teraoka
浩仁 寺岡
Kazuo Furushima
古嶋 和夫
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP59143367A priority Critical patent/JPS6123707A/en
Publication of JPS6123707A publication Critical patent/JPS6123707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce a negative electrode having an excellent effect of suppressing the generation of hydrogen by using the Zn alloy powders obtd. by electrolyzing a Zn electrolyte which dissolves specific amts. of Pb, In, Ga, etc. as a raw material for the negative electrode of an alkali battery. CONSTITUTION:The powder of Zn alloy consisting of 0.01-0.10wt% Pb, 0.005- 0.05wt% In and the balance Zn or the Zn alloy consisting of 0.01-0.10wt% Pb, 0.01-0.10wt% Ga and the balance Zn or the Zn alloy consisting of 0.01- 0.10wt% Pb, 0.005-0.05wt% In, 0.01-0.10wt% Ga and the balance zn is used as a raw material the negative electrode for the alkali battery using NaOH liquid which dissolves ZnO as the electrolyte. The Zn-contg. electrolyte dissolved with Pb, In, Ga, etc. so as to obtain three kinds of the above-mentioned compsn. is electrolyzed and after the Zn alloy electrodepositing on the cathode is rinsed, the alloy is pressed and compacted and is further pulverized and sized, by which the above-mentioned Zn alloy powder for the negative electrode of the alkali battery is produced.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は水銀無添加アルカリ電池の負極に用いる亜鉛合
金粉末の製造方法に関し、更に詳しくは、放電前及び放
電後の貯蔵中における水素ガスの発生を抑制するに有効
な亜鉛合金粉末の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for producing a zinc alloy powder used for a negative electrode of a mercury-free alkaline battery, and more specifically, to a method for producing a zinc alloy powder for use in a negative electrode of a mercury-free alkaline battery, and more specifically, a method for producing hydrogen gas during storage before and after discharge. The present invention relates to a method for producing zinc alloy powder that is effective in suppressing.

[発明の技術的背景とその問題点1 酸化亜鉛が溶解している苛性アルカリ水溶液を電解液と
するアルカリ電池の負極には、高純風の亜゛鉛を溶融噴
霧して製造した亜鉛粉末に数置方%量の水銀側配合した
ものが使用されている。これは、負極が亜鉛粉末だけで
あった場合には1.亜鉛はその電気化学的電位が極めて
卑であることにより、該亜鉛粉末と電解液との接触界面
では亜鉛の溶解に伴って水素ガスを発生し電池内圧が上
昇するという事態を防止するためである。
[Technical background of the invention and its problems 1 The negative electrode of an alkaline battery whose electrolyte is an aqueous caustic alkaline solution in which zinc oxide is dissolved is made by adding several layers of zinc powder produced by melting and spraying high-purity zinc. A compound containing 1% of mercury is used. This is 1. when the negative electrode is only zinc powder. Because zinc has an extremely base electrochemical potential, this is to prevent hydrogen gas from being generated at the contact interface between the zinc powder and the electrolyte as the zinc dissolves, increasing the internal pressure of the battery. .

しかしながら、水銀は有害な物質であるため、最近では
水銀を添加しなくても水素ガスの発生を抑制できる負極
材料の研究が進められている。
However, since mercury is a harmful substance, research has recently been progressing on negative electrode materials that can suppress the generation of hydrogen gas without adding mercury.

そのような負極の材料として、亜鉛と鉛、更にはインジ
ウム、ガリウムを所定の割合で配合した水銀無添加亜鉛
合金の粉末が開発され使用されるようになってきている
As a material for such a negative electrode, a mercury-free zinc alloy powder, which is a mixture of zinc, lead, and further indium and gallium in a predetermined ratio, has been developed and is being used.

この亜鉛合金粉末は、通常、電解法を適用して製造した
高純度の亜鉛に、鉛等の他の成分を所定量添加し、全体
を溶融して合金化し、ついでこの合金を溶融噴霧して所
定粒径の粉末にするという方法で製造されている。
This zinc alloy powder is usually made by adding a predetermined amount of other ingredients such as lead to high-purity zinc produced by applying an electrolytic method, melting the whole to form an alloy, and then melting and spraying this alloy. It is manufactured by turning it into powder with a predetermined particle size.

しかしながら、この製造法の場合、添加する成分、とり
わけ鉛が亜鉛と均一に分散せず得られた合金の中に鉛が
部分的に偏在するという問題を生じている。すなわち、
鉛の含有量が全体としては適正値であっ−たとしても、
部分的又はミクロな視野で観察したとき、鉛の含有量が
ばらついているということである。
However, in the case of this manufacturing method, a problem arises in that the added components, particularly lead, are not uniformly dispersed with zinc, and lead is partially unevenly distributed in the resulting alloy. That is,
Even if the overall lead content is appropriate,
This means that when observed from a partial or microscopic perspective, the lead content varies.

このような状態の場合には、その鉛含有の亜鉛合金粉末
は水素ガス発生にたいする抑制効果が減殺され、その結
果、電池内圧の上昇を招くことになる。
In such a state, the effectiveness of the lead-containing zinc alloy powder in suppressing hydrogen gas generation is diminished, resulting in an increase in battery internal pressure.

したがって、当業者間にあっては、上記したような成分
、とりわけ鉛が亜鉛と均一に合金化しており、ある設定
された含有量における部分的なばらつきが小さい負極用
の亜鉛合金粉末への要望は極めて強い。
Therefore, among those skilled in the art, there is an extremely high demand for zinc alloy powder for negative electrodes, in which the above-mentioned components, especially lead, are uniformly alloyed with zinc, and local variations in a certain set content are small. strong.

[発明の目的1 本発明は、上記要望に応え、鉛の設定含有量におけるば
らつきが小さく、したがって、水素ガス発生に対する抑
制効果が大きい負極用亜鉛合金粉  L末の製造方法−
の提供を目的とする。
[Objective of the Invention 1] The present invention, in response to the above-mentioned needs, provides a method for producing zinc alloy powder L powder for negative electrodes, which has small variations in the set content of lead and therefore has a large suppressive effect on hydrogen gas generation.
The purpose is to provide.

[発明の概要] 本発明の亜鉛合金粉末の製造方法は、水銀無添加アルカ
リ電池の負極用亜鉛合金粉末を製造する方法であって、
該合金粉末の各成分元素が含有されている電解液を電気
分解して陰極表面に各成分元素を電着させ、得られた電
着物に水洗処理を施したのち加圧成形して薄層状又は鱗
片状の成形体とし、ついで、該成形体を粉砕したのち整
粒することを特徴とする6 まず、゛目的とする組成の亜鉛合金を構成する各成分元
素が含有された電解液を建浴する。
[Summary of the Invention] The method for producing a zinc alloy powder of the present invention is a method for producing a zinc alloy powder for a negative electrode of a mercury-free alkaline battery, comprising:
The electrolytic solution containing each component element of the alloy powder is electrolyzed to electrodeposit each component element on the cathode surface, and the resulting electrodeposit is washed with water and then pressure molded to form a thin layer or The method is characterized in that it is formed into a scale-like molded body, and then the molded body is crushed and sized.6 First, an electrolytic solution containing each component element constituting a zinc alloy having the desired composition is prepared in a bath. do.

この場合、亜鉛に含有させる成分としては、鯖、インジ
ウム若しくはガリウムのいずれか又は両方であることが
好ましい。
In this case, the component contained in zinc is preferably mackerel, indium, or gallium, or both.

鉛の含有量があまり少ないと得られた亜鉛合金粉末の水
素ガス発生抑制効果が充分ではなく、またあまりに多い
と電池での重負荷特性や利用率が悪くなる等の問題を生
ずるようになるので、通常は、0.01〜0.10重量
%、好ましくは0.03〜0.08重量%の範囲内に設
定される。
If the lead content is too low, the resulting zinc alloy powder will not have a sufficient hydrogen gas generation suppressing effect, and if it is too high, problems such as heavy load characteristics and poor utilization of the battery will occur. , is usually set within the range of 0.01 to 0.10% by weight, preferably 0.03 to 0.08% by weight.

また、インジウム、ガリウムはいずれも、水素ガス発生
の抑制効果を高めるのに有効な成分であり、インジウム
の場合は0.005〜0.05重量%、ガリウムの場合
には0.01〜0.10重量%含有されることが好まし
い。
In addition, both indium and gallium are effective components for increasing the effect of suppressing hydrogen gas generation, and in the case of indium, it is 0.005 to 0.05% by weight, and in the case of gallium, it is 0.01 to 0.05% by weight. The content is preferably 10% by weight.

電解液の浴組成及び濃度は、上記した各成分の種類及び
目的とする亜鉛合金粉末に含有させるべき量との関係で
決められる。
The bath composition and concentration of the electrolytic solution are determined in relation to the types of each component described above and the amounts to be included in the intended zinc alloy powder.

亜鉛源としては硫酸浴が通常であるが、鉛が硫酸鉛とな
って融解できないため塩酸塩浴が好ましく、例えば塩化
亜鉛;鉛源としては塩化鉛:インジウム源としては塩化
インジウム;ガリウム源としては塩化ガリウム:が好適
である。目的とする組成に応じて上記の各成分源を適宜
に選択してこれらの所定量を水に溶解せしめ、各成分を
所定濃度で含有する均一な電解液を調製する。
A sulfuric acid bath is usually used as a zinc source, but a hydrochloride bath is preferable because lead becomes lead sulfate and cannot be melted, such as zinc chloride; lead chloride as a lead source; indium chloride as an indium source; and gallium source as a gallium source. Gallium chloride: is preferred. A uniform electrolytic solution containing each component at a predetermined concentration is prepared by appropriately selecting each of the above-mentioned component sources according to the intended composition and dissolving a predetermined amount of these in water.

ついで、浴温を適正な温度に保持し、所定の電流密度で
電気分解して陰極表面に上記した各成分を電着せしめる
。この電気分解時、陽極には通常炭素極、陰極には表面
平滑なアルミニウム極を用いればよい。このときの浴温
、電流密度等の電解条件は、各成分の種類、それらの組
合わせ、濃度等によって変化させることが必要なので一
義的には定まらない。このような電着処理により、各成
分は均一に混合した状態で陰極表面に電着する。
Next, the bath temperature is maintained at an appropriate temperature and electrolysis is carried out at a predetermined current density to electrodeposit the above-mentioned components on the surface of the cathode. During this electrolysis, a carbon electrode is usually used as the anode, and an aluminum electrode with a smooth surface is used as the cathode. Electrolytic conditions such as bath temperature and current density at this time cannot be uniquely determined because they need to be changed depending on the type of each component, their combination, concentration, etc. Through such electrodeposition treatment, each component is electrodeposited on the surface of the cathode in a uniformly mixed state.

すなわち、各成分は部分的に偏在することなく均質な合
金前駆体として析出すること′になる。
That is, each component is precipitated as a homogeneous alloy precursor without being locally unevenly distributed.

つぎに、この電着物を陰極から往意深くかき集め、得ら
れた集積ケーキを充分に水洗したのち、これを加圧成形
する。加圧成形法としては、ロールプレス、金型プレス
などの方法を適用すればよい。とくにロールプレスは、
得られた成形体が薄層状又は鱗片状となるため、後段の
粉砕処理を容易たらしめるので有効である。
Next, the electrodeposit is carefully scraped up from the cathode, and the resulting cake is thoroughly washed with water and then pressure molded. As the pressure molding method, methods such as roll press and mold press may be applied. Especially the roll press
This is effective because the obtained molded product is in the form of a thin layer or scales, which facilitates the subsequent pulverization process.

加圧成形時は、成形すべき集積ケーキが若干の水分を含
んでいる状態で行なうことが好ましい。
Pressure molding is preferably carried out in a state where the aggregate cake to be molded contains some moisture.

水分がバインダーのように機能して成形を容易にするか
らである。また、このときの成形圧は、得られた成形体
の嵩比重が3.0〜4.0となるように管理されること
が好ましい。成形圧が大きすぎると、成形体は緻密にな
りすぎて後段の粉砕処理が若干困難になるとともに、得
られた粉末を実際の負極として用いた場合、粉末中に電
解液が含浸しにくくなって反応性が低下する。得られた
成形体は形状不規則な鱗片が相互に重なり合って全体を
構成している。更に、加圧成形時に外部からの汚染を防
止するために、例えばローラをセラミックスで構成する
ことが好ましい。
This is because moisture functions like a binder and facilitates molding. Further, the molding pressure at this time is preferably controlled so that the bulk specific gravity of the obtained molded product is 3.0 to 4.0. If the compacting pressure is too high, the compact will become too dense, making the subsequent pulverization process somewhat difficult, and when the resulting powder is used as an actual negative electrode, it will be difficult for the electrolyte to be impregnated into the powder. Reactivity decreases. The obtained molded body is composed of irregularly shaped scale pieces that overlap each other. Furthermore, in order to prevent contamination from the outside during pressure molding, it is preferable that the rollers be made of ceramics, for example.

この成形体を、例えばセラミックス酸の媒体を用いて粉
砕し、乾燥したのち分級(整粒)して本発明の合金粉末
が得られる。負極に用りる際に、合金粉末の粒径は10
5〜500μmの範囲内にあることが好ましい。
This compact is pulverized using, for example, a ceramic acid medium, dried, and then classified (sized) to obtain the alloy powder of the present invention. When used in the negative electrode, the particle size of the alloy powder is 10
It is preferably within the range of 5 to 500 μm.

[発明の実施例] 実施例1〜3 第1表に示した浴組成の電解液3種類を建浴した。[Embodiments of the invention] Examples 1-3 Three types of electrolytes having the bath compositions shown in Table 1 were prepared.

第1表 つぎにLRfi形のアルカリマンガン電池を次のように
して組立てた。
Table 1 Next, an LRfi type alkaline manganese battery was assembled as follows.

粒度を 105〜50(lILmに揃えた上記の各亜鉛
合金i末と、酸化亜鉛を溶解した40重量%の水酸イヒ
カリウム水溶液の電解液と、ポリアクリル酸ソーダのゲ
ル化剤とを混合してゲル状の負極合剤を調製した。二酸
化マンガンに導電材としての黒鉛を混合して成る正極合
剤を調製し、常法に従らてLR8形のアルカリマンガン
電池を製造した。
Each of the above zinc alloy powders with a particle size of 105 to 50 (lILm) was mixed with an electrolytic solution of 40% by weight potassium hydroxide aqueous solution in which zinc oxide was dissolved, and a gelling agent of sodium polyacrylate. A gel-like negative electrode mixture was prepared.A positive electrode mixture was prepared by mixing manganese dioxide with graphite as a conductive material, and an LR8 type alkaline manganese battery was manufactured according to a conventional method.

各種類の電池30個につき、未放電のものと負荷10Ω
を接続して5時間放電したものを温度60℃で貯蔵した
30 batteries of each type, undischarged and 10Ω load
was connected and discharged for 5 hours, and then stored at a temperature of 60°C.

10日、20日、30日と日数経過のたびに電池内で発
生した水素ガス量(層1)を測定した。その平均値(1
)と最大値と最小値との差(R)を第3表に示した。
The amount of hydrogen gas (layer 1) generated within the battery was measured every time the 10th, 20th, and 30th days passed. The average value (1
) and the difference (R) between the maximum value and the minimum value are shown in Table 3.

第3表 なお、同様の試験をLR44形のアルカリマンガン  
 I電池、 5R44形の酸化銀ボタン電池につl、%
ても行なったところ、LReReシアルカリマンガン電
池様な結果が得られた。
Table 3: Similar tests were conducted on LR44 type alkali manganese.
I battery, 5R44 type silver oxide button battery l, %
However, results similar to those of LReRe sialkali manganese batteries were obtained.

[発明の効果] 以上の説明で明らかなように、本発明方法で製造した亜
鉛合金粉末は、鉛の含有量のばらつきが従来のものに比
べて約1桁小さく、非常に均一に亜鉛に分散している(
第2表のデータ)、そのため、アルカリ電池の負極とし
て用いた場合、電池が未放電、放電後であることとは無
関係に、長期に亘る貯蔵においても水素ガスの発生量が
少なくなり(第3表のデータ)、水銀無添加アルカリ電
池の負極材料としてその工業的価値は大であり、しかも
公害防止に資すること極めて大である。
[Effects of the invention] As is clear from the above explanation, the zinc alloy powder produced by the method of the present invention has a variation in lead content that is about one order of magnitude smaller than that of conventional powders, and is very uniformly dispersed in zinc. are doing(
Therefore, when used as the negative electrode of an alkaline battery, the amount of hydrogen gas generated is small even during long-term storage, regardless of whether the battery is undischarged or discharged (data in Table 2). data in the table), it has great industrial value as a negative electrode material for mercury-free alkaline batteries, and its contribution to pollution prevention is extremely large.

Claims (1)

【特許請求の範囲】 1、水銀無添加アルカリ電池の負極用亜鉛合金粉末を製
造する方法であって、該合金粉末の各成分元素が含有さ
れている電解液を電気分解して陰極表面に各成分元素を
電着させ、得られた電着物に水洗処理を施したのち加圧
成形して薄層状又は鱗片状の成形体とし、ついで、該成
形体を粉砕したのち整粒することを特徴とする水銀無添
加アルカリ電池の負極用亜鉛合金粉末の製造方法。 2、該亜鉛合金粉末の組成が、鉛0.01〜0.10重
量%、インジウム0.005〜0.05重量%、残部が
亜鉛となるように該電解液の各成分元素の濃度を調整す
る特許請求の範囲第1項記載の方法。 3、該亜鉛合金粉末の組成が、鉛0.01〜0.10重
量%、ガリウム0.01〜0.10重量%、残部が亜鉛
となるように該電解液の各成分元素の濃度を調整する特
許請求の範囲第1項記載の方法。 4、該亜鉛合金粉末の組成が、鉛0.01〜0.10重
量%、インジウム0.005〜0.05重量%、ガリウ
ム0.01〜0.10重量%、残部が亜鉛となるように
該電解液の各成分元素の濃度を調整する特許請求の範囲
第1項記載の方法。 5、該成形体の嵩比重を3.0〜4.0とするように加
圧成形する特許請求の範囲第1項記載の方法。
[Claims] 1. A method for producing a zinc alloy powder for a negative electrode of a mercury-free alkaline battery, which comprises electrolyzing an electrolytic solution containing each component element of the alloy powder to coat each component on the surface of the cathode. The method is characterized in that the component elements are electrodeposited, the resulting electrodeposited material is washed with water, and then pressure molded to form a thin layer-like or scale-like molded product, and then the molded product is pulverized and then sized. A method for producing zinc alloy powder for negative electrodes of mercury-free alkaline batteries. 2. Adjust the concentration of each component element of the electrolytic solution so that the composition of the zinc alloy powder is 0.01 to 0.10% by weight of lead, 0.005 to 0.05% by weight of indium, and the balance is zinc. A method according to claim 1. 3. Adjust the concentration of each component element of the electrolytic solution so that the composition of the zinc alloy powder is 0.01 to 0.10% by weight of lead, 0.01 to 0.10% by weight of gallium, and the balance is zinc. A method according to claim 1. 4. The composition of the zinc alloy powder is 0.01 to 0.10% by weight of lead, 0.005 to 0.05% by weight of indium, 0.01 to 0.10% by weight of gallium, and the balance is zinc. The method according to claim 1, wherein the concentration of each component element of the electrolytic solution is adjusted. 5. The method according to claim 1, wherein the molded product is pressure-molded so as to have a bulk specific gravity of 3.0 to 4.0.
JP59143367A 1984-07-12 1984-07-12 Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury Pending JPS6123707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143367A JPS6123707A (en) 1984-07-12 1984-07-12 Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143367A JPS6123707A (en) 1984-07-12 1984-07-12 Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury

Publications (1)

Publication Number Publication Date
JPS6123707A true JPS6123707A (en) 1986-02-01

Family

ID=15337131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143367A Pending JPS6123707A (en) 1984-07-12 1984-07-12 Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury

Country Status (1)

Country Link
JP (1) JPS6123707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746424A (en) * 1990-04-30 1995-02-14 Thomson Consumer Electron Inc Cathode-ray tube screen protective circuit
EP0661766A1 (en) * 1993-12-28 1995-07-05 Electric Fuel (E.F.L.) Limited Zinc powder and battery anodes containing the same
US6436539B1 (en) 1998-08-10 2002-08-20 Electric Fuel Ltd. Corrosion-resistant zinc alloy powder and method of manufacturing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746424A (en) * 1990-04-30 1995-02-14 Thomson Consumer Electron Inc Cathode-ray tube screen protective circuit
EP0661766A1 (en) * 1993-12-28 1995-07-05 Electric Fuel (E.F.L.) Limited Zinc powder and battery anodes containing the same
US6436539B1 (en) 1998-08-10 2002-08-20 Electric Fuel Ltd. Corrosion-resistant zinc alloy powder and method of manufacturing

Similar Documents

Publication Publication Date Title
DE2558550A1 (en) METHOD OF MANUFACTURING A PRIMARY ELECTRIC ELECTRIC POWER GENERATING DRY CELL WITH A (CF DEEP X) DEEP N CATHOD AND AN AQUATIC ALKALINE ELECTROLYTE
JP2008013427A (en) Electrolytic manganese dioxide
JPH09237630A (en) Active material and positive electrode for alkali storage battery
Paramasivam et al. Influence of alloying additives on the performance of commercial grade aluminium as galvanic anode in alkaline zincate solution for use in primary alkaline batteries
SK47697A3 (en) Alkaline galvanic cell and manufacturing process thereof
EP0503287A1 (en) Zinc alkaline cells
US5139900A (en) Zinc alkaline cells
US2528891A (en) Primary battery depolarizer and method of making the same
JPS6123707A (en) Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury
JPS5825083A (en) Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same
US1393739A (en) Electric battery
JPS6196665A (en) Zinc alkaline primary battery
JP2008066100A (en) Alkaline battery
JPH04121961A (en) Zinc alloy for zinc alkaline battery and its manufacture and zinc alkaline battery using it
JPS60262353A (en) Manufacture of negative zinc alloy powder for alkaline battery
JPS6264062A (en) Positive plate for alkaline storage battery
CN114457257B (en) Rare earth lead alloy and preparation method thereof
JPS61109256A (en) Zinc anode of alkaline call
JPH06260166A (en) Nickel electrode for alkaline storage battery
US703875A (en) Active material for storage batteries and process of making same.
JPH03503333A (en) Method for producing improved electrolytic manganese dioxide
JP2000048812A (en) Positive electrode plate for lead-acid battery
JPH05151958A (en) Manufacture of gel-form negative electrode for alkaline dry cell
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
KR870002067B1 (en) Process for producing ago cathode material